JPS63310936A - Hydrogen storage alloy material and its production - Google Patents

Hydrogen storage alloy material and its production

Info

Publication number
JPS63310936A
JPS63310936A JP62147447A JP14744787A JPS63310936A JP S63310936 A JPS63310936 A JP S63310936A JP 62147447 A JP62147447 A JP 62147447A JP 14744787 A JP14744787 A JP 14744787A JP S63310936 A JPS63310936 A JP S63310936A
Authority
JP
Japan
Prior art keywords
storage alloy
hydrogen
fine particles
hydrogen storage
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62147447A
Other languages
Japanese (ja)
Inventor
Tetsuya Kimijima
哲也 君島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP62147447A priority Critical patent/JPS63310936A/en
Publication of JPS63310936A publication Critical patent/JPS63310936A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

PURPOSE:To obtain the title hydrogen storage alloy material which is not damaged due to pulverization of the alloy even when the occlusion and release of hydrogen are repeated by coating the aggregate of the fine particles of the hydrogen storage alloy with a metal having higher malleability and ductility than the alloy, and compacting the aggregates into a compact. CONSTITUTION:The fine particles 2 of the alloy such as La-Ni are damped in water form a slurry (expressed by A hereunder). Meanwhile, the surface of the fine particle 6 of a metal such as Al having higher malleability and ductility than the alloy is subjected to oleophilic treatment by zinc stearate, etc., the fine particles 6 are dispersed in the org. solvent such a freon-based solvent incompatible with water and not damaging the oleophilic treatment to prepare a suspension (expressed by B hereunder). The A is finely dispersed in the B while agitating to form a W/O type emulsion, the emulsion is dried to obtain a body 7 covered with the aggregate 3 of the particles 2 of the storage alloy coated with the fine metal particles 6, and the bodies 7 are compacted to form the hydrogen storage alloy material 1.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、水素の吸蔵・放出を行なう水素吸蔵合金を
使用した水素吸蔵合金材およびその製法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a hydrogen storage alloy material using a hydrogen storage alloy that absorbs and releases hydrogen, and a method for manufacturing the same.

「従来の技術」 従来より、温度や圧力をコントロールすることにより水
素を吸蔵し、あるいは吸蔵した水素を放出する作用を持
つ水素吸蔵合金が提供されている。
"Prior Art" Conventionally, hydrogen storage alloys have been provided that have the function of storing hydrogen or releasing stored hydrogen by controlling temperature and pressure.

この水素吸蔵合金の利用面としては、水素の貯蔵、水素
の精製などの他に、水素の吸蔵、放出の際の発熱および
吸熱を利用したエネルギー変換などへの応用が研究され
ている。
As for the use of this hydrogen storage alloy, in addition to hydrogen storage and hydrogen purification, research is being conducted into applications such as energy conversion using heat generation and heat absorption during hydrogen storage and release.

しかし、水素吸蔵合金は、水素の吸蔵・放出を繰り返す
ことによって崩壊し易く、容易に粉末化してしまうとい
う性質があり、粉末化を起こした水素吸蔵合金には、次
のような問題点があった。
However, hydrogen storage alloys have the property of being easily disintegrated and powdered by repeated storage and release of hydrogen.Hydrogen storage alloys that have been powdered have the following problems. Ta.

■粉末化により水素吸蔵合金の表面積が増大するものの
、吸蔵・放出速度を律速する熱伝導度が著しく低下する
ために吸蔵・放出速度が遅くなる。
■ Although the surface area of the hydrogen storage alloy increases due to pulverization, the thermal conductivity, which determines the absorption and release rate, decreases significantly, so the absorption and release rate slows down.

■粉末化して生じた水素吸蔵合金の微粒子が水素の流れ
に伴って移動するために、この合金を水素精製に使用す
る場合、精製水素ガス中へ微粒子が混入し易い。
(2) Fine particles of the hydrogen storage alloy produced by powdering move with the flow of hydrogen, so when this alloy is used for hydrogen purification, the fine particles tend to get mixed into the purified hydrogen gas.

■水素吸蔵合金粉末が収納容器内を移動して容器局部に
集まると、水素吸蔵状態のときにこの粉末が局部で膨張
し、この容器局部に大きな応力が加わって容器の破壊を
起こす。
■When the hydrogen-absorbing alloy powder moves within the storage container and collects locally in the container, the powder expands locally while in a hydrogen-absorbing state, and a large stress is applied to the local portion of the container, causing the container to break.

そこで上記の問題を解消するために、水素吸蔵合金の粉
末を、それよりも展延性の良い金属の粉末と混合し、圧
粉成形法などによって圧縮成形し、所定形状の成形体と
する方法が試みられている。
Therefore, in order to solve the above problem, a method has been proposed in which hydrogen storage alloy powder is mixed with powder of a metal with better malleability, and the mixture is compression-molded using a powder compaction method to form a compact into a predetermined shape. is being attempted.

「発明が解決しようとする問題点」 上述の水素吸蔵合金粉末と金属粉末との圧縮成形体は、
水素吸蔵合金粉末と金属粉末とがほぼ同一の粒径であり
、水素吸蔵合金粉末の間に金属粉末が単にバインダーと
して入り込んだ状態なので、成形体の表面には水素吸蔵
合金粉末が露出しており、このために水素の吸蔵・放出
の操作中に水素吸蔵合金の微粒子が発生し易い問題があ
った。また、成形体の強度が充分に得られない問題があ
った。
"Problems to be solved by the invention" The compression molded body of the above-mentioned hydrogen storage alloy powder and metal powder is
The hydrogen-absorbing alloy powder and the metal powder have almost the same particle size, and the metal powder simply acts as a binder between the hydrogen-absorbing alloy powders, so the hydrogen-absorbing alloy powder is exposed on the surface of the compact. Therefore, there was a problem in that fine particles of the hydrogen storage alloy were easily generated during hydrogen storage and release operations. Further, there was a problem that the molded body could not have sufficient strength.

