JPS63310702A - Methanol reforming device - Google Patents

Methanol reforming device

Info

Publication number
JPS63310702A
JPS63310702A JP62147202A JP14720287A JPS63310702A JP S63310702 A JPS63310702 A JP S63310702A JP 62147202 A JP62147202 A JP 62147202A JP 14720287 A JP14720287 A JP 14720287A JP S63310702 A JPS63310702 A JP S63310702A
Authority
JP
Japan
Prior art keywords
air
reactor
burner
partition wall
air chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62147202A
Other languages
Japanese (ja)
Inventor
Hiroshi Yoshioka
浩 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62147202A priority Critical patent/JPS63310702A/en
Publication of JPS63310702A publication Critical patent/JPS63310702A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • H01M8/0631Reactor construction specially adapted for combination reactor/fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To establish the optimum temp. distribution in a reactor and to supply a reforming gas of good quality to a fuel cell by constituting the methanol reforming device in such a way that a part of air to be supplied to a burner is sent to an air chamber formed between the burner provided on the upper center of furnace body and a reactor. CONSTITUTION:A part of air introduced to an air manifold 21 at the upper part of the furnace body 1 is sent from air branching openings 23 of a partition wall 3 to an air chamber 19 as shown by arrow 23, and is flowed down in the air chamber 19 to join with the combustion gas. Meanwhile, an insulating layer is formed in the air chamber 19 between the burner 2 and the reactor 10 by the fresh air flow always flowing through the air chamber from the outside with the result that the upper part of the reactor 10 is immune from receiving the direct effect of high temp. generated at the place just below the burner 2. In this case, the ratio of the air quantity necessary for combustion to the air quantity to flow in the air chamber 19 is determined by the opening ratio between air supply openings 22 and the branching openings 23. By this method, the radiating heat given to the upper part of the reactor 10 through the partition wall 3 from the combustion chamber 6 is reduced, which restrains the temp. rise at the upper part of reactor, and the CO concn. in the reformed gas is reduced.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、メタノールを水蒸気改質して、燃料電池の
燃料ガスとなる水素を製造するためのメタノール改質器
に関する。
The present invention relates to a methanol reformer for steam reforming methanol to produce hydrogen that becomes fuel gas for a fuel cell.

【従来の技術】[Conventional technology]

