JPS63311134A - Temperature measuring apparatus - Google Patents

Temperature measuring apparatus

Info

Publication number
JPS63311134A
JPS63311134A JP14736487A JP14736487A JPS63311134A JP S63311134 A JPS63311134 A JP S63311134A JP 14736487 A JP14736487 A JP 14736487A JP 14736487 A JP14736487 A JP 14736487A JP S63311134 A JPS63311134 A JP S63311134A
Authority
JP
Japan
Prior art keywords
frequency
wave
receiver
oscillator
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14736487A
Other languages
Japanese (ja)
Inventor
Motoharu Fukai
深井 元春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP14736487A priority Critical patent/JPS63311134A/en
Publication of JPS63311134A publication Critical patent/JPS63311134A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To make it possible to measure temperature regardless of the distance between wave transmitting and receiving devices, by transmitting ultrasonic waves having at least two kinds of frequencies in a gas to be measured in a pulse shape, obtaining the ratio between propagating times, and obtaining the temperature based on relationship between the temperature and a propagating speed, which is obtained beforehand. CONSTITUTION:An ultrasonic wave having a first frequency f1 is sent from a first wave transmitter 16 in a pulse shape aided by gate generating circuits 11 and 12. The wave is received with a first wave receiver 17. An ultrasonic wave having a second frequency f2 is sent from a second wave transmitter 26 in a pulse shape and received with a second wave receiver 27. The time from the transmitter 16 to the receiver 17 and the time from the transmitter 26 to the receiver 27 are obtained with frequency counters 20 and 30. The temperature data of a gas which is present between both wave transmitters 16 and 26 and both receivers 17 and 27 are obtained on the basis of the ratio between both times. The distance data between the transmitters and the receivers can be obtained from the results. An oscillating device 1 comprises an oscillator 1, a frequency synthesizer 3, a frequency divider 4 and the like. The oscillator 2 is, e.g., an original oscillator such as a crystal oscillator. The oscillator 2 oscillates a reference frequency signal and applies the signal to the frequency synthesizer 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超音波を用いた温度測定装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a temperature measuring device using ultrasonic waves.

〔従来の技術〕[Conventional technology]

超音波を利用して気体の温度を測定する装置は公知であ
る。たとえば、超音波パルスの所定距離間の伝播速度を
検出することにより、その超音波パルスの伝播媒体であ
る気体の温度を測定する方法が一般的である。
Devices that measure the temperature of gas using ultrasonic waves are known. For example, a common method is to measure the temperature of a gas, which is the propagation medium of the ultrasonic pulse, by detecting the propagation velocity of the ultrasonic pulse over a predetermined distance.

具体的には、気体中を伝播する音波の速度Vは、気体の
密度をρ9体積弾性率をyとするとv=(yρ)に の関係があり、理想気体では下記fl)、 +21式が
導かれる。
Specifically, the velocity V of a sound wave propagating in a gas has the relationship v = (yρ) where the density of the gas is ρ9 and the bulk modulus is y. It will be destroyed.

v=(γRT/M)l/2・・・filR 但し、T:気体の比熱比(定圧比熱/定積比熱) R:気体定数 M:分子量 T:温度 従って、音速■が判明すれば温度Tが求まる。v=(γRT/M)l/2...filR However, T: specific heat ratio of gas (specific heat at constant pressure/specific heat at constant volume) R: gas constant M: molecular weight T: temperature Therefore, if the speed of sound ■ is known, the temperature T can be found.

なお、音速Vは下記(3)式にて求められる。Note that the sound velocity V is determined by the following equation (3).

v = It / t  ・・・(3)但し、l:送受
波器間の距離 t:音波が距離lを到達するに要す る時間 更に、音速Vをより正確に測定する方法として、超音波
パルスの受波と同時に次の超音波パルスを送波すること
を反復し、所定時間内に送波し得たパルス数を計数する
ことにより超音波パルスの伝播時間を測定するシング・
アラウンド法等も広く実用に供されている。
v = It / t ... (3) However, l: distance between the transducer and t: time required for the sound wave to reach the distance l. Furthermore, as a method to more accurately measure the sound speed V, it is possible to This method measures the propagation time of an ultrasonic pulse by repeating the process of transmitting the next ultrasonic pulse at the same time it is received and counting the number of pulses that can be transmitted within a predetermined time.
The around method and the like are also widely used in practice.

