JPS63309834A - Optical axis detector for automobile headlight or the like - Google Patents

Optical axis detector for automobile headlight or the like

Info

Publication number
JPS63309834A
JPS63309834A JP14550387A JP14550387A JPS63309834A JP S63309834 A JPS63309834 A JP S63309834A JP 14550387 A JP14550387 A JP 14550387A JP 14550387 A JP14550387 A JP 14550387A JP S63309834 A JPS63309834 A JP S63309834A
Authority
JP
Japan
Prior art keywords
screen
lens
optical axis
optical
headlight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14550387A
Other languages
Japanese (ja)
Inventor
Kimiharu Minagawa
皆川 公治
Yutaka Fukuda
豊 福田
Koichiro Muneki
宗木 好一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Anzen Motor Car Co Ltd
Original Assignee
Fuji Electric Co Ltd
Anzen Motor Car Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Anzen Motor Car Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP14550387A priority Critical patent/JPS63309834A/en
Publication of JPS63309834A publication Critical patent/JPS63309834A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

PURPOSE:To eliminates the need for a confronting mechanism and to obtain effects which remove an error in the positioning of the confronting mechanism by arranging a screen where a similar reduced light distribution pattern is projected at the focal length position of an optical lens. CONSTITUTION:An optical system is provided which allows a light distribution pattern at a distance D1 from an optical lens l with focal length (f) installed nearby an automobile headlight L, etc., to be reduced similarly and observed by the optical lens l, a half-mirror which is installed in front of the lens lat a specific angle to the optical axis of the lens, and the screen S2 where light from the headlight l reflected by the half-mirror is projected. Then the screen S2 is provided at the position of the focal length (f) of the lens l, and consequently even if the headlight L is moved in parallel to the optical axis of the lens l, the light distribution pattern on the screen S2 does not vary. This means that an optical axis inspecting device and the headlight L need not be confronted with each other. The optical axis is detected according to reflected light from this screen S.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は自動車前照灯等における照射配光の調整や検査
において使用される光軸(光学的中心軸)検出装置に関
するものであり、特に配光パターンを光学レンズを用い
て相似縮小して観測し光軸を検出するようにしたもので
ある。
The present invention relates to an optical axis (optical central axis) detection device used in adjusting and inspecting the irradiation light distribution of automobile headlights, etc., and in particular, the present invention relates to an optical axis (optical center axis) detection device used for adjusting and inspecting the irradiation light distribution in automobile headlights, etc., and in particular, the present invention relates to an optical axis (optical central axis) detection device used for adjusting and inspecting the irradiation light distribution in automobile headlights, etc. It is designed to detect the optical axis.

【従来の技術】[Conventional technology]