メタノールは、燃料電池へ供給する燃料ガスの水素源と
して、天然ガスに比べて改質温度が大幅に低く、かつ改
質工程が簡易であるという特徴を有している。 このようなメタノールを改質原料とする改質器として、
筒状の炉体と、この炉体の上部中央に設けられたバーナ
と、このバーナを囲んで前記炉体内に懸架された筒状の
隔壁と、この隔壁に囲まれた燃焼室に配置された気化器
と、前記隔壁の外側の加熱室に配置され下端部で前記気
化器に通じ上端部で改質ガスの送気口に通じる反応器と
を備えたものが知られている。 第3図はこの種の従来のメタノール改質器の一例を示す
ものである。 1は円筒状の炉体で、この炉体1の上部中央には炉内を
加熱するためのバーナ2が設けられている。4はバーナ
2の燃料供給管、5は同じく燃焼用空気供給管である。 バーナ2を囲んで、炉体1内には円筒状の隔壁3が同心
的に懸架して設けられている。この隔壁3は炉体1内を
、隔壁3でかこまれた燃焼室6と、隔壁3の外側の環状
の加熱室7とに区画しているが、燃焼室6と加熱室7と
は図示されている通り、それぞれの下部で通じている。 燃焼室6内には、バーナ2の下方に、気化器8が配置さ
れている。気化器8は、改質原料供給口9に接続された
入口端8aかららせん状に上昇し、その後下降して出口
端8bに至っている。 加熱室7には、環状に配列された直立する多数の反応管
10aからなる反応器10が配置されている。反応管1
0aの下端部は中空円板状の原料ガスマニホルド11を
介して気化器8の出口端8bに接続されており、また上
端部は環状中空体の改質ガスマニホルド12を介して改
質ガス送気口13に接続されている。反応管10a内に
は触媒14が充填されている。 炉体1の上部外側には、加熱室7を取り巻くように排気
ガスマニホルド15が形成されている。 この排気ガスマニホルド15は炉体1に空けられた多数
の排気穴1aを介して加熱室7に通じ、また出口は排気
口16に接続されている。 このように構成されたメタノール改質器では、バーナ2
による加熱の下で、改質原料供給口9から供給された改
質原料が以下のようにして改質される。 まず、バーナ2においては、燃料供給管4を通して供給
される燃料が、燃焼用空気供給管5から同時に供給され
る空気の下で燃焼する。燃料としては、定常運転下では
、図示しない燃料電池から水素を残存させて排出される
、いわゆるオフガスが用いられる。 バーナ2から生ずる高温の燃焼ガスは、矢印17で示す
ように、燃焼室6内を下降した後、隔壁3の下端部と炉
体1の底板との間を潜り抜けてUターンし、加熱室7内
を上昇する。そして、加熱室7の上部で排気穴1aから
排気ガスマニホルド15に集められ、排気口16から機
外へ排出される。 燃焼ガスは、上記過程で気化器7および反応器10と接
触し、熱伝達によりこれらを加熱する。 また、気化器8および反応器10は熱輻射によっても加
熱され、気化器8はバーナ2から直接に、また反応器1
0は隔壁3からそれぞれ輻射熱を受けて加熱される。 一方、液体メタノールおよび水からなる改質原料は、矢
印18で示すように、改質原料供給口9を通して、気化
器8に供給される。 この改質原料は、気化器8内で加熱されてガス化し、原
料ガスマニホルド11を経て反応器10の上端部入口に
達する。この原料ガスは、触媒14と接触しながら反応
器10内を上昇し、この間に次第に改質されて反応器1
0の上端出口部分で水素リッチな改質ガスとなり、改質
ガスマニホルド12を経て改質ガス送気口13から送出
される。 このようなメタノールの水蒸気改質反応は、次式(1)
で表される。 CH30H+Hz o−+co! +3Hz   (1
)この反応は吸熱反応であり高温はど平衡、反応速度面
で有利であるが、300°Cを超えると触媒の劣化が促
進されること、および200〜300 ’Cで平衡反応
率はほぼ100%に達することから、この温度範囲が適
温として一般に実用されている。 ところで、上記式(1)の反応で生成した炭酸ガスは、
次のCO逆変成により、−酸化炭素と水を作る。この反
応も吸熱反応である。 Cot +Hz →CO+Hz O(2)この−酸化炭
素は燃料電池の白金系の電極触媒にとって被毒物質で、
特にメタノール改質器をリン酸型の燃料電池と組み合わ
せて用いる時は、その生成をできるだけ抑えなければな
らない。 そのためには、上記(2)式の反応が吸熱反応であるこ
とから、反応器における出口部分の改質触媒層の温度を
下げる必要があり、250°C以下が望ましい。
Methanol, as a hydrogen source for the fuel gas supplied to the fuel cell, has the characteristics that its reforming temperature is significantly lower than that of natural gas, and the reforming process is simple. As a reformer that uses such methanol as a reforming raw material,
A cylindrical furnace body, a burner provided at the center of the upper part of the furnace body, a cylindrical partition wall surrounding the burner and suspended within the furnace body, and a combustion chamber surrounded by the partition wall. A reactor is known that includes a vaporizer and a reactor that is arranged in a heating chamber outside the partition wall and communicates with the vaporizer at its lower end and communicates with the reformed gas inlet at its upper end. FIG. 3 shows an example of this type of conventional methanol reformer. Reference numeral 1 denotes a cylindrical furnace body, and a burner 2 for heating the inside of the furnace is provided at the upper center of the furnace body 1. 4 is a fuel supply pipe for the burner 2, and 5 is a combustion air supply pipe. A cylindrical partition wall 3 is provided in the furnace body 1 surrounding the burner 2 and suspended concentrically. The partition wall 3 divides the inside of the furnace body 1 into a combustion chamber 6 surrounded by the partition wall 3 and an annular heating chamber 7 outside the partition wall 3, but the combustion chamber 6 and the heating chamber 7 are not shown in the figure. As shown, they are connected at the bottom of each. A carburetor 8 is arranged in the combustion chamber 6 below the burner 2 . The vaporizer 8 spirally rises from an inlet end 8a connected to a reforming material supply port 9, and then descends to an outlet end 8b. A reactor 10 consisting of a large number of upright reaction tubes 10a arranged in an annular shape is arranged in the heating chamber 7. reaction tube 1
The lower end of 0a is connected to the outlet end 8b of the vaporizer 8 via a hollow disk-shaped raw material gas manifold 11, and the upper end is connected to the reformed gas manifold 12 via an annular hollow reformed gas manifold. It is connected to the air port 13. A catalyst 14 is filled in the reaction tube 10a. An exhaust gas manifold 15 is formed outside the upper part of the furnace body 1 so as to surround the heating chamber 7 . This exhaust gas manifold 15 communicates with the heating chamber 7 through a large number of exhaust holes 1a formed in the furnace body 1, and its outlet is connected to an exhaust port 16. In the methanol reformer configured in this way, burner 2
Under heating, the reforming raw material supplied from the reforming raw material supply port 9 is reformed in the following manner. First, in the burner 2, fuel supplied through the fuel supply pipe 4 is combusted under air simultaneously supplied from the combustion air supply pipe 5. As the fuel, so-called off-gas, which is discharged from a fuel cell (not shown) with hydrogen remaining therein, is used during steady operation. The high-temperature combustion gas generated from the burner 2 descends in the combustion chamber 6 as shown by the arrow 17, passes between the lower end of the partition wall 3 and the bottom plate of the furnace body 1, makes a U-turn, and enters the heating chamber. Rise within 7. Then, the gas is collected in the exhaust gas manifold 15 through the exhaust hole 1a in the upper part of the heating chamber 7, and is discharged outside the machine through the exhaust port 16. The combustion gases come into contact with the vaporizer 7 and the reactor 10 during the above process and heat them by heat transfer. The vaporizer 8 and the reactor 10 are also heated by thermal radiation, with the vaporizer 8 being heated directly from the burner 2 and the reactor 1
0 receives radiant heat from the partition wall 3 and is heated. On the other hand, the reforming raw material consisting of liquid methanol and water is supplied to the vaporizer 8 through the reforming raw material supply port 9, as shown by an arrow 18. This reformed raw material is heated and gasified in the vaporizer 8, and reaches the upper end inlet of the reactor 10 via the raw material gas manifold 11. This raw material gas rises in the reactor 10 while contacting the catalyst 14, and is gradually reformed during this time.
The hydrogen-rich reformed gas becomes a hydrogen-rich reformed gas at the upper end exit portion of the reformed gas, and is sent out from the reformed gas inlet 13 via the reformed gas manifold 12. The steam reforming reaction of methanol is expressed by the following equation (1):
It is expressed as CH30H+Hz o-+co! +3Hz (1
) This reaction is an endothermic reaction, and a high temperature is advantageous in terms of equilibrium and reaction rate. %, this temperature range is generally used as an appropriate temperature. By the way, the carbon dioxide gas generated by the reaction of formula (1) above is
The following CO reverse transformation produces -carbon oxide and water. This reaction is also an endothermic reaction. Cot +Hz →CO+Hz O(2) This -carbon oxide is a poisonous substance for platinum-based electrode catalysts in fuel cells.
Particularly when a methanol reformer is used in combination with a phosphoric acid fuel cell, its production must be suppressed as much as possible. To this end, since the reaction of formula (2) above is an endothermic reaction, it is necessary to lower the temperature of the reforming catalyst layer at the exit portion of the reactor, preferably 250°C or less.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