第3図は上述のシング・アラウンド法を実施するための
装置構成を示すブロック図である。
FIG. 3 is a block diagram showing the configuration of an apparatus for implementing the above sing-around method.

具体的には、超音波パルス発振器51にて発生された超
音波パルスを送波器52から測定対象の気体中へ送波し
、これを所定距離離隔した受波器53にて受波し、増幅
器54にて増幅して検波器55にて検波した後の波形を
波形整形回路56にて波形整形した後、再度超音波パル
ス発振器51に与えて前述同様の処理を行なう。一方、
検波器55にて検波された波形は周波数カウンタ57に
も与えられており、この周波数カウンタにて受波した超
音波パルスの数を計数する。
Specifically, an ultrasonic pulse generated by an ultrasonic pulse oscillator 51 is transmitted from a transmitter 52 into the gas to be measured, and is received by a receiver 53 separated by a predetermined distance. The waveform amplified by the amplifier 54 and detected by the detector 55 is shaped by the waveform shaping circuit 56, and then given to the ultrasonic pulse oscillator 51 again to perform the same processing as described above. on the other hand,
The waveform detected by the detector 55 is also provided to a frequency counter 57, which counts the number of ultrasonic pulses received.

このような装置では、送波器52から送波された超音波
パルスが受波器53に受波される都度新たに超音波パル
スが送波器52から送波されるが、この周期は超音波パ
ルスが送波器52と受波器53との間を伝播する速度に
比例する。
In such a device, each time the ultrasonic pulse transmitted from the transmitter 52 is received by the receiver 53, a new ultrasonic pulse is transmitted from the transmitter 52, but this cycle is It is proportional to the speed at which the acoustic pulse propagates between the transmitter 52 and the receiver 53.

このため、ある一定時間の間における周波数カウンタ5
7の計数値は超音波の送波器52と受波器53との間の
伝播速度の関数になっている。従って、超音波の速度が
求まるので、その伝播媒体である測定対象の気体の温度
も求まる。
Therefore, the frequency counter 5 during a certain period of time
The count value of 7 is a function of the propagation speed between the ultrasonic wave transmitter 52 and the wave receiver 53. Therefore, since the speed of the ultrasonic wave can be determined, the temperature of the gas to be measured, which is the propagation medium, can also be determined.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上述のような従来の超音波温度測定装置では、
送受波器間の距離が一定であり、且つ判明している必要
がある。換言すれば、送受波器間の距離が不明な場合あ
るいは変化しつつあるような場合、具体的には送受波器
が相対移動しているような場合には正確な温度を測定す
ることは困難である。
However, with the conventional ultrasonic temperature measuring device as mentioned above,
The distance between the transducer and receiver must be constant and known. In other words, it is difficult to accurately measure temperature when the distance between the transducer and the transducer is unknown or changing, specifically when the transducer is moving relative to the transducer. It is.

本発明はこのような事情に鑑みてなされたものであり、
送受波器間の距離が不明の場合でも、あるいは変化しつ
つあるような場合でも両者間に介在する気体の温度を正
確に測定し得る温度測定装置の提供を目的とする。
The present invention was made in view of these circumstances, and
It is an object of the present invention to provide a temperature measuring device capable of accurately measuring the temperature of gas interposed between a transducer and a receiver even when the distance between the transducer and receiver is unknown or changing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の温度測定装置では、測定対象の気体を少なくと
も2種類の周波数の超音波を測定対象の気体中へパルス
的に送波してその伝播時間の比を求め、予め求めである
温度と画周波数の超音波の伝播速度の比との関係から温
度を求める構成を採っている。
In the temperature measurement device of the present invention, ultrasonic waves of at least two different frequencies are transmitted in pulses into the gas to be measured, and the ratio of their propagation times is determined, and the temperature and the difference are determined in advance. The configuration is such that the temperature is determined from the relationship between the frequency and the propagation velocity of ultrasonic waves.