この発明は上記の問題点を解消し、水素の吸蔵・放出を
繰り返しても吸蔵合金の粉末化による弊害を生じること
がない水素吸蔵合金材およびその製法を提供することを
目的とするものである。
The object of the present invention is to solve the above-mentioned problems and provide a hydrogen storage alloy material and a method for producing the same that do not cause harmful effects due to powderization of the storage alloy even after repeated storage and release of hydrogen. .

「問題点を解決するための手段」 この発明では、複数個の水素吸蔵合金微粒子を凝集して
凝集体となし、この凝集体を水素吸蔵合金よりも展延性
の良い金属の多数の微粒子によって被覆して被覆体とし
、さらにこれらの多数の被覆体を圧縮成形して成型体と
することをその解決手段とした。
"Means for solving the problem" In this invention, a plurality of hydrogen storage alloy fine particles are aggregated to form an aggregate, and this aggregate is coated with a large number of fine particles of a metal that has better malleability than the hydrogen storage alloy. The solution to this problem was to create a covering body, and then compression mold a large number of these covering bodies to form a molded body.

以下、この発明の第1発明を図面を参照して詳細に説明
する。第1図および第2図はこの発明の第1発明の水素
吸蔵合金材の一例を示す図である。
Hereinafter, the first aspect of the present invention will be explained in detail with reference to the drawings. FIGS. 1 and 2 are diagrams showing an example of the hydrogen storage alloy material of the first aspect of the present invention.

これらの図において符号lは水素吸蔵合金材(以下、吸
蔵合金材と略称する)である。この吸蔵合金材lは、第
1図に示すように、複数個の水素吸蔵合金(以下、吸蔵
合金と略記する)の微粒子2.2・・・が凝集した凝集
体3.3・・・が、銅の被覆層4で被覆されてカプセル
状の被覆体とされ、これら多数の被覆体が固着しあって
全体として円盤状に形成されたものである。
In these figures, the symbol l represents a hydrogen storage alloy material (hereinafter abbreviated as storage alloy material). As shown in FIG. 1, this storage alloy material 1 is composed of aggregates 3.3 of a plurality of fine particles 2.2 of hydrogen storage alloys (hereinafter abbreviated as storage alloys). It is coated with a copper coating layer 4 to form a capsule-shaped coating, and a large number of these coatings are adhered to each other to form a disk-like shape as a whole.

吸蔵合金の微粒子2.2・・・は、材料の吸蔵合金を機
械的粉砕あるいは水素の吸蔵放出の繰り返し操作によっ
て、粒径50μm以下の微粒子としたものであり、材料
の吸蔵合金としてはL a−N i系合金、Ti−Mn
系合金、Ti−Ni系合金、Fe−Ti系合金、MIl
l(ミツシュメタル)系合金などが好適に使用される。
The storage alloy fine particles 2.2... are made into fine particles with a particle size of 50 μm or less by mechanically crushing the storage alloy material or repeating hydrogen absorption and desorption operations, and the storage alloy material is L a -Ni-based alloy, Ti-Mn
alloy, Ti-Ni alloy, Fe-Ti alloy, MIl
L (mitshu metal) alloys and the like are preferably used.

上記凝集体3は、複数個の吸蔵合金の微粒子2.2・・
・が凝集状態になったもので、粒径は300μm以下で
ある。凝集状態にある吸蔵合金の微粒子2.2・・・に
は、バインダー5.5・・・が付着している。このバイ
ンダー5.5・・・は、吸蔵合金の微粒子2.2・・・
の凝集を強化するためのもので、コロイド状のシリカ、
二酸化チタン、アルミナなどの微粒子状無機物やポリビ
ニールアルコール、フッ素樹脂、シリコーン樹脂などが
使用される。
The aggregate 3 is made up of a plurality of storage alloy fine particles 2.2...
* is in an agglomerated state, and the particle size is 300 μm or less. Binder 5.5 is attached to fine particles 2.2 of the storage alloy in an agglomerated state. This binder 5.5... is made up of storage alloy fine particles 2.2...
colloidal silica,
Particulate inorganic substances such as titanium dioxide and alumina, polyvinyl alcohol, fluororesin, and silicone resin are used.

上記鋼の被覆層4は、多孔質膜状となって凝集体3を被
覆しており、吸蔵合金材lの内部にまで水素が浸透する
ようになっている。この銅の被覆層4は、粒径が数μm
程度の銅の微粒子を、凝集体3の表面に多数付着させて
凝集体3を被覆し、こうして得られた多数の被覆体を圧
縮成形して吸蔵合金材1を製造する際、圧縮により銅の
微粒子が互いに圧着しあい、多孔質膜状となったもので
ある。吸蔵合金材lの表面は、この銅の被覆層4となっ
ており、吸蔵合金の微粒子2.2・・・は露出していな
い。
The steel coating layer 4 is in the form of a porous film and covers the aggregate 3, so that hydrogen permeates into the interior of the storage alloy material 1. This copper coating layer 4 has a grain size of several μm.
When producing the storage alloy material 1 by attaching a large number of copper fine particles of about 100 mL to the surface of the aggregate 3 to cover the aggregate 3, and compression molding the thus obtained large number of coated bodies, the copper particles are removed by compression. Fine particles are pressed together to form a porous membrane. The surface of the storage alloy material 1 is covered with this copper coating layer 4, and the storage alloy fine particles 2.2 are not exposed.