ところが、第3図のような従来の構成の改質器では、隔
壁3の上部がバーナ2の直下の高温に曝されているため
にこの部分が高温となり、その結果、反応器10の上部
は隔壁3の上部からの輻射熱で加熱され改質触媒層の温
度が上昇してしまい、改質ガス中での一酸化炭素の濃度
を下げることが困難であった。 また、バーナ直下の温度を下げようとして燃焼用空気の
量を増加させると、気化器8内での気化が不安定となり
、安定した改質ガスが得られなくなったり、燃焼生成物
中に未燃燐分が増えたりする問題があった。 この発明は、このような問題点を解決しようとするもの
であって、バーナの安定した燃焼を保ったまま、隔壁か
ら反応器上部への熱輻射を減らし、反応器内に最適な温
度分布をつくることによって、燃料電池に良質の改質ガ
スを供給することのできるメタノール改質器を提供する
ことを目的とするものである。
However, in a reformer with a conventional configuration as shown in FIG. The temperature of the reforming catalyst layer increases due to heating by radiant heat from the upper part of the partition wall 3, making it difficult to lower the concentration of carbon monoxide in the reformed gas. Additionally, if the amount of combustion air is increased in an attempt to lower the temperature directly below the burner, the vaporization within the vaporizer 8 will become unstable, making it impossible to obtain stable reformed gas, or causing unburned gas to be present in the combustion products. There was a problem with increased phosphorus content. This invention aims to solve these problems by reducing heat radiation from the partition wall to the upper part of the reactor while maintaining stable combustion in the burner, thereby creating an optimal temperature distribution within the reactor. The purpose of this invention is to provide a methanol reformer that can supply high-quality reformed gas to a fuel cell.