本発明の温度測定装置は、異なる周波数の複数の信号を
発生する発振装置と、該発振装置にて発生された第1の
周波数の信号をパルス的に出力する第1のパルス変調器
と、該第1のパルス変調器からパルス的に発生される前
記第1の周波数の信号を超音波変換して測定対象の気体
中へ送波する第1の送波器と、前記発振装置にて発生さ
れた第2の周波数の信号をパルス的に出力する第2のパ
ルス変調器と、該第2のパルス変調器からパルス的に発
生される前記第2の周波数の信号を超音波変換して測定
対象の気体中へ送波する第2の送波器と、前記第1の発
振器から送波された超音波を受波する第1の受波器と、
該第1の受波器による超音波の受波回数を計数する第1
のカウンタと、前記第2の発振器から送波された超音波
を受波する第2の受波器と、該第2の受波器による超音
波の受波回数を計数する第2のカウンタと、前記両受波
器がそれぞれ超音波を受波する都度前記両送波器に超音
波をそれぞれ送波させる手段と、前記両カウンタの単位
時間当たりの計数値の比と測定対象の気体の温度との関
係を予め求めて格納してある記憶手段と、前記両カウン
タの単位時間当たりの計数値の比と前記記憶手段の格納
内容とから測定対象の気体の温度を求める手段とを備え
たことを特徴とする。
The temperature measuring device of the present invention includes: an oscillation device that generates a plurality of signals of different frequencies; a first pulse modulator that outputs a signal of a first frequency generated by the oscillation device in a pulsed manner; a first transmitter that converts a signal of the first frequency generated in a pulsed manner from a first pulse modulator into an ultrasonic wave and transmits the wave into the gas to be measured; a second pulse modulator that outputs a signal of a second frequency in a pulsed manner; and a measurement target by ultrasonically converting the signal of the second frequency generated in a pulsed manner from the second pulse modulator. a second wave transmitter that transmits waves into the gas; a first wave receiver that receives the ultrasonic waves transmitted from the first oscillator;
a first device that counts the number of times the ultrasonic wave is received by the first receiver;
a second receiver that receives the ultrasound transmitted from the second oscillator; and a second counter that counts the number of times the ultrasound is received by the second receiver. , a means for causing each of the two transmitters to transmit an ultrasonic wave each time each of the two receivers receives an ultrasonic wave, a ratio of the counts per unit time of the two counters, and a temperature of the gas to be measured. and a means for determining the temperature of the gas to be measured from the ratio of the counts per unit time of the two counters and the contents stored in the storage means. It is characterized by

(作用〕 本発明の温度測定装置では、相異なる2種類の周波数の
超音波をパルス的に測定対象の気体中を送波してその伝
播速度の比の情報に基づいて測定対象の気体の温度を求
めるようにしているので、超音波の送受波器間の距離に
は関係なく温度測定が行える。
(Function) In the temperature measuring device of the present invention, ultrasonic waves of two different frequencies are transmitted in pulses through the gas to be measured, and the temperature of the gas to be measured is determined based on information on the ratio of their propagation velocities. Therefore, temperature measurement can be performed regardless of the distance between the ultrasonic transmitter and receiver.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明をその実施例を示す図面に基づいて詳述す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on drawings showing embodiments thereof.