上記の吸蔵合金材lは、温度や圧力をコントロールする
ことによって水素の吸蔵・放出を繰り返し行なうことが
できる。水素を吸蔵する際には、銅の被覆層4を通過し
て吸蔵合金材lの内部まで水素が浸透し、吸蔵合金の微
粒子2.2・・・が水素を吸蔵する。この吸蔵の際、微
粒子2.2・・・は膨張するが、銅の被覆層4で被覆さ
れているために崩壊が起こることがない。一方、吸蔵し
ていた水素を放出する際には、吸蔵合金の微粒子2.2
・・・から放出された水素が銅の被覆層4を通過して吸
蔵合金材lから放出される。また、この吸蔵合金材lは
、吸蔵合金の微粒子2.2・・・が銅で被覆されている
ために、吸蔵合金と水素との接触表面積が大きいにもか
かわらず、熱伝導性がきわめて良好である。したがって
、吸蔵・放出の各工程における温度コントロールが容易
にでき、熱伝導性の低下による吸蔵・放出速度の遅延を
防止することができる。
The storage alloy material 1 described above can repeatedly store and release hydrogen by controlling the temperature and pressure. When storing hydrogen, hydrogen passes through the copper coating layer 4 and penetrates into the interior of the storage alloy material 1, and the fine particles 2.2 of the storage alloy absorb hydrogen. During this occlusion, the fine particles 2.2... expand, but because they are covered with the copper coating layer 4, they do not collapse. On the other hand, when releasing the stored hydrogen, the fine particles of the storage alloy 2.2
The hydrogen released from... passes through the copper coating layer 4 and is released from the storage alloy material l. In addition, this storage alloy material has extremely good thermal conductivity even though the contact surface area between the storage alloy and hydrogen is large because the storage alloy fine particles 2.2... are coated with copper. It is. Therefore, temperature control in each occlusion/desorption process can be easily controlled, and a delay in the occlusion/desorption rate due to a decrease in thermal conductivity can be prevented.

なお、上述の吸蔵合金材1は、吸蔵合金の微粒子2.2
・・・の凝集体3を被覆する材料として銅を使用したが
、吸蔵合金よりも展延性が良いものであれば他でもよく
、例えばアルミニウムなども好適に使用できる。
Note that the storage alloy material 1 described above contains fine particles 2.2 of the storage alloy.
Copper was used as the material for covering the aggregates 3, but any other material may be used as long as it has better malleability than the storage alloy; for example, aluminum can also be suitably used.

次に、この発明の第2発明の詳細な説明する。Next, the second aspect of the present invention will be explained in detail.

この第2発明の吸蔵合金材の製法において使用される吸
蔵合金としては、La−Ni系合金、Ti−Mn系合金
、Ti−Ni系合金、Fe−Ti系合金、Mm(ミツシ
ュメタル)系合金などが好適に使用される。吸蔵合金は
、通常1種類を使用するが、複数種類を混合して使用し
ても良い。この吸着合金は、20μm以下、好ましくは
数μm以下の粒径の微粒子2.2・・・に粉末化する。
The storage alloys used in the method for producing the storage alloy material of the second invention include La-Ni alloys, Ti-Mn alloys, Ti-Ni alloys, Fe-Ti alloys, Mm (mitshu metal) alloys, etc. is preferably used. Usually one type of storage alloy is used, but a mixture of two or more types may be used. This adsorbed alloy is powdered into fine particles 2.2... having a particle size of 20 μm or less, preferably several μm or less.

この粉末化は、機械的粉砕あるいは水素の吸蔵放出の繰
り返しによって容易に行なうことができる。得られた微
粒子2.2・・・は、水を加えてスラリー状(以下これ
をAと称する)とする。
This pulverization can be easily carried out by mechanical pulverization or repeated hydrogen absorption and release. The obtained fine particles 2.2... are made into a slurry (hereinafter referred to as A) by adding water.

一方、上記吸蔵合金に比べて展延性に優れた金属微粒子
6.6・・・の表面を、防錆剤または一般に圧縮成形の
滑剤として用いるワックスや脂肪酸金属塩等で親油性に
改質する。例えば金属微粒子6.6・・・とじて銅粉を
使用する場合、ベンゾトリアゾール等の防錆剤の溶液と
接触させることにより、容易に処理することができ、特
に気化性防錆剤で処理しておくと、後で加熱することに
より容易に除去でき、好適である。電解銅粉の場合、メ
ーカーが既に防錆処理をしであるものが多く市販されて
おり、こうしたものについては再度防錆処理を行なう必
要はない。また、金属微粒子6.6・・・とじてアルミ
ニウム粉を使用する場合には、ステアリン酸亜鉛、ステ
アリン酸アルミニウムなどの滑剤と共に回転羽型撹拌混
合機で混合することにより親油性処理を行なうことがで
きる。また、他の親油性処理剤、例えばシリコーン系撥
水剤などで粉末表面を親油性処理するようにしてもよい
On the other hand, the surfaces of the fine metal particles 6.6, which have better malleability than the storage alloys mentioned above, are modified to be lipophilic with a rust preventive agent or a wax or fatty acid metal salt that is generally used as a lubricant in compression molding. For example, when using fine metal particles 6.6... and copper powder, it can be easily treated by contacting it with a solution of a rust preventive agent such as benzotriazole, and in particular, it can be treated with a volatile rust preventive agent. This is preferred because it can be easily removed by heating later. In the case of electrolytic copper powder, there are many products on the market that have already been subjected to anti-corrosion treatment by manufacturers, and there is no need to perform anti-rust treatment again for such powders. In addition, when using fine metal particles 6.6... and aluminum powder, it is possible to make it lipophilic by mixing it with a lubricant such as zinc stearate or aluminum stearate in a rotary vane type stirring mixer. can. Further, the surface of the powder may be subjected to lipophilic treatment using another lipophilic treatment agent, such as a silicone water repellent.

このように、表面を親油性処理した金属微粒子6.6・
・・を、フロン系溶媒などの水に相溶せず、しかも上記
親油性処理を侵さない有機溶媒に分散させて懸濁液(以
下、これをBと称する)を作成する。
In this way, metal fine particles 6.6.
A suspension (hereinafter referred to as B) is prepared by dispersing .