【問題点を解決するための手段】[Means to solve the problem]

この発明は、筒状の炉体と、この炉体の上部中央に設け
られたバーナと、このバーナを囲んで前記炉体内に懸架
された筒状の隔壁と、この隔壁に囲まれた燃焼室に配置
されたの気化器と、前記隔壁の外側の加熱室に配置され
下端部で前記気化器に通じ上端部で改質ガスの送気口に
通じる反応器とを備えたメタノール改質器において、前
記バーナと前記反応器との間に空気室を形成し、この空
気室に前記バーナに供給される空気の一部を流すように
するのである。
This invention includes a cylindrical furnace body, a burner provided at the center of the upper part of the furnace body, a cylindrical partition wall surrounding the burner and suspended within the furnace body, and a combustion chamber surrounded by the partition wall. A methanol reformer comprising: a vaporizer disposed in the partition wall; and a reactor disposed in a heating chamber outside the partition wall, the reactor having a lower end communicating with the vaporizer and an upper end communicating with a reformed gas supply port. An air chamber is formed between the burner and the reactor, and a part of the air supplied to the burner flows through the air chamber.

【作 用】[For use]

この発明によれば、バーナと反応器との間に形成された
空気室を流れる空気によって、反応器上部とバーナとの
間に断熱層が形成され、バーナから隔壁を通して反応器
上部に加わる輻射熱が減少する。
According to this invention, a heat insulating layer is formed between the upper part of the reactor and the burner by the air flowing through the air chamber formed between the burner and the reactor, and radiant heat is applied from the burner to the upper part of the reactor through the partition wall. Decrease.