第1図は本発明に係る温度測定装置の構成を示すブロッ
ク図である。本発明装置は端的には第1の周波数f1の
超音波を第1の送波器16からパルス的に送波してこの
パルスが第1の受波器17にて受波されるまでに要する
時間と、第2の周波数f2の超音波を第2の送波器26
からパルス的に送波してこのパルスが第2の受波器27
にて受波されるまでに要する時間とを求め、両者の比か
ら両送波器16、26と両受波器17.27との間に介
在する気体の温度情報を求めるものであり、更にこの結
果から送受波器間の距離情報を求めることも可能である
FIG. 1 is a block diagram showing the configuration of a temperature measuring device according to the present invention. Briefly, the device of the present invention transmits ultrasonic waves of the first frequency f1 in pulses from the first transmitter 16, and it takes until the pulses are received by the first receiver 17. time, and the ultrasonic wave of the second frequency f2 is sent to the second transmitter 26.
This pulse is sent to the second receiver 27 in the form of a pulse.
The time required for the wave to be received by the transmitter 16, 26 and the receiver 17, 27 is determined from the ratio of the two, and furthermore, From this result, it is also possible to obtain distance information between the transducers.

図中1は発振装置であり、発振器29周波数合成器39
分周回路4等からなる。発振器2はたとえば水晶発振器
等の原発振器であり、周波数foの基準周波数信号を発
振して周波数合成器3に与えている。
1 in the figure is an oscillation device, oscillator 29 frequency synthesizer 39
It consists of a frequency dividing circuit 4 and the like. The oscillator 2 is an original oscillator such as a crystal oscillator, and oscillates a reference frequency signal having a frequency fo to provide it to the frequency synthesizer 3.

周波数合成器3は発振器2から与えられる基準周波数f
oの信号をたとえば逓倍する等により種々の周波数の信
号を発生するが、本実施例では第1の周波数f、の信号
を増幅器13を介して混合器14に、第2の周波数12
の信号を増幅器23を介して混合器24に、第3の周波
数f3の信号を分周回路4にそれぞれ与えている。
The frequency synthesizer 3 uses the reference frequency f given from the oscillator 2.
For example, signals of various frequencies are generated by multiplying the signal of f, and in this embodiment, the signal of the first frequency f is sent to the mixer 14 via the amplifier 13,
The signal of the third frequency f3 is supplied to the mixer 24 via the amplifier 23, and the signal of the third frequency f3 is supplied to the frequency dividing circuit 4.

分周回路4は、周波数合成器3から与えられる第3の周
波数信号f3を分周して第1のゲート発生回路11及び
第2のゲート発生回路12それぞれに必要なアナログの
クロック信号を供給する。
The frequency divider circuit 4 divides the third frequency signal f3 given from the frequency synthesizer 3 and supplies necessary analog clock signals to each of the first gate generation circuit 11 and the second gate generation circuit 12. .

両ゲート発生回路11.12は、それぞれが発生したゲ
ート信号を混合器14及び24に与える。
Both gate generation circuits 11, 12 provide their respective generated gate signals to mixers 14 and 24.

従って、再混合器14.24からは、増幅器13.23
から与えられる連続波としての第1及び第2の周波数信
号f1.f2をゲート発生回路11.12から与えられ
るゲート信号の期間だけパルス的に出力し、即ちパルス
変調し、それぞれ増幅器15.25を介して第1及び第
2の送波器16及び26に与えるパルス変調器として機
能する。
From the remixer 14.24, therefore, the amplifier 13.23
First and second frequency signals f1. as continuous waves given from f1. f2 is output in a pulsed manner only for the period of the gate signal given from the gate generation circuit 11.12, that is, it is pulse-modulated, and the pulse is given to the first and second transmitters 16 and 26 via the amplifier 15.25, respectively. Functions as a modulator.

両送波器16.26は、それぞれ与えられた信号を超音
波に変換して測定対象の気体中へ送波する。
Both transmitters 16 and 26 convert the respective applied signals into ultrasonic waves and transmit the waves into the gas to be measured.

第1及び第2の受波器17.27は上述の第1及び第2
の送波器16.26かから送波された超音波を受波して
電気信号に変換し、それぞれ増幅器18及び28を介し
て検波器19.29に与える。
The first and second receivers 17.27 are the first and second receivers described above.
The ultrasonic waves transmitted from the transmitters 16 and 26 are received, converted into electrical signals, and applied to the detectors 19 and 29 via amplifiers 18 and 28, respectively.