次に、第3図に示すように撹拌しなからBの中にAを加
える。親油性処理した金属微粒子6.6・・・は、Aと
混合せず、Aの液滴の周囲に分散され、撹拌によって微
粒化したAの液滴が合一化するのを防ぐために安定な油
中水型(W / O)エマルジョンを形成する。エマル
ジョン中のAの液滴の粒径は、Aを作成する際の水の量
と、Bの有機溶媒の量および撹拌方法によって調節でき
るが、30〜300ミクロン程度とするのが望ましい。
Next, add A into B while stirring as shown in FIG. The lipophilic-treated metal particles 6.6 do not mix with A, but are dispersed around the droplets of A, and are stabilized to prevent the droplets of A, which have been atomized by stirring, from coalescing. Form a water-in-oil (W/O) emulsion. The particle size of the droplets of A in the emulsion can be adjusted by the amount of water used in preparing A, the amount of organic solvent B, and the stirring method, but it is preferably about 30 to 300 microns.

この粒径が300ミクロン以上だとマイクロカプセルを
圧縮成形しrコ成形体の熱伝導が阻害され、また、30
ミクロン以下だと金属微粒子6.6・・・によって均一
な状態に被覆するのが困難となる。
If the particle size is 300 microns or more, the heat conduction of the molded product after compression molding of the microcapsules will be inhibited, and if the particle size is 300 microns or more,
If the particle size is less than a micron, it becomes difficult to uniformly coat the metal particles 6.6.

次に、得られたエマルジョンを乾燥する。この乾燥によ
って、第4図に示すように吸蔵合金の微粒子2.2・・
・が凝集した凝集体3.3・・・を金属微粒子6.6・
・・で被覆したマイクロカプセル7、7・・・が得られ
る。この乾燥は、吸蔵合金の酸化を防止するために不活
性ガス雰囲気中か真空中で行なうことが望ましい。その
際、温度の設定によって吸蔵合金の活性化ならびに親油
性表面処理剤(あるいは防錆剤)の除去を同時に行なう
ことができる。吸蔵合金材の生産性を高めるためには急
速な乾燥が必要だが、Aの水分が急激に蒸発すると凝集
体3が壊れることが多い。これを防ぐにはバインダー作
用を持つものをAに添加することが有効である。このバ
インダー作用を持つものとしては、親水性であり、吸蔵
合金の使用温度で溶融または分解を生じないような耐熱
性を有し、長期にわたり劣化しないものが必要であり、
コロイド状のシリカ、二酸化チタン、アルミナ等の数μ
m以下の微粒子状無機物、ポリビニルアルコール等の水
溶性高分子、フッ素樹脂やシリコーン樹脂を水に懸濁し
たものに例示される高分子懸濁水が適用できる。
The resulting emulsion is then dried. As a result of this drying, as shown in Fig. 4, fine particles 2.2 of the storage alloy...
The agglomerates 3.3... are aggregated into metal fine particles 6.6.
Microcapsules 7, 7... coated with... are obtained. This drying is preferably carried out in an inert gas atmosphere or in vacuum to prevent oxidation of the storage alloy. At this time, activation of the storage alloy and removal of the lipophilic surface treatment agent (or rust preventive agent) can be performed simultaneously by setting the temperature. Rapid drying is necessary to increase the productivity of the storage alloy material, but if the moisture in A rapidly evaporates, the aggregates 3 often break. To prevent this, it is effective to add to A something that has a binder effect. The binder must be hydrophilic, have heat resistance that will not melt or decompose at the temperature at which the storage alloy is used, and will not deteriorate over a long period of time.
Several μ of colloidal silica, titanium dioxide, alumina, etc.
Polymer suspension water, exemplified by suspensions of microparticulate inorganic substances of m or less in size, water-soluble polymers such as polyvinyl alcohol, fluororesins, and silicone resins in water, can be used.

また、水による水素吸蔵合金の酸化を極力防ぎたい場合
は、非水系エマルジョンを利用して被覆体を製造するこ
とかできる。すなわち、水素吸蔵合金の20μm以下の
微粒子をバインダー効果を果たす高分子が溶解した有機
溶媒に分散さけ、懸濁液(以下、これをCと称する)を
作成する。また、Cの高分子を溶解しにくい有機溶媒に
、水素吸蔵合金よりも展延性の良い金属微粒子を分散さ
せたもの(以下、これをDと称する)を作成する。つい
で、撹拌しなからDの中にCを加えることにより、まず
Cの中の高分子がバインダー効果を果たし水素吸蔵合金
の微粒子がDへ移行するのを防ぐ。
Furthermore, if it is desired to prevent the hydrogen storage alloy from being oxidized by water as much as possible, the coating may be manufactured using a non-aqueous emulsion. That is, a suspension (hereinafter referred to as C) is prepared by dispersing fine particles of a hydrogen storage alloy of 20 μm or less in an organic solvent in which a polymer serving as a binder is dissolved. Further, a material (hereinafter referred to as D) is prepared by dispersing fine metal particles having better malleability than a hydrogen storage alloy in an organic solvent in which the polymer C is difficult to dissolve. Next, by adding C to D without stirring, the polymer in C acts as a binder and prevents the fine particles of the hydrogen storage alloy from migrating to D.

一方、Dの金属微粒子はCの液滴の周囲を取り囲み、撹
拌で一旦微粒化したCの液滴が再び合一化するのを防ぐ
。従って、安定なC/Dの非水エマルジョンを形成する
。Cの液滴の粒径は、Cの高分子の量、分子量、Cの有
機溶媒の粘度、Dの有機溶媒の量及び撹拌方法によって
調節できるが30〜300μm程度とするのが望ましい
。Dの金属微粒子はW/Oエマルジョンの場合と異なり
、親油処理の必要がない。
On the other hand, the metal fine particles D surround the droplets of C and prevent the droplets of C, which have been once atomized by stirring, from coalescing again. Therefore, a stable C/D non-aqueous emulsion is formed. The particle size of the droplets of C can be adjusted by the amount of polymer of C, the molecular weight, the viscosity of the organic solvent of C, the amount of the organic solvent of D, and the stirring method, but it is preferably about 30 to 300 μm. Unlike the W/O emulsion, the metal fine particles of D do not require lipophilic treatment.

