JPS63309195A - Production of gamma-substituted-beta-hydroxybutyric acid ester - Google Patents

Production of gamma-substituted-beta-hydroxybutyric acid ester

Info

Publication number
JPS63309195A
JPS63309195A JP14558787A JP14558787A JPS63309195A JP S63309195 A JPS63309195 A JP S63309195A JP 14558787 A JP14558787 A JP 14558787A JP 14558787 A JP14558787 A JP 14558787A JP S63309195 A JPS63309195 A JP S63309195A
Authority
JP
Japan
Prior art keywords
substituted
acid ester
genus
gamma
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14558787A
Other languages
Japanese (ja)
Other versions
JP2566962B2 (en
Inventor
Hideaki Yamada
秀明 山田
Akira Shimizu
昌 清水
Teruzo Miyoshi
照三 三好
Masaaki Kato
正明 加藤
Tadashi Morikawa
忠志 守川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP62145587A priority Critical patent/JP2566962B2/en
Publication of JPS63309195A publication Critical patent/JPS63309195A/en
Application granted granted Critical
Publication of JP2566962B2 publication Critical patent/JP2566962B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To produce gamma-substituted-beta-hydroxybutyric acid ester in high yield, by treating gamma-substituted acetoacetic acid ester with a reductase in the presence of an organic solvent which can form two phases together with water in an aqueous medium. CONSTITUTION:A reductase is used to convert a gamma-substituted acetoacetic acid ester into a gamma-substituted-beta-hydroxybutyric acid ester using an organic solvent which can form two phases in an aqueous medium, dissolve the substrate and the product and has low actions to inhibit or deactivate the reaction of the reductase. The organic solvent is, e.g., an organic acid ester or alcohol, preferably the weight ratio of the organic solvent to the aqueous medium is 95/5-10/90.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 近年、種々なオキシ酸類の医・1に薬合成中間体として
の有用性が認識されつつある。本発明は、これらオキシ
酸類のうち、カル−チン合成の中間体となるγ−置換一
β−ハイドロキシ酪酸エステルの効率的製造法に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] In recent years, the usefulness of various oxyacids as pharmaceutical synthesis intermediates has been recognized. The present invention relates to an efficient method for producing γ-substituted monoβ-hydroxybutyric acid ester, which is an intermediate for cartin synthesis among these oxyacids.

〔従来の技術〕[Conventional technology]

従来、と−置換アセト酢酸エステル(以下、AAEと言
う)を還元酵素でi−置換−β−ハイドロキシ酪酸エス
テル(以下、HBEと言う)に変換するには水性媒体単
独系が用いられて来た(特開昭59−118093号公
報)。
Conventionally, an aqueous medium-only system has been used to convert -substituted acetoacetate (hereinafter referred to as AAE) to i-substituted -β-hydroxybutyric acid ester (hereinafter referred to as HBE) using a reductase. (Japanese Unexamined Patent Publication No. 118093/1983).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者らは、水性媒体単独反応系での反応条件につき
検討したが、HBlli:の蓄積濃度に限界があり、そ
れ以上収量を上げるには多量の酵素及び補酵素を要する
上、かえって収率の低下をきたす等の間層があった。
The present inventors investigated the reaction conditions in an aqueous medium-only reaction system, but there was a limit to the accumulated concentration of HBlli, and in order to further increase the yield, a large amount of enzyme and coenzyme was required, and the yield was reduced. There was a layer that caused a decrease in

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、水性媒体中で、を−置換アセト酢酸xステh
t 1−a換−β−ハイドロキシ酪酸エステルに還元す
る能力を有する還元#素を用い、L−置換アセト酢酸エ
ステルから1−置換−β−ハイドロキシ酪酸エステルを
製造するに際し、水と二相を形成しうる有機溶媒を存在
させることを特徴とする該t−置換−β−ノ・イドロキ
シ酪酸エステルの製造性である。
The present invention provides for -substituted acetoacetic acid x step h in an aqueous medium.
t Forming two phases with water when producing 1-substituted -β-hydroxybutyrate from L-substituted acetoacetate using a reducing # element that has the ability to reduce to 1-a-substituted -β-hydroxybutyrate. The process of manufacturing the t-substituted -β-no-idroxybutyric acid ester is characterized by the presence of an organic solvent that can be used.