【実施例】【Example】

以下、第1図および第2図に基づいて、この発明の詳細
な説明する。なお、第1図において、第3図の従来例と
同一の部分には同一の符号を付は説明を省略する。 第1図において、燃焼室6にはバーナ2と反応器10と
の間に、空気室19が形成されている。 この空気室19は、円筒状の隔壁3の内側に、バーナ2
を囲むようにして円筒状の短い隔壁20を設けることに
よって、隔壁3と隔壁20との間に環状に形成される。 バーナ2の上部には炉体1の天板1bとの間に中空円板
状の空気マニホルド21が設けられている。バーナ2に
図示しない燃料電池からオフガスを供給する燃料供給管
4は、空気マニホルド21の中心部を貫通してバーナ2
に接続されている。 燃焼用空気供給管5から供給された空気は、空気マニホ
ルド21に入り、空気供給口22を経てバーナ2に供給
される。 空気マニホルド21に入った空気の一部は、隔壁20に
空けられた空気分岐口23を通して、矢印24で示すよ
うに空気室19に注入される。この空気は空気室3内を
下降して流れ、やがて燃焼ガスと合流する。 空気室3は、その内部を常に流れる新鮮な外部空気によ
り、バーナ2と反応器10との間に断熱層を形成する。 したがって、反応器10の上部は、バーナ2の直下の高
温の直接的な影響を免れることができる。 燃焼に必要な空気量と空気室19に流す空気量との比は
、空気供給口22と空気分岐口23との開口比できめら
れる。 第2図の(A)と(B)に、この発明の改質器と従来の
改質器について、反応器10の触媒層中の軸方向の温度
分布の実測結果をそれぞれ示す。 第2図(A)から分かる通り、この発明の改質器では、
反応器上部の温度上昇が抑えられ、反応器の入口直後か
ら出口部分に至るまで、約220°Cに保たれている。 これに対して、第2図(B)の従来の改質器では、反応
器の途中から出口にかけて温度上昇し、出口付近で約2
70°Cに達している。水素が豊富となる反応器の後半
部分で温度上昇することは、−酸化炭素の生成を抑制す
る上で不利である。
Hereinafter, the present invention will be explained in detail based on FIGS. 1 and 2. In FIG. 1, the same parts as those in the conventional example shown in FIG. 3 are designated by the same reference numerals, and the explanation thereof will be omitted. In FIG. 1, an air chamber 19 is formed in the combustion chamber 6 between the burner 2 and the reactor 10. This air chamber 19 has a burner 2 inside the cylindrical partition wall 3.
By providing a short cylindrical partition wall 20 to surround the partition wall 3 and the partition wall 20, an annular shape is formed between the partition wall 3 and the partition wall 20. An air manifold 21 in the shape of a hollow disk is provided at the upper part of the burner 2 between it and the top plate 1b of the furnace body 1. A fuel supply pipe 4 that supplies off gas from a fuel cell (not shown) to the burner 2 passes through the center of the air manifold 21 and is connected to the burner 2.
It is connected to the. Air supplied from the combustion air supply pipe 5 enters the air manifold 21 and is supplied to the burner 2 via the air supply port 22. A portion of the air that has entered the air manifold 21 is injected into the air chamber 19 as shown by arrow 24 through an air branch port 23 formed in the partition wall 20 . This air flows downward within the air chamber 3 and eventually merges with the combustion gas. The air chamber 3 forms a thermal insulation layer between the burner 2 and the reactor 10 with fresh external air constantly flowing inside it. Therefore, the upper part of the reactor 10 can be avoided from the direct influence of the high temperature immediately below the burner 2. The ratio between the amount of air required for combustion and the amount of air flowing into the air chamber 19 is determined by the opening ratio of the air supply port 22 and the air branch port 23. FIGS. 2A and 2B show actual measurement results of the temperature distribution in the axial direction in the catalyst layer of the reactor 10 for the reformer of the present invention and the conventional reformer, respectively. As can be seen from FIG. 2(A), in the reformer of this invention,
The temperature rise in the upper part of the reactor is suppressed, and the temperature is maintained at approximately 220°C from immediately after the inlet to the outlet of the reactor. On the other hand, in the conventional reformer shown in Figure 2 (B), the temperature increases from the middle of the reactor to the exit, and the temperature rises by about
The temperature has reached 70°C. An increase in temperature in the latter half of the reactor, which is enriched with hydrogen, is disadvantageous in suppressing the formation of -carbon oxides.

【発明の効果】【Effect of the invention】

この発明は、バーナと反応器との間に空気室を形成し、
この空気室に前記バーナに送気される空気の一部を流す
ようにしたので、燃焼室から隔壁を通して反応器上部に
加わる輻射熱が減少し、反応器上部の温度上昇が抑止さ
れる。その結果、触煤層中の軸方向の温度分布を適正に
保ことができ、改質ガス中の一酸化濃度を低減させるこ
とができる。
This invention forms an air chamber between the burner and the reactor,
Since a part of the air sent to the burner is made to flow into this air chamber, the radiant heat applied from the combustion chamber to the upper part of the reactor through the partition wall is reduced, and the temperature rise in the upper part of the reactor is suppressed. As a result, the axial temperature distribution in the soot layer can be maintained appropriately, and the monoxide concentration in the reformed gas can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例の断面図、第2図の(A)お
よび(B)はそれぞれこの発明および従来の改質器の触
媒層中の軸方向の温度分布図、第3図は従来の改質器の
断面図である。 1:炉体、2:バーナ、3:隔壁、6:燃焼室、7:加
熱室、8:気化器、[0:反応器、14:触媒、19:
空気室。
FIG. 1 is a sectional view of an embodiment of the present invention, FIG. 2 (A) and (B) are temperature distribution diagrams in the axial direction in the catalyst layer of the present invention and a conventional reformer, respectively. FIG. 2 is a cross-sectional view of a conventional reformer. 1: Furnace body, 2: Burner, 3: Partition wall, 6: Combustion chamber, 7: Heating chamber, 8: Vaporizer, [0: Reactor, 14: Catalyst, 19:
air chamber.