この種の照射配光の観測については、JIS−D−55
00に規格が設けられ、前照灯の前方10mにおいて当
該前照灯の光学的中心軸より左右最大15°、上側最大
3°、下側最大4°の範囲において照射光量を観測する
ように定めている。この範囲をスクリーンに照射して観
測するものとすると、水平巾約5m、奥行約10mの広
範な空間を必要とし、実際上はこのような空間を確保す
ることがむずかしいことが多いため、現実には第4図に
示すような前照灯より前方3mにおかれた約2m巾のス
クリーン上に照射した配光パターンを観測したり、第3
図に示すような光学系により10m前方の配光パターン
を相似縮小して観測している。 第4図において、1は自動車、2はスクリーン、3は左
側用テレビカメラ、4は右側用テレビカメラ、5はスク
リーン左右仕切板、6は左側前照灯、7は右側前照灯を
示している。スクリーン2は前照灯6,7から3m前方
に設置され、中2mの大きさである。このような構成に
より、前照灯6゜7から照射された光線をスクリーン2
に照射し、スクリーン2からの反射光をテレビカメラ3
.4で検出し、2値化等の画像処理をしてモニタ用テレ
ビ(図示せず)に表示させ、配光パターンを観測する。 また、第3図において、8は前照灯、9は光学レンズ、
10はハーフミラ−111はスクリーン、12はテレビ
カメラ、13は防塵箱、14は等価スクリーンを示して
いる。前照灯8は光学レンズ9に接近して配置され、前
照灯8から照射した光線は光学レンズ9を介してハーフ
ミラ−10の表面に向かう。 ハーフミラ−10はレンズ9の光軸に対して、例えば4
5″の傾きをもって固定されている。したがって、ハー
フミラ−10に入射した光線の約50χがミラー表面で
鏡面反射してスクリーン11に向かう。 残りの約約50χの光線は直進する。この直進光などの
影響を避けるために、ミラー10.スクリーン11を汚
れなどから保護するために設けである防塵箱13の内面
に無反射黒色塗装を施す。スクリーン11の表面は石こ
う等からなり、スクリーン11の表面からの反射光線が
観測する方向によらずにスクリーン11への入射光量に
比例するような反射特性を有するスクリーンとしている
。このようなスクリーン11の表面からの反射光線は、
乱反射となるが再びハーフミラ−10に達して直進する
部分とレンズ9側に反射する部分に分かれる。このうち
、直進する光線を工業用テレビカメラ12によって受光
するものである。したがって、前照灯8から照射された
光線は、実線の矢印で示すような経路で、レンズ9→ミ
ラー10→スクリーン11→ミラー10を介してテレビ
カメラ12によって受光される。このテレビカメラから
の信号を2値化等の画像処理をしてモニタ用テレビ(図
示せず)に表示させ、配光パターンを観測する。
For observation of this type of irradiation light distribution, JIS-D-55
Standards have been established for the 00, which stipulates that the amount of light emitted must be observed within a range of 15 degrees left and right, a maximum of 3 degrees above, and a maximum of 4 degrees below from the optical center axis of the headlight at a distance of 10 meters in front of the headlight. ing. If this range were to be illuminated on a screen and observed, a wide space of about 5 m in horizontal width and about 10 m in depth would be required, and in practice it is often difficult to secure such a space, so it is not practical. As shown in Figure 4, the light distribution pattern is observed on a 2m wide screen placed 3m in front of the headlights, and
Using an optical system as shown in the figure, the light distribution pattern 10 m ahead is similarly reduced and observed. In Fig. 4, 1 is a car, 2 is a screen, 3 is a TV camera for the left side, 4 is a TV camera for the right side, 5 is a left and right screen partition plate, 6 is a left headlight, and 7 is a right headlight. There is. The screen 2 is installed 3 m in front of the headlights 6 and 7, and has a size of 2 m. With this configuration, the light rays emitted from the headlight 6°7 are directed to the screen 2.
The reflected light from the screen 2 is sent to the TV camera 3.
.. 4, perform image processing such as binarization, display on a monitor television (not shown), and observe the light distribution pattern. In addition, in Fig. 3, 8 is a headlamp, 9 is an optical lens,
10 is a half mirror, 111 is a screen, 12 is a television camera, 13 is a dustproof box, and 14 is an equivalent screen. The headlamp 8 is arranged close to the optical lens 9, and the light rays emitted from the headlamp 8 are directed to the surface of the half mirror 10 via the optical lens 9. For example, the half mirror 10 is 4
It is fixed with an inclination of 5". Therefore, about 50χ of the light rays incident on the half mirror 10 is specularly reflected on the mirror surface and heads towards the screen 11. The remaining light rays of about 50χ travel straight. This straight light, etc. In order to avoid the influence of dust, a non-reflective black coating is applied to the inner surface of the dustproof box 13 provided to protect the mirror 10 and screen 11 from dirt.The surface of the screen 11 is made of gypsum, etc. The screen has a reflection characteristic such that the reflected light from the surface of the screen 11 is proportional to the amount of light incident on the screen 11 regardless of the direction of observation.The reflected light from the surface of the screen 11 is
The light is diffusely reflected, but it is divided into a part that reaches the half mirror 10 and goes straight, and a part that is reflected toward the lens 9 side. Among these, the light beam that travels straight is received by the industrial television camera 12. Therefore, the light rays emitted from the headlight 8 are received by the television camera 12 via the lens 9 → mirror 10 → screen 11 → mirror 10 along the path shown by the solid arrow. The signal from the television camera is subjected to image processing such as binarization and displayed on a monitor television (not shown), and the light distribution pattern is observed.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