両検波器19.29はそれぞれ増幅器18.28から与
えられた信号を検波してそれぞれ第1.第2の周波数カ
ウンタ20.30に与える。
Both detectors 19.29 detect the signals given from the amplifiers 18.28, respectively, and output the signals to the first and second detectors. to the second frequency counter 20.30.

両周波数カウンタ20.30は与えられた信号の一定時
間内に含まれるパルス数を計数し、その結果及び両検波
器19.29のパルス出力のタイミングの情報をマイク
ロコンピュータ40に与える。
Both frequency counters 20.30 count the number of pulses included in the given signal within a certain period of time, and provide the results and information on the timing of the pulse outputs of both detectors 19.29 to the microcomputer 40.

マイクロコンピュータ40は、両周波数カウンタ20、
30から与えられる情報に従って再混合器14゜24で
のパルス変調のパルス幅、パルス繰返し周波数及び変換
タイミングとを決定し、そのための制御信号を前述のゲ
ート発生回路11.12へ与える。
The microcomputer 40 includes both frequency counters 20,
The pulse width, pulse repetition frequency, and conversion timing of pulse modulation in the remixer 14 24 are determined in accordance with the information provided from the remixer 14 , and a control signal therefor is provided to the aforementioned gate generation circuit 11 , 12 .

また、図中41はメモリテーブルであり、後述する如く
、両周波数カウンタ20.30の計数値の比と気体の温
度との間の関係が予め求められて格納されている。
Reference numeral 41 in the figure is a memory table in which, as will be described later, the relationship between the ratio of the count values of both frequency counters 20 and 30 and the temperature of the gas is determined in advance and stored.

さて、マイクロコンピュータ4oは、両周波数カウンタ
20.30の計数値の比を求め、これに相当する値をメ
モリテーブル41の格納内容から読出して両送波器16
.26と両受波器17.27との間の距離を求めるので
あるが、以下その演算方法について説明する。
Now, the microcomputer 4o calculates the ratio of the counted values of both frequency counters 20.30, reads out the value corresponding to this from the stored contents of the memory table 41,
.. The distance between 26 and both receivers 17 and 27 is calculated, and the calculation method will be explained below.

ある時刻における送受波器間に介在する気体の温度をT
、送受波器間の距離を11とすると、周波数f1及びf
2の音波の速度v1及びv2は下記(4)式及び(5)
式にて表される。
The temperature of the gas interposed between the transducer and the transducer at a certain time is T
, when the distance between the transducer and the transducer is 11, the frequencies f1 and f
The speeds v1 and v2 of the sound waves in No. 2 are expressed by the following equations (4) and (5).
It is expressed by the formula.

v 1−1 + / tI   ・・・(4)■2=4
’+/12   ・・・(5)但し、t、:周波数f1
の音波が送受波器 ′間の到達に要する時間 tl :周波数12の音波が送受波器 間の到達に要する時間 ここて、両周波数カウンタ20.30による入力パルス
の計数時間をτとすると下記(6)式及び(7)式が得
られる。
v 1-1 + / tI ... (4) ■2=4
'+/12...(5) However, t: frequency f1
Time required for a sound wave of frequency 12 to arrive between the transducer and the transducer tl: Time required for a sound wave of frequency 12 to arrive between the transducer and the transducer Here, if the counting time of the input pulse by both frequency counters 20 and 30 is τ, then the following ( Equations (6) and (7) are obtained.