Claims (1)

【特許請求の範囲】[Claims] 1)筒状の炉体と、この炉体の上部中央に設けられたバ
ーナと、このバーナを囲んで前記炉体内に懸架された筒
状の隔壁と、この隔壁に囲まれた燃焼室に配置された気
化器と、前記隔壁の外側の加熱室に配置され下端部で前
記気化器に通じ上端部で改質ガスの送気口に通じる反応
器とを備えたメタノール改質器において、前記バーナと
前記反応器との間に空気室を形成し、この空気室に前記
バーナに供給される空気の一部を流すようにしたことを
特徴とするメタノール改質器。
1) A cylindrical furnace body, a burner provided at the center of the upper part of the furnace body, a cylindrical partition wall surrounding the burner and suspended within the furnace body, and a combustion chamber surrounded by the partition wall. a reactor disposed in a heating chamber outside the partition wall, the reactor having a lower end communicating with the vaporizer and an upper end communicating with a reformed gas inlet; A methanol reformer, characterized in that an air chamber is formed between the reactor and the reactor, and a part of the air supplied to the burner flows through the air chamber.
JP62147202A 1987-06-13 1987-06-13 Methanol reforming device Pending JPS63310702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62147202A JPS63310702A (en) 1987-06-13 1987-06-13 Methanol reforming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62147202A JPS63310702A (en) 1987-06-13 1987-06-13 Methanol reforming device

Publications (1)

Publication Number Publication Date
JPS63310702A true JPS63310702A (en) 1988-12-19

Family

ID=15424868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62147202A Pending JPS63310702A (en) 1987-06-13 1987-06-13 Methanol reforming device

Country Status (1)

Country Link
JP (1) JPS63310702A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277421U (en) * 1988-11-26 1990-06-14
JP2021121995A (en) * 2020-01-31 2021-08-26 京セラ株式会社 Modification unit and fuel cell device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277421U (en) * 1988-11-26 1990-06-14
JP2021121995A (en) * 2020-01-31 2021-08-26 京セラ株式会社 Modification unit and fuel cell device

Similar Documents

Publication Publication Date Title
US6932958B2 (en) Simplified three-stage fuel processor
US4935037A (en) Fuel reforming apparatus
US20040126288A1 (en) Hydrogen generator for fuel cell
US20070000173A1 (en) Compact reforming reactor
KR20030036155A (en) Integrated reactor
JPH01140563A (en) Solid oxide fuel cell generator and method of modifying fuel in generator
JP2000058096A (en) Plant having high-temperature fuel cell
JP2001155756A (en) Vapor-reforming reactor for fuel cell
JP2001080904A (en) Fuel reformer
JP2003321206A (en) Single tubular cylinder type reforming apparatus
KR102315289B1 (en) Steam Reformer with Multi Reforming Reactor
JPH10502213A (en) Furnace for fuel cell power plant
JPS63310702A (en) Methanol reforming device
JP2004075435A (en) Fuel reforming device
JP4641115B2 (en) CO remover
JPS63248702A (en) Fuel reformer
JPH01157402A (en) Methanol reformer
JPS63126539A (en) Fuel reformer
JP2003112904A (en) Single tube type cylindrical reformer
JPS62246802A (en) Methanol reformer
JPS62138307A (en) Device for reforming fuel for fuel cell
JPS63315501A (en) Methanol modification equipment
JPS62108704A (en) Fuel reforming device for fuel cell
JPS6321201A (en) Reforming device for fuel battery
JPS6191002A (en) Modifying container apparatus