CとDの高分子と有機溶媒の組み合わせは、吸蔵合金の
使用温度で溶融または分解を生じないような耐熱性を有
し、長期にわたり劣化しない高分子とそれに対して高い
溶解度を示す有機溶媒と低い有機溶媒を選択して行なう
。例えば、高分子として液状シリコーンゴムを用いた場
合の有機溶媒は、Cにはフロン系溶媒、Dにはメタノー
ルを用いることができる。
The combination of polymers C and D and organic solvents is a combination of a polymer that has heat resistance that does not melt or decompose at the temperature at which the storage alloy is used and does not deteriorate over a long period of time, and an organic solvent that exhibits high solubility for the polymer. Select a low organic solvent. For example, when liquid silicone rubber is used as the polymer, as the organic solvent, a fluorocarbon solvent can be used for C, and methanol can be used for D.

次に、得られたエマルジョンを乾燥する。また、この際
にバインダーとして用いた高分子の架橋を行なうことも
できる。
The resulting emulsion is then dried. Further, at this time, the polymer used as the binder can also be crosslinked.

上記操作によって得られたマイクロカプセル7.7・・
・を、第5図に示すように圧縮により所定形状に成型す
ると、展延性に優れた金属微粒子6.6・・・が圧着し
あい、多孔質膜状となって吸蔵合金の凝集体3.3・・
・を取り囲んだ成形体が得られる。圧縮成形の荷重圧は
1−/Oトン/cm”が望ましい。この圧縮成形の際に
、吸蔵合金と金属微粒子が合金化して吸蔵合金の組成が
大きく変化しない程度の温度に加熱することは問題ない
。また圧縮成形法をHIPまたはCIPとして圧縮成形
すると均一に加圧できると共に、複雑な形状のものも成
形できるので特に好適である。
Microcapsules obtained by the above procedure 7.7...
When ・ is molded into a predetermined shape by compression as shown in FIG. 5, the fine metal particles 6.6 with excellent malleability are pressed against each other, forming a porous membrane and forming an aggregate 3.3 of the storage alloy.・・・
A molded body surrounding ・ is obtained. The load pressure for compression molding is preferably 1-/O ton/cm.During this compression molding, it is a problem to heat the storage alloy to a temperature that does not cause alloying of the storage alloy and fine metal particles and significantly change the composition of the storage alloy. In addition, compression molding using HIP or CIP is particularly suitable because it allows uniform pressure to be applied and it also allows molding of complex shapes.

上記BまたはDに使用する金属微粒子の量は、比重、粒
径により異なるが、吸蔵合金/O0重量部に対して/O
〜50重量部であることが望ましい。金属微粒子の量が
/O重量部以下だと成形体の強度が不足し、50重1部
以上だと不経済である。
The amount of metal fine particles used in B or D above varies depending on the specific gravity and particle size, but the amount of /O
It is desirable that the amount is 50 parts by weight. If the amount of metal fine particles is less than /O parts by weight, the strength of the molded product will be insufficient, and if it is more than 50 parts by weight, it will be uneconomical.

こうして得られた成形体は、水素の吸蔵・放出を繰り返
しても、吸蔵による体積膨張や微細なりラックの発生が
起こるものの、崩壊することがない。また、成形体中の
吸蔵合金の微粒子は、銅などの金属で被覆されているの
で、熱伝導性が良く、水素の吸蔵・放出か容易である。
Even if the molded body thus obtained undergoes repeated storage and release of hydrogen, it will not collapse, although volumetric expansion and formation of fine racks will occur due to storage. Further, since the fine particles of the storage alloy in the compact are coated with metal such as copper, they have good thermal conductivity and can easily store and release hydrogen.

以下、この発明の実施例を示す。Examples of this invention will be shown below.

「実験例 1」 水素の吸蔵・放出の繰り返しにより、/Oμmの粒径に
粉末化したMmNi5/O0重1部に、粒径0.1μm
以下のコロイド状二酸化チタン3重量部を加え、更に蒸
留水18重量部を加えて混練し、合合本スラリー(A)
を作った。
"Experimental Example 1" 1 part of MmNi5/O0, which has been powdered to a particle size of /Oμm by repeated absorption and desorption of hydrogen, is added with a particle size of 0.1μm.
Add 3 parts by weight of colloidal titanium dioxide shown below and further add 18 parts by weight of distilled water and knead to form a slurry (A).
made.

次に、平均粒径4ミクロンの電解銅粉をベンゾトリアゾ
ールの1%水溶液に浸漬した後、窒素雰囲気で乾燥させ
た。この乾燥済みの電解銅粉33重量部をフロン系溶媒
(ダイキン工業株式会社製、グイフロンソルベント53
)120重量部に加え分散させた。 次に、乳化機内で
電解銅粉のフロン系溶媒懸濁液に少量ずつ上記合金水ス
ラリーを全量加えた。合金水スラリーは乳化機の撹拌に
よって微粒化され、その表面を親油性処理された銅粉が
フロン系溶媒と共に取り囲むので、合一化することなく
、安定なW/Oエマルジョンを生成させることができた
Next, electrolytic copper powder with an average particle size of 4 microns was immersed in a 1% aqueous solution of benzotriazole, and then dried in a nitrogen atmosphere. 33 parts by weight of this dried electrolytic copper powder was added to a fluorocarbon-based solvent (manufactured by Daikin Industries, Ltd., Guiflon Solvent 53).
) and dispersed in 120 parts by weight. Next, the entire amount of the above alloy water slurry was added little by little to the suspension of electrolytic copper powder in a fluorocarbon solvent in an emulsifier. The alloy water slurry is atomized by stirring in an emulsifier, and its surface is surrounded by lipophilic-treated copper powder together with a fluorocarbon solvent, making it possible to generate a stable W/O emulsion without coalescing. Ta.

次に、このエマルジョンを60℃で真空乾燥して、水お
よびフロン系溶媒を蒸発さけた。合金水スラリーにコロ
イド状二酸化チタンを添加したので、乾燥の際に凝集状
態となった吸蔵合金微粒子の凝集体の崩壊は見られなか
った。この乾燥により、吸蔵合金微粒子の凝集体を銅粉
で被覆した粒径50〜250μmのマイクロカプセルを
得た。
Next, this emulsion was vacuum dried at 60° C. to evaporate water and chlorofluorocarbon solvent. Since colloidal titanium dioxide was added to the alloy water slurry, no collapse of the aggregates of storage alloy fine particles that had become agglomerated during drying was observed. By this drying, microcapsules having a particle size of 50 to 250 μm were obtained, in which aggregates of storage alloy fine particles were coated with copper powder.