τ=nXt1  ・・・(6) τ”’ m X t 2   ・・・(7)但し、n:
周波数f1の音波の受波パルス数 m:周波数f2の音波の受波パルス 数 以上の(4)弐〜(7)式から下記(8)式が得られる
τ=nXt1...(6) τ"' m X t2...(7) However, n:
The following equation (8) is obtained from equations (4)2 to (7), where m is the number of received pulses of the sound wave with frequency f1: the number of received pulses of the sound wave with frequency f2.

t2 /11=v2 /v1=n/m・・・(8)即ち
、周波数カウンタ20.30それぞれによる2種類の周
波数f1とf2との受波パルス数の比n/mと、再送波
器16.26と両受波器17.27間の距離lとの関係
を予め求めておき、メモリテーブル41にテーブルの形
(近似式の形でもよい)で格納しておけば、実際の測定
対象から得られた周波数カウンタ20.30の計数値の
比n/mから距離lが求まるのである。
t2 /11=v2 /v1=n/m (8) That is, the ratio n/m of the number of received pulses at two types of frequencies f1 and f2 by each of the frequency counters 20.30 and the retransmitter 16 If the relationship between .26 and the distance l between both receivers 17 and 27 is determined in advance and stored in the memory table 41 in the form of a table (or in the form of an approximation formula), it is possible to The distance l is determined from the ratio n/m of the count values of the frequency counter 20.30 obtained.

更に、(6)式及び(7)式から下記(81,(91式
によりそれぞれの周波数f、、f2の音波が両送波器1
6゜26から両受波器17.27間に到達するのに要す
る時間tl+  t2が求まるので、温度Tが上述の如
く求まれば、距離lも容易に求まる。
Furthermore, from equations (6) and (7), the following equations (81 and (91) show that the sound waves of the respective frequencies f, , f2 are transmitted to both transmitters 1
Since the time tl+t2 required for the wave to reach between the two receivers 17 and 27 from 6°26 can be determined, if the temperature T is determined as described above, the distance l can also be easily determined.

マイクロコンピュータ40は以上のような手法にて、両
送波器16.26と両受波器17.27との間の気体の
温度Tを求め、更に距離lを求める。また、マイクロコ
ンピュータ40は前述の如く、音波の反復送波のために
ゲート発生回路11.12にトリガパルスを出力する。
Using the method described above, the microcomputer 40 determines the temperature T of the gas between both transmitters 16.26 and both receivers 17.27, and further determines the distance l. Further, as described above, the microcomputer 40 outputs trigger pulses to the gate generation circuits 11 and 12 for repeated transmission of sound waves.

tl−τ/n ・・・(8) 12=τ/m ・・・(9) このような本発明装置の動作は以下の如(である。なお
、第2図はその動作説明のためのタイミングチャートで
ある。
tl-τ/n (8) 12=τ/m (9) The operation of the device of the present invention is as follows. This is a timing chart.

発振装置1の発振器2にて発振された基準周波数foの
信号は周波数合成器3にてf、、f2゜f3の3種類の
周波数信号に合成され、増幅器13を介して第1の混合
器14に、増幅器23を介して第2の混合器24に、ま
た分周回路4にそれぞれ与えられる。
The signal of the reference frequency fo oscillated by the oscillator 2 of the oscillator 1 is synthesized by the frequency synthesizer 3 into three types of frequency signals f, , f2° f3, and then sent to the first mixer 14 via the amplifier 13. The signal is then applied to the second mixer 24 via the amplifier 23 and to the frequency dividing circuit 4, respectively.

分周回路4は与えられた周波数f3を基にクロック信号
を発生してゲート発生回路11.12に与えている。そ
して、ゲート発生回路11.12は与えられたクロック
信号を基にマイクロコンピュータ40からトリガパルス
が与えられると、第2図(a)、 (dlに示す如く、
ゲート信号を発生して前混合器14゜24に与える。
The frequency dividing circuit 4 generates a clock signal based on the given frequency f3 and supplies it to the gate generating circuits 11 and 12. Then, when the gate generation circuits 11 and 12 receive a trigger pulse from the microcomputer 40 based on the applied clock signal, as shown in FIG. 2(a) and (dl),
A gate signal is generated and applied to the premixer 14.24.