ところが、第4図に示すものには次のような問題点があ
る。 (1) 3 m前方のスクリーン上への照射配光パター
ンは、前照灯が点光源でないために、10m前方でのそ
れとは異なったパターンになる。 (2)原理的に、観測用のテレビカメラを前照灯光路上
に配置できないので、スクリーンを見おろすようにして
観測することになり、スクリーン上の配光パターンがゆ
がんで観測される。そのため、後の処理過程において座
標変換を行い、ゆがみを除去する必要がある。 このような問題点は第3図に示すような光学系を用いれ
ば解決することができるが、第3図に示すような光学系
には次のような問題点がある。 (3)相似縮小して観測する場合、一般的には光軸検出
装置と被検査前照灯とを正対(光軸検出装置の中心軸と
前照灯回転中心を合わせること)させる必要がある。こ
れらの正対のためには相似縮小配光パターンを得るため
の光学レンズを介して正対すべき前照灯の回転中心を検
出する手段と、検出した位置に応じて当該光学系を移動
させる手段とが必要となり、価格的にも高価なものとな
ってしまう。 本発明は前述の正対機構を不要とし、同時に正対機構の
位置決め誤差を除外する効果を有する光軸検出装置を提
供することを目的とする。
However, the system shown in FIG. 4 has the following problems. (1) The irradiation light distribution pattern on the screen 3 m in front will be different from that 10 m in front because the headlights are not point light sources. (2) In principle, it is not possible to place a television camera for observation on the optical path of the headlights, so the observation must be done by looking down on the screen, resulting in a distorted light distribution pattern on the screen. Therefore, it is necessary to perform coordinate transformation in a later processing step to remove distortion. Although such problems can be solved by using an optical system as shown in FIG. 3, the optical system as shown in FIG. 3 has the following problems. (3) When observing with similar reduction, it is generally necessary to align the optical axis detection device and the headlight to be inspected (align the center axis of the optical axis detection device and the center of rotation of the headlight). be. In order to directly face them, there is a means for detecting the rotation center of the headlight to be directly faced through an optical lens to obtain a similar reduced light distribution pattern, and a means for moving the optical system according to the detected position. This also makes it expensive. SUMMARY OF THE INVENTION An object of the present invention is to provide an optical axis detection device that eliminates the need for the above-mentioned facing mechanism and at the same time eliminates positioning errors of the facing mechanism.

【問題点を解決するための手段】[Means to solve the problem]

自動車前照灯等が接近して設置される焦点距離fの光学
レンズと、該光学レンズの前方にレンズ光軸に対し所定
の傾きで設置されるハーフミラ−と、このハーフミラ−
によって反射された前記前照灯からの光を照射されるス
クリーンとにより、前記光学レンズより距離D1におけ
る配光パターンを相似縮小して観測しうる光学系を有し
、前記スクリーンからの反射光に基づいて光軸を検出す
るようにしたものにおいて、前記光学レンズとスクリー
ンとの距離を前記光学レンズの焦点距離fと等しく配置
する。
An optical lens with a focal length f that is installed close to an automobile headlamp, a half mirror that is installed in front of the optical lens at a predetermined inclination with respect to the optical axis of the lens, and this half mirror.
The screen is irradiated with the light from the headlight reflected by the optical lens, and the optical system is capable of similarly reducing and observing the light distribution pattern at the distance D1 from the optical lens. The distance between the optical lens and the screen is arranged to be equal to the focal length f of the optical lens.

【作 用】[For use]

相似縮小配光パターンを照射せしめるスクリーンを、光
学レンズの焦点距離に配置することにより、相似縮小配
光パターンの位置が前照灯等の平行位置ずれに関係なく
、その角度変動によってのみ変わるようになる。
By arranging the screen that illuminates the similar reduced light distribution pattern at the focal length of the optical lens, the position of the similar reduced light distribution pattern can be changed only by the angular fluctuation, regardless of the parallel position shift of the headlight etc. Become.