このマイクロカプセルを2トン/cm”で圧縮し、直径
1cm、厚さ2.5 w++++の円盤型ペレットを作
成した。このペレット表面は銅の光沢を帯びており、そ
の断面を見ると、銅粉が網目状に結合しており、その中
に吸蔵合金の微粒子が詰まった状態となっていた。
These microcapsules were compressed at 2 tons/cm'' to create disc-shaped pellets with a diameter of 1 cm and a thickness of 2.5 w++++.The surface of this pellet had a copper luster, and when viewed in cross section, it was found that copper powder were combined into a network, and the fine particles of the storage alloy were packed inside.

このペレットを200℃、真空条件下で活性化した後、
吸蔵時の温度と圧力を40℃、14Kgf/Cm”の条
件化で水素の吸蔵・放出の繰り返しを/O0回行なった
ところ、ペレット表面に細かいひびが生じると共に、約
30%の体積膨張が生じたが、崩壊は起きなかった。
After activating this pellet at 200°C under vacuum conditions,
When hydrogen storage and release were repeated /O0 times at a temperature and pressure of 40℃ and 14Kgf/Cm during storage, fine cracks appeared on the pellet surface and a volumetric expansion of about 30% occurred. However, no collapse occurred.

「実施例 2」 上述の実施例1で使用した粒径0.1μmのコロイド状
二酸化チタンの代わりに、粒径0.1μm以下のコロイ
ド状シリカを用い、実施例1で使用した親油性処理した
電解銅粉の代わりに、防錆処理済゛みの市販電解銅粉(
平均4μm、三井金属鉱業味株式会社製、商品名M’F
−Di)を用いた。この材料が異なる以外は、実施例1
と同様な材料、同様な操作を行ない、吸蔵合金粉末の凝
集体を銅粉で被覆した粒径50〜250μmのマイクロ
カプセルを得た。
"Example 2" Colloidal silica with a particle size of 0.1 μm or less was used in place of the colloidal titanium dioxide with a particle size of 0.1 μm used in Example 1, and the lipophilic treatment used in Example 1 was used. Instead of electrolytic copper powder, use commercially available electrolytic copper powder that has been treated to prevent rust (
Average 4 μm, manufactured by Mitsui Kinzoku Aji Co., Ltd., product name M'F
-Di) was used. Example 1 except that this material is different.
Using the same materials and performing the same operations, microcapsules with a particle size of 50 to 250 μm were obtained, in which aggregates of storage alloy powder were coated with copper powder.

このマイクロカプセルを300℃、真空条件下で吸蔵合
金を活性化すると共に、銅粉に残留した防錆剤を除去し
た。
The storage alloy of the microcapsules was activated at 300° C. under vacuum conditions, and the rust preventive agent remaining on the copper powder was removed.

次に、アルゴン雰囲気でゴム型につめ、冷間静水効果利
用圧縮(CIP)により5トン/am’で、直径3 c
ms長さ/Ocmの円筒に成形した。
It was then packed into rubber molds in an argon atmosphere and compressed by cold isostatic pressing (CIP) at 5 tons/am' to a diameter of 3 cm.
It was molded into a cylinder with a length of ms/Ocm.

この成形体を使用し、実施例1と同様の水素吸蔵放出の
繰り返しテストを行なったところ、成形体の崩壊は起き
なかった。
Using this molded body, repeated hydrogen absorption and desorption tests similar to those in Example 1 were conducted, and no collapse of the molded body occurred.

「実施例 3」 実施例2で使用した粒径0.1μm以下のコロイド状シ
リカの代わりに、フロン樹脂の30%懸濁水18重量部
を用いた、これ以外は実施例2と同様な方法で操作し、
粒径50〜2.’50μmのマイクロカプセルを得た。
"Example 3" The same method as in Example 2 was used except that 18 parts by weight of water containing a 30% suspension of fluorocarbon resin was used in place of the colloidal silica with a particle size of 0.1 μm or less used in Example 2. operate,
Particle size 50-2. '50 μm microcapsules were obtained.

これを300℃、真空条件下で吸蔵合金の活性化、フロ
ン樹脂の結着化および銅粉の防錆剤の除去を行なった。
This was carried out under vacuum conditions at 300° C. to activate the storage alloy, bind the fluorocarbon resin, and remove the rust preventive agent from the copper powder.

次にこれをアルゴン雰囲気中で5トン/cm”で圧縮し
、直径1 cm、厚さ2.5 amの円盤型ペレットに
成形した。
This was then compressed at 5 tons/cm'' in an argon atmosphere and formed into a disk-shaped pellet with a diameter of 1 cm and a thickness of 2.5 am.

得られたペレットを使用し、実施例1と同様の水素吸蔵
放出の繰り返しテストを行なったところ、ペレットの崩
壊は起きなかった。
Using the obtained pellets, repeated hydrogen absorption and desorption tests similar to those in Example 1 were conducted, and no disintegration of the pellets occurred.