これにより、前混合器14.24からはそれぞれ周波数
f1またはf2の連続波信号が両ゲート発生回路11.
12から与えられたゲート信号のゲート幅に対応する部
分だけパルス的に第2図To)、 te+に示す如く、
出力され、送波器16.26にて超音波変換されて測定
対象の気体中へ送波される。
As a result, continuous wave signals of frequency f1 and f2 are output from the premixers 14 and 24 to both gate generation circuits 11 and 11, respectively.
Only the part corresponding to the gate width of the gate signal given from 12 is pulsed as shown in Fig. 2 To) and te+,
The signal is output, converted into an ultrasonic wave by a wave transmitter 16.26, and transmitted into the gas to be measured.

気体中へ送波された超音波は両受波器17.27にて、
第2図fc)、 (0に示す如き波形として受波され、
検波器19.29にて検波された後、両周波数カウンタ
20.30にて入力パルス数が計数される。
The ultrasonic wave transmitted into the gas is transmitted to both receivers 17 and 27.
Fig. 2 fc), (received as a waveform as shown in 0,
After being detected by the wave detector 19.29, the number of input pulses is counted by both frequency counters 20.30.

また、マイクロコンピュータ40は画周波数カウンタ2
0.30による計数が行なわれると、換言すれば両送波
器16.26からそれぞれ送波された超音波パルスが両
受波器17.27それぞれに受波されると、ゲート発生
回路11または12にトリガパルスを与えて次の超音波
パルスの送波を行なう。このようにして順次超音波パル
スの送波を反復し、時間τの間の周波数カウンタ20.
30の計数値n、mを求めることにより、マイクロコン
ピュータ40は温度T及び距離βを求める。
The microcomputer 40 also controls the image frequency counter 2.
When counting by 0.30 is performed, in other words, when the ultrasonic pulses transmitted from both transmitters 16.26 are received by both receivers 17.27, gate generation circuit 11 or A trigger pulse is applied to 12 to transmit the next ultrasonic pulse. In this way, the transmission of ultrasonic pulses is repeated sequentially, and the frequency counter 20 .
By determining the count values n and m of 30, the microcomputer 40 determines the temperature T and the distance β.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明装置によれば、送受波器間の距離が
不明であってもあるいは変化しつつある場合にも温度の
測定が可能であり、また測定された温度を基に送受波器
間の距離の測定も可能になる。
As described above, according to the device of the present invention, it is possible to measure the temperature even when the distance between the transducers is unknown or is changing, and it is possible to measure the temperature between the transducers and the transducers based on the measured temperature. It is also possible to measure the distance between

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る温度測定装置の構成を示すブロッ
ク図、第2図は本発明装置の動作説明のためのタイミン
グチャート、第3図は従来の一般的なシング・アラウン
ド法による温度測定装置の構成を示すブロック図である
。 1・・・発振装置 14.24・・・混合器 16.2
6・・−送波器 17.27・・・受波器 20.30
・・・周波数カウンタ40・・・マイクロコンピュータ
  41・・・メモリテーブル
Fig. 1 is a block diagram showing the configuration of the temperature measuring device according to the present invention, Fig. 2 is a timing chart for explaining the operation of the device of the present invention, and Fig. 3 is temperature measurement using the conventional general sing-around method. FIG. 2 is a block diagram showing the configuration of the device. 1... Oscillation device 14.24... Mixer 16.2
6... - Transmitter 17.27... Receiver 20.30
...Frequency counter 40...Microcomputer 41...Memory table

Claims (1)