【実施例】【Example】

第2図は相似縮小配光パターンを得るための原理の説明
図であり、以下、第2図に基づいてこの原理を説明する
。 基準面としての仮想スクリーンSl上の点Aに入射する
光線は前照灯り内の多くの点から発射している(これが
点光源でないというゆえんである)。 このため、光学系がなければ、仮想スクリーンS1と前
照灯りの間にあるいかなる面においてもこれらの光線は
一点に集中しないので、仮想スクリーンSl上の配光パ
ターンと相似の配光パターンとはならない。 この原理は、仮想スクリーンSl上の点Aに任意の入射
角θで入射するすべての光線が、特定の位置にある観測
面としてのスクリーンS2上の点Bに入射し、点Aと点
Bが相似位置関係になることを利用している。 これらの関係を判り易く導くために、この光線を発射点
に向けて延長し、この延長線と、レンズlの一方の焦点
を含みレンズlの光軸に垂直な面の交点Cを考える。点
Cはレンズlの焦点面上にあるので、この点より発射し
た全ての光線はレンズlを介した後は全て平行に進む。 すなわち点Cよりレンズlの光軸に平行にレンズlに入
射した光線は、他方の焦点に向かって進む。それゆえ、
仮想スクリーンSlの点Aに向かって進む光線は、レン
ズlのうしろでは、上記光線と平行に進み、スクリーン
S2上の点Bに入射する。このとき点A2点Bの位置h
Lh2は点Cの位置Xを用いてつぎのように表わせる。 hl = (DI +f)・tanθ−x  −−−−
−−−−−−−−−(11第1式と第2式よりXを消去
することにより、次の第3式が得られる。 第3式において、右辺の第2項が0”となるように、次
の第4式で示される距離D2にスクリーンS2を設定す
ると、点A9点Bの位置hl、h2は第5式で示される
ように焦点距離f、距離DI。 D2によって決められた定数に比例し、点Aに入射する
すべての光線が点Bに入射して、点Aと点Bが相似位置
関係となる。 したがって、距離D1の配光パターンがレンズlを介す
ることにより距離D2に設けられたスクリーンS2に相
似縮小されて照射されることになる。この場合の縮小率
は(f−D2)/fである。 以上が相似縮小配光パターンを得るための原理である。 ここで、前述の規格が10m前方での観測を決めている
が、それより遠方での配光パターンがそれと比べて大差
ないか、または光軸調整上問題ない配光パター゛ンであ
るので、無限遠の配光パターンを考えてみると、(4)
式は、 とも表すことができるので、DI =■とじて(6)式
に代入すると02=fとなる。このことはレンズの焦点
距離fの位置にスクリーンS2を配置すれば良いことを
示しており、このとき、(2)式より、h2=ftan
 θ−−−−−−−−−−−−−−−−−一−・−−−
−−−−−−−−−(71が成立する。 第1図はレンズの焦点距離fの位置にスクリーンS2を
配置した場合の説明図を示している。第1図において、
前照灯LLをレンズlの光軸上に設置した場合に、第2
図と同様に考えると、レンズEの一方の焦点を含む面上
の交点C1より発射された光線のうち、レンズlの光軸
と平行に進んだ光線はレンズlの他方の焦点を含む面、
すなわちスクリーンS2上の交点B2に入射する。また
、交点C1より発射された残りの光線はレンズlを介し
た後は交点B2に入射する光線と平行にすすむので、例
えば光軸に対して角度θで発射された光線はスクリーン
S2上の交点B1に入射し、h2=ftan θという
関係となる。このとき、レンズlの光軸に対して平行移
動させた前照灯L2を考えてみると、レンズlの一方の
焦点を含む面上の交点C2より発射された光線のうち、
レンズlの光軸と平行に進んだ光線はスクリーンS2上
の交点B2に入射する。また、交点c2より発射された
残りの光線はレンズlを介した後は交点B2に入射する
光線と平行に進むので、例えば光軸に対して角度θで発
射された光線はスクリーンS2上の交点B1に入射し、
h2=ftan θという関係となる。 このように、レンズlの焦点距離fの位置にスクリーン
S2を設けることにより、前照灯をレンズの光軸に対し
て平行移動させた場合でもスクリーンS2上の配光パタ
ーンは変化しなくなる。このことは、光軸検査装置と被
検査前照灯を正対させる必要がないことを示している。 なお、レンズβの光軸と前照灯との角度を変えればh2
−イtan θの関係から配光パターンが変化すること
は勿論である。
FIG. 2 is an explanatory diagram of the principle for obtaining a similar reduced light distribution pattern, and this principle will be explained below based on FIG. 2. The light rays incident on the point A on the virtual screen Sl serving as a reference plane are emitted from many points within the headlight (this is why it is not a point light source). For this reason, without an optical system, these light rays would not be concentrated on one point on any surface between the virtual screen S1 and the headlight, so a light distribution pattern similar to the light distribution pattern on the virtual screen S1 is No. This principle is such that all the rays that are incident on point A on virtual screen Sl at an arbitrary incident angle θ are incident on point B on screen S2, which is the observation surface, at a specific position, and points A and B are It takes advantage of the similar positional relationship. In order to derive these relationships in an easy-to-understand manner, this ray is extended toward the emission point, and the intersection point C between this extended line and a plane that includes one focal point of the lens l and is perpendicular to the optical axis of the lens l is considered. Since point C is on the focal plane of lens l, all rays emitted from this point travel in parallel after passing through lens l. That is, a ray of light that enters lens l from point C in parallel to the optical axis of lens l travels toward the other focal point. therefore,
A ray of light traveling toward point A on the virtual screen SI travels parallel to the ray of light behind the lens l and is incident on a point B on the screen S2. At this time, the position h of point A2 point B
Lh2 can be expressed as follows using the position X of point C. hl = (DI +f)・tanθ−x −−−
------------(11 By eliminating X from the first and second equations, the following third equation is obtained. In the third equation, the second term on the right side becomes 0" If the screen S2 is set at the distance D2 shown by the following 4th equation, the positions hl and h2 of points A and B are determined by the focal length f and the distance DI, as shown by the 5th equation.D2 Proportional to the constant, all the light rays incident on point A are incident on point B, and points A and B have a similar positional relationship. Therefore, the light distribution pattern at distance D1 passes through lens l, so that the light distribution pattern at distance D2 The light is similarly reduced and irradiated onto the screen S2 provided in the screen S2.The reduction ratio in this case is (f-D2)/f.The above is the principle for obtaining a similarly reduced light distribution pattern.Here The above-mentioned standard specifies observation at a distance of 10 meters in front, but the light distribution pattern at farther distances is not much different from that, or the light distribution pattern does not pose any problem in adjusting the optical axis, so it is possible to observe infinity. Considering the light distribution pattern in the distance, (4)
Since the equation can also be expressed as follows, if we set DI=■ and substitute it into equation (6), we get 02=f. This shows that it is sufficient to place the screen S2 at the position of the focal length f of the lens, and at this time, from equation (2), h2=ftan
θ−−−−−−−−−−−−−−−−−1−・−−−
-----------(71 holds true. FIG. 1 shows an explanatory diagram when the screen S2 is placed at the position of the focal length f of the lens. In FIG. 1,
When the headlight LL is installed on the optical axis of the lens l, the second
Thinking in the same way as the figure, among the rays emitted from the intersection C1 on the plane containing one focal point of lens E, the ray traveling parallel to the optical axis of lens 1 is on the plane containing the other focal point of lens 1.
That is, it enters the intersection B2 on the screen S2. In addition, the remaining light rays emitted from the intersection C1 pass through the lens l and proceed parallel to the light rays incident on the intersection B2, so for example, the light rays emitted at an angle θ to the optical axis point to the intersection on the screen S2. It is incident on B1, and the relationship h2=ftan θ is established. At this time, if we consider the headlight L2 that is moved parallel to the optical axis of the lens l, among the light rays emitted from the intersection C2 on the plane that includes one focal point of the lens l,
The light rays traveling parallel to the optical axis of the lens l enter an intersection B2 on the screen S2. In addition, the remaining light rays emitted from the intersection point c2 travel parallel to the light rays incident on the intersection point B2 after passing through the lens l. enters B1,
The relationship is h2=ftan θ. In this way, by providing the screen S2 at the focal length f of the lens l, the light distribution pattern on the screen S2 does not change even when the headlight is moved parallel to the optical axis of the lens. This shows that it is not necessary to directly face the optical axis inspection device and the headlight to be inspected. In addition, if you change the angle between the optical axis of lens β and the headlight, h2
- It goes without saying that the light distribution pattern changes due to the relationship between θ and θ.