「実施例4」 水素の吸蔵・放出の繰り返しにより、/Oμm以下の粒
径に粉末化したMmN is /O0重量部に、熱硬化
型液状シリコーンゴム(東芝シリコーン株式会社製、商
品名TSE3221)l 0重量部を加え、更にフロン
系溶媒(ダイキン工業株式会社製、商品名グイフロンソ
ルベント53)/O0重量部を加えて混練し、゛支うリ
ーCを作った。次に、平均粒径8μmのアルミニウム粉
33重量部をメタノール150重量部に加えて分散させ
、スラリーDを作った。次に、乳化機内にDを入れ、乳
化処理を行ないながら、Dの中にCを少量ずつ、全量加
えた。Cは撹拌によって微粒化され、その表面をアルミ
ニウム粉が取り囲み、エマルジョンを生成させることが
できた。
"Example 4" Thermosetting liquid silicone rubber (manufactured by Toshiba Silicone Corporation, trade name TSE3221) is added to MmN is /O0 parts by weight that have been powdered to a particle size of /Oμm or less by repeated absorption and desorption of hydrogen. 0 parts by weight were added thereto, and further 0 parts by weight of a fluorocarbon solvent (manufactured by Daikin Industries, Ltd., trade name: Guiflon Solvent 53)/O was added and kneaded to prepare a supporting Lee C. Next, 33 parts by weight of aluminum powder having an average particle size of 8 μm was added to 150 parts by weight of methanol and dispersed to prepare slurry D. Next, D was placed in an emulsifying machine, and C was added little by little to the entire amount while emulsifying. C was atomized by stirring, the surface of which was surrounded by aluminum powder, and an emulsion could be produced.

次に、/O0℃で真空乾燥して、溶媒を蒸発させるとと
もに、シリコーンゴムを架橋させた。こうして、吸蔵合
金微粒子の凝集体をアルミニウム粉で被覆した粒径50
〜250μ国のマイクロカプセルを得た。これをアルゴ
ン雰囲気中で3トン/am”で圧縮し、直径1 cm、
厚さ3.5+amの円盤型ペレットに成形した。
Next, vacuum drying was performed at /O0°C to evaporate the solvent and crosslink the silicone rubber. In this way, aggregates of storage alloy fine particles were coated with aluminum powder with a particle diameter of 50 mm.
Microcapsules of ~250μ were obtained. This was compressed at 3 tons/am'' in an argon atmosphere to a diameter of 1 cm.
It was molded into a disk-shaped pellet with a thickness of 3.5+am.

得られたペレットを使用し、先の実施例1と同様の水素
吸蔵・放出の繰り返しテストを行なったところ、ペレッ
トの崩壊は起きなかった。
Using the obtained pellets, repeated hydrogen absorption and release tests similar to those in Example 1 were conducted, and no disintegration of the pellets occurred.

「発明の効果」 以上説明したように、この発明による水素吸蔵合金材は
、水素吸蔵合金の微粒子が凝集した凝集体を、この水素
吸蔵合金より展延性の良い金属が被覆した状態で圧縮成
形されるので、成形体は水素の吸蔵・放出の繰り返しに
よっても崩壊せず、したがって水素吸蔵合金の微粒子の
発生、熱伝導性の低下などの水素吸蔵合金の粉末化によ
って起こる弊害を防止することができ、水素の吸蔵・放
出の速度を向上させることができる。
"Effects of the Invention" As explained above, the hydrogen storage alloy material according to the present invention is obtained by compression molding an aggregate of fine particles of the hydrogen storage alloy covered with a metal that is more malleable than the hydrogen storage alloy. Therefore, the compact does not disintegrate even when hydrogen is absorbed and released repeatedly, and therefore, it is possible to prevent the harmful effects caused by the pulverization of the hydrogen-absorbing alloy, such as the generation of fine particles of the hydrogen-absorbing alloy and a decrease in thermal conductivity. , the rate of hydrogen storage and release can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はこの発明の第1発明の一例を示す
図であって、第1図は水素吸蔵合金材の一部を拡大した
断面図、第2図は水素吸蔵合金材の斜視図、第3図ない
し第5図はこの発明の第2発明の一例を示す図であって
、水素吸蔵合金材の製造工程の概略を工程順に示す図で
ある。 l・・・水素吸蔵合金材 2・・・吸蔵合金微粒子 3・・・凝集体 4・・・被覆層 6・・・金属微粒子 7・・・マイクロカプセル(被覆体)。
1 and 2 are diagrams showing an example of the first invention of the present invention, in which FIG. 1 is an enlarged sectional view of a part of the hydrogen storage alloy material, and FIG. 2 is a perspective view of the hydrogen storage alloy material. 3 to 5 are diagrams showing an example of the second invention of the present invention, and are diagrams showing an outline of the manufacturing process of a hydrogen storage alloy material in the order of the steps. l... Hydrogen storage alloy material 2... Storage alloy fine particles 3... Aggregates 4... Covering layer 6... Metal fine particles 7... Microcapsules (coated bodies).

Claims (4)