【特許請求の範囲】 1、異なる周波数の複数の信号を発生する発振装置と、 該発振装置にて発生された第1の周波数の 信号をパルス的に出力する第1のパルス変調器と、 該第1のパルス変調器からパルス的に発生 される前記第1の周波数の信号を超音波変換して測定対
象の気体中へ送波する第1の送波器と、 前記発振装置にて発生された第2の周波数 の信号をパルス的に出力する第2のパルス変調器と、 該第2のパルス変調器からパルス的に発生 される前記第2の周波数の信号を超音波変換して測定対
象の気体中へ送波する第2の送波器と、 前記第1の発振器から送波された超音波を 受波する第1の受波器と、 該第1の受波器による超音波の受波回数を 計数する第1のカウンタと、 前記第2の発振器から送波された超音波を 受波する第2の受波器と、 該第2の受波器による超音波の受波回数を 計数する第2のカウンタと、 前記両受波器がそれぞれ超音波を受波する 都度前記両送波器に超音波をそれぞれ送波させる手段と
、 前記両カウンタの単位時間当たりの計数値 の比と測定対象の気体の温度との関係を予め求めて格納
してある記憶手段と、 前記両カウンタの単位時間当たりの計数値 の比と前記記憶手段の格納内容とから測定対象の気体の
温度を求める手段と を備えたことを特徴とする温度測定装置。
[Claims] 1. An oscillation device that generates a plurality of signals of different frequencies; a first pulse modulator that outputs a signal of a first frequency generated by the oscillation device in a pulsed manner; a first transmitter that converts the first frequency signal generated in a pulsed manner from the first pulse modulator into an ultrasonic wave and transmits the signal into the gas to be measured; a second pulse modulator that outputs a signal of a second frequency in a pulsed manner; a second wave transmitter that transmits waves into the gas; a first wave receiver that receives the ultrasonic waves transmitted from the first oscillator; and a first wave receiver that receives the ultrasonic waves transmitted from the first oscillator; a first counter that counts the number of times the ultrasound is received; a second receiver that receives the ultrasound transmitted from the second oscillator; and a number of times the ultrasound is received by the second receiver. a second counter for counting the count value per unit time of the two counters; a storage means in which the relationship between the ratio and the temperature of the gas to be measured is determined and stored in advance, and the temperature of the gas to be measured is determined from the ratio of the counts per unit time of the two counters and the contents stored in the storage means. A temperature measuring device characterized by comprising: means for determining .
JP14736487A 1987-06-12 1987-06-12 Temperature measuring apparatus Pending JPS63311134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14736487A JPS63311134A (en) 1987-06-12 1987-06-12 Temperature measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14736487A JPS63311134A (en) 1987-06-12 1987-06-12 Temperature measuring apparatus

Publications (1)

Publication Number Publication Date
JPS63311134A true JPS63311134A (en) 1988-12-19

Family

ID=15428538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14736487A Pending JPS63311134A (en) 1987-06-12 1987-06-12 Temperature measuring apparatus

Country Status (1)

Country Link
JP (1) JPS63311134A (en)

Similar Documents

Publication Publication Date Title
JP3022623B2 (en) Electrical measuring device for measuring signal propagation time
GB2046442A (en) Ultrasonic flow meter
JPS63311134A (en) Temperature measuring apparatus
JPH07325151A (en) Ultrasonic distance measuring equipment
JP2760079B2 (en) Ultrasonic sensor
RU2195635C1 (en) Method of measurement of level of liquid and loose media
RU2284015C2 (en) Method and device for measuring flux discharge
JPH0434307A (en) Pulse type ultrasonic distance measuring apparatus
JP2000338123A (en) Ultrasonic floe speed measuring method
SU794531A1 (en) Ultrasonic phase meter of flow rate
JP4008741B2 (en) Ultrasonic flow velocity measuring method and apparatus
JPH03130689A (en) Pulse type ultrasonic distance measuring apparatus
SU711383A1 (en) Ultrasonic meter of gas media temperature
SU753271A1 (en) Device for measuring speed of ultrasound
RU1812446C (en) Method for measurement of speed increment of ultrasound waves
SU672494A1 (en) Single-channel compensation-type flowmeter
JPH0519054A (en) Movement detector for mobile object
SU1114945A1 (en) Device for determination of concrete strength
SU735922A1 (en) Correlation rate-of-flow meter
JPH0117090B2 (en)
SU792077A1 (en) Medium velocity ultrasonic meter
JP2001165764A (en) Method of measuring ultrasonic wave propagation time
JPS62266480A (en) System for measuring distance with ultrasonic wave and transmitter therefor
SU1408239A1 (en) Ultrasonic vibration meter
JPH044559B2 (en)