【発明の効果】【Effect of the invention】

この発明によれば、相似縮小配光パターンを照射せしめ
るスクリーンを、光学レンズの焦点距離に配置すること
により相似縮小配光パターンの位置が、前照灯の平行位
置ずれに関係なく、その角度変動によってのみ変わるの
で光軸検出装置に対する一定位置に前照灯が位置するよ
う、該装置を前照灯に対し正対させることなく前照灯の
角度を調節または検査する装置を得ることができる。
According to this invention, by arranging the screen that irradiates the similar reduced light distribution pattern at the focal length of the optical lens, the position of the similar reduced light distribution pattern can be changed in angle regardless of the parallel positional deviation of the headlight. Therefore, it is possible to obtain a device that adjusts or inspects the angle of a headlight without directly facing the headlight so that the headlight is located at a constant position with respect to the optical axis detection device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による装置の原理の説明図、第2図は相
似縮小配光パターンを得るための原理の説明図、第3図
は相似縮小配光パターンを観測する装置の構成図、第4
図は従来の配光調整システムの概略構成図を示している
FIG. 1 is an explanatory diagram of the principle of the apparatus according to the present invention, FIG. 2 is an explanatory diagram of the principle for obtaining a similar reduced light distribution pattern, FIG. 3 is a block diagram of the apparatus for observing a similar reduced light distribution pattern, and FIG. 4
The figure shows a schematic configuration diagram of a conventional light distribution adjustment system.