【特許請求の範囲】[Claims] (1)複数個の水素吸蔵合金微粒子が凝集した凝集体が
、この水素吸蔵合金よりも展延性の良い金属の多数の微
粒子によって被覆されて被覆体とされ、これら多数の被
覆体が圧縮成形されて成形体とされた水素吸蔵合金材。
(1) An aggregate of a plurality of fine particles of a hydrogen storage alloy is coated with a large number of fine particles of a metal that is more malleable than the hydrogen storage alloy to form a coating, and these many coatings are compression molded. A hydrogen-absorbing alloy material made into a molded body.
(2)水素吸蔵合金微粒子を水にぬらしスラリー化した
もの(A)と、表面を親油性に処理した水素吸蔵合金よ
りも展延性の良い金属微粒子を、水に相溶せずしかも上
記親油性処理を侵さない有機溶媒に分散したもの(B)
を用い、AをBの中に細かく分散させ、W/O型エマル
ジョンを形成した後、これを乾燥して被覆体とし、これ
ら多数の被覆体を圧縮成形して成形体とすることを特徴
とする水素吸蔵合金材の製法。
(2) Hydrogen storage alloy fine particles wetted with water to form a slurry (A) and metal fine particles whose surface is treated to be lipophilic and have better malleability than the hydrogen storage alloy, are not miscible in water and have the above lipophilic properties. Dispersed in an organic solvent that does not affect processing (B)
A is finely dispersed in B to form a W/O type emulsion, which is then dried to form a coating, and a number of these coatings are compression-molded to form a molded body. A manufacturing method for hydrogen-absorbing alloy materials.
(3)上記Aに、バインダー効果を果たす無機コロイド
、水溶性高分子、高分子懸濁水のうち少なくとも一種類
を加えることを特徴とする特許請求の範囲第2項記載の
水素吸蔵合金材の製法。
(3) A method for producing a hydrogen storage alloy material according to claim 2, characterized in that at least one of an inorganic colloid, a water-soluble polymer, and a polymer suspension water that has a binder effect is added to the above A. .
(4)水素吸蔵合金微粒子をバインダー効果を果たす高
分子が溶解した有機溶媒に分散させスラリーとしたもの
(C)と、Cの高分子を溶解しない有機溶媒に水素吸蔵
合金よりも展延性の良い金属微粒子を分散させたもの(
D)を用い、CをDの中に細かく分散させ、非水エマル
ジョンを形成した後、これを乾燥させまたはバインダー
効果を果たす高分子を硬化して被覆体とし、これら多数
の被覆体を圧縮成形して成形体とすることを特徴とする
水素吸蔵合金材の製法。
(4) Hydrogen storage alloy fine particles are dispersed in an organic solvent in which a polymer that acts as a binder is dissolved to form a slurry (C), and an organic solvent that does not dissolve the polymer in C has better spreadability than the hydrogen storage alloy. Dispersed metal fine particles (
Using D), C is finely dispersed in D to form a non-aqueous emulsion, which is then dried or a polymer that acts as a binder is cured to form a coating, and a large number of these coatings are compression molded. A method for producing a hydrogen-absorbing alloy material, characterized in that it is made into a molded body.
JP62147447A 1987-06-13 1987-06-13 Hydrogen storage alloy material and its production Pending JPS63310936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62147447A JPS63310936A (en) 1987-06-13 1987-06-13 Hydrogen storage alloy material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62147447A JPS63310936A (en) 1987-06-13 1987-06-13 Hydrogen storage alloy material and its production

Publications (1)

Publication Number Publication Date
JPS63310936A true JPS63310936A (en) 1988-12-19

Family

ID=15430555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62147447A Pending JPS63310936A (en) 1987-06-13 1987-06-13 Hydrogen storage alloy material and its production

Country Status (1)

Country Link
JP (1) JPS63310936A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0417697A2 (en) * 1989-09-11 1991-03-20 Agency Of Industrial Science And Technology Hydrogen storage electrode and process for producing the same
WO2001074711A1 (en) * 2000-04-04 2001-10-11 Zakrytoe Aktsionernoe Obschestvo 'firma Rikom' The method of burning metal fuel
WO2008096758A1 (en) * 2007-02-05 2008-08-14 Asahi Kasei E-Materials Corporation Composition comprising hydrogen-absorbing alloy and resin
JP2017078019A (en) * 2015-10-21 2017-04-27 亞太燃料電池科技股▲分▼有限公司 Hydrogen storage composition and manufacturing method of hydrogen storage container therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190570A (en) * 1984-03-09 1985-09-28 Agency Of Ind Science & Technol Production of hydrogen occluding alloy material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60190570A (en) * 1984-03-09 1985-09-28 Agency Of Ind Science & Technol Production of hydrogen occluding alloy material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0417697A2 (en) * 1989-09-11 1991-03-20 Agency Of Industrial Science And Technology Hydrogen storage electrode and process for producing the same
EP0417697B1 (en) * 1989-09-11 1994-05-18 Agency Of Industrial Science And Technology Hydrogen storage electrode and process for producing the same
WO2001074711A1 (en) * 2000-04-04 2001-10-11 Zakrytoe Aktsionernoe Obschestvo 'firma Rikom' The method of burning metal fuel
WO2008096758A1 (en) * 2007-02-05 2008-08-14 Asahi Kasei E-Materials Corporation Composition comprising hydrogen-absorbing alloy and resin
US8607969B2 (en) 2007-02-05 2013-12-17 Asahi Kasei E-Materials Corporation Composition comprising hydrogen storage alloy and resin
JP2017078019A (en) * 2015-10-21 2017-04-27 亞太燃料電池科技股▲分▼有限公司 Hydrogen storage composition and manufacturing method of hydrogen storage container therefor

Similar Documents

Publication Publication Date Title
US6849230B1 (en) Mixture of two particulate phases used in the production of a green compact that can be sintered at higher temperatures
CA2009240C (en) Process for the production of materials and materials produced by the process
US4433063A (en) Hydrogen sorbent composition
EP1251985B9 (en) Method for producing lightweight structural components
JP5197369B2 (en) A method of agglomerating and agglomerating metal particles
CA2598851C (en) A method for fabricating an open-porous metal foam body, a metal foam body fabricated this way as well as its applications
US11701709B2 (en) Methods for nanofunctionalization of powders, and nanofunctionalized materials produced therefrom
US5028367A (en) Two-stage fast debinding of injection molding powder compacts
US4106932A (en) Lubricants for powdered metals, and powdered metal compositions containing said lubricants
US20090096121A1 (en) Method of producing open-cell inorganic foam
CA2648728A1 (en) Open cell porous material and method for producing same
WO2003076109A2 (en) Metallic, ceramic and cermet foam products and their method of manufacture
WO2005118186A2 (en) Porous metallic materials and method of production thereof
US4002474A (en) Lubricants for powdered metals
CN110238388A (en) A kind of metal powder and its preparation method and application wrapped up by high molecular material
US4358396A (en) Particulate catalyst and preparation
KR20120001890A (en) Method of manufacturing metal matrix composite containing networked carbon nanotubes/carbon fibers and the method therefor
JPS63310936A (en) Hydrogen storage alloy material and its production
JP4187314B2 (en) Method for producing porous metal body
JPH0617165A (en) Production of metal carbide particle dispersed metallic composite material
JPS6047322B2 (en) Manufacturing method of porous sintered body
EP1597004B1 (en) Method for foaming powder-molded bodies comprising a cellular structure
CN112512726A (en) Article and method
JPH0913101A (en) Iron based mixture for powder metallurgy and its production
JP2780626B2 (en) Method for producing metal carbide particle-dispersed metal matrix composite material