Claims (1)

【特許請求の範囲】[Claims] 自動車前照灯等が接近して設置される焦点距離fの光学
レンズと、該光学レンズの前方にレンズ光学に対し所定
の傾きで設置されるハーフミラーと、該ハーフミラーに
よって反射された前記前照灯等からの光を照射されるス
クリーンとにより、前記光学レンズより距離D1におけ
る配光パターンを相似縮小して観測しうる光学系を有し
、前記スクリーンからの反射光に基づいて光軸を検出す
るようにした光軸検出装置において、前記光学レンズと
スクリーンとの距離を前記光学レンズの焦点距離fと等
しく配置したことを特徴とする自動車前照灯等の光軸検
出装置。
An optical lens with a focal length f that is installed close to an automobile headlamp, a half mirror that is installed in front of the optical lens at a predetermined inclination with respect to the lens optics, and a mirror that is reflected by the half mirror. The optical system includes a screen that is irradiated with light from a lamp or the like, and allows the light distribution pattern at the distance D1 to be similarly reduced and observed from the optical lens, and the optical axis is determined based on the light reflected from the screen. 1. An optical axis detection device for an automobile headlamp, etc., characterized in that the distance between the optical lens and the screen is set equal to the focal length f of the optical lens.
JP14550387A 1987-06-11 1987-06-11 Optical axis detector for automobile headlight or the like Pending JPS63309834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14550387A JPS63309834A (en) 1987-06-11 1987-06-11 Optical axis detector for automobile headlight or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14550387A JPS63309834A (en) 1987-06-11 1987-06-11 Optical axis detector for automobile headlight or the like

Publications (1)

Publication Number Publication Date
JPS63309834A true JPS63309834A (en) 1988-12-16

Family

ID=15386764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14550387A Pending JPS63309834A (en) 1987-06-11 1987-06-11 Optical axis detector for automobile headlight or the like

Country Status (1)

Country Link
JP (1) JPS63309834A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434331A (en) * 1990-05-30 1992-02-05 Chuo Denshi Keisoku Kk Measuring apparatus for deflection angle of optical axis of headlamp

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122324A (en) * 1981-01-22 1982-07-30 Sanei Kogyo Kk Main optical axis measurement for automobile headlight mainly using halogen lamp
JPS60194325A (en) * 1984-03-14 1985-10-02 Anzen Jidosha Kk Light orientation pattern detector for head lamp of automobile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57122324A (en) * 1981-01-22 1982-07-30 Sanei Kogyo Kk Main optical axis measurement for automobile headlight mainly using halogen lamp
JPS60194325A (en) * 1984-03-14 1985-10-02 Anzen Jidosha Kk Light orientation pattern detector for head lamp of automobile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434331A (en) * 1990-05-30 1992-02-05 Chuo Denshi Keisoku Kk Measuring apparatus for deflection angle of optical axis of headlamp

Similar Documents

Publication Publication Date Title
CA2278332C (en) Optoelectronic system using spatiochromatic triangulation
EP0856728B1 (en) Optical method and apparatus for detecting defects
US5128550A (en) Method of and an apparatus for testing large area panes for optical quality
US4643578A (en) Arrangement for scanned 3-D measurement
CN106931888A (en) A kind of double light path type laser displacement sensor
JPS61200409A (en) Method and device for measuring wall thickness of transparent body
US2496324A (en) Mirror and light beam wheel alignment characteristic measuring device
JPH05306915A (en) Method and instrument for measuring shape
JPS63309834A (en) Optical axis detector for automobile headlight or the like
WO2002017357A2 (en) Three dimensional inspection of leaded ics
USRE35350E (en) Method and apparatus for measuring surface distances from a reference plane
US5291026A (en) Method for measuring eccentricity
JPS60194325A (en) Light orientation pattern detector for head lamp of automobile
US3749492A (en) Interferometric hypsocline generator
JPH0247444Y2 (en)
JPH043291Y2 (en)
JPH0411422Y2 (en)
JP2671479B2 (en) Surface shape measuring device
JPH04189672A (en) Method and device for measuring limit by running vehicle
JP2000019120A (en) Transparent plate body defect detecting method and device therefor
WO2023031264A1 (en) Camera position review for vehicle driver assistance systems
JP2674900B2 (en) Positioning device in exposure equipment
JPH05322694A (en) Lens inspection instrument
JP2005148380A (en) Shutter inspecting device for camera
JPH0712829A (en) Method and device for detecting movement