本発明に使用される有機溶媒の最低条件としては、 (1)  基質AAE及び生成物HBEを溶解出来る(
2)水性媒体と二相を成しうる (3)還元酵素に対する反応阻害性及び不活化作用が低
い ことが望ましい。具体的には、イ酸エステル、酢酸エス
テル、フロピオン酸エステル、酪酸エステル等の有機酸
エステル類、n−ブチルアルコール、n −7ミルアル
コール、n−オクチル7 A/ コー ル等のアルキル
基の炭素数4以上のアルコール類、ベンゼン、トルエン
、キシレン等の芳香族系溶媒類、ジエチルエーテル、メ
チルエチルエーテル、イングロビルエーテル等のエーテ
ル類、クロロホルム、1,2−ジクロロエタン、四塩化
炭素等のハロゲン化炭化水素類などが挙げられる。反応
系中におけるこれら有機溶媒類の水性媒体に対する使用
比率は特に制限されないが、実用上、重量基準で有機溶
媒/水性媒体=9515〜50150の範囲が好ましい
The minimum conditions for the organic solvent used in the present invention are: (1) It must be able to dissolve the substrate AAE and the product HBE (
2) capable of forming two phases with an aqueous medium; and (3) desirably low reaction inhibition and inactivating effects on reductases. Specifically, organic acid esters such as icate ester, acetate ester, fropionate ester, and butyrate ester, and the carbon of an alkyl group such as n-butyl alcohol, n-7 methyl alcohol, and n-octyl 7A/cole, etc. Alcohols of number 4 or more, aromatic solvents such as benzene, toluene, xylene, ethers such as diethyl ether, methyl ethyl ether, inglovir ether, halogenated substances such as chloroform, 1,2-dichloroethane, carbon tetrachloride, etc. Examples include hydrocarbons. The ratio of these organic solvents to the aqueous medium in the reaction system is not particularly limited, but in practice, the range of organic solvent/aqueous medium = 9515 to 50150 on a weight basis is preferred.

次にこれら二相媒体中で還元反応に用いる酵素源として
は、AAEをHBEに変換する能力を有する酵素であっ
て、微生物菌体、菌体処理物、菌体より抽出した粗酵素
及び精製酵素を使用できる。更に、これらを公知の方法
で固定化した固定化物等も効果的に使用できる。具体的
には、キャンデイダ属(Candida ) 、サツカ
ロマイセス属(Saccharomyces ) 、ト
ルロプシス属(Torulo−psis)、)リコスボ
ロン属(Trichosporon )、ピキアM (
p i Ch i a ) 、ハンゼヌラ属(Hans
enu−1a )、ジオトリコム属(C)eozric
hum )、エンドマイセス属(Endomyces 
) 、デバリオマイセス稿(Debaryomyces
 )、スポロポロマイセス属(5porobolonc
yces )等の酵母類〜オーレオバクテリウム(Au
reobacierium ) 754アルカリデネス
(Alcallgenes )属アグロバクテリウム(
Agrobaczerium )属アリスロバクター(
ArthrObaCter )属アモル7オスポランギ
クム(Amorphosporan−gium )属 アムプラリエラ(Ampullariella )属ブ
レビバクテリウム(Brevibaczerium )
属バチルス(Bacillus )属 コリネバクテリウム(Corynebac−zeriu
m )属セルロモナス(Cellulomonas )
 14エシエリキア(Escherichia )属エ
ンテロバクタ−(Ent、erobaczer )属フ
ラボバクテリウム(Fl、avobacterium 
)属ハフニア(Haftnia ) I/f4クルチア
(Kurzhia ) 84 ラクトバチルス(Laczobacillus )属ミ
クロコツカス(uicrOcOccus )属メタノモ
ナス(MsZhanomonas ) lf4メチロバ
シルス(Mezbylobacillus )属ミク1
ビアボラ(Microbispora )属ミクロモノ
スボ+)(Micromonospora )属ノカル
ゾア(Nocardia )属 プロテウス(Prozeus ) 14シユードモナス
(Pseudomonas )属ペチオコツカス(Pe
diococcus )属シラノモノスポラ(Plan
omonospora ) 属プロトモナス(Prot
、omonas )属ロドコッカス(Rhodoccu
s )属セラチア(aarratia )属 ストレプトマイセス(8zrepzomyces )属
す−モアクチノミセス(Thermoaczinomy
ces )属 キサントモナス(Xant、homonas )属エル
シニア(Yersinia )属 に属するバクテリア類、さらにカビ類としてアスペルゾ
ルス属(Aspergillua )、ムコール属(M
ucor )、フヂリウム属(Fusarium )、
 リゾプス楓(Rh1zopus )、ペニシリウム属
(Penicillium )、ノイロスポラ属(Ne
urospo−ra)、プルラリア属(Pu1lula
ria )、ウスチラボ属(Uszilago )、パ
ーティシリウム属(Verzicillium )など
があげられる。
Next, the enzyme source used for the reduction reaction in these two-phase media is an enzyme capable of converting AAE to HBE, including microbial cells, processed bacterial cells, crude enzymes extracted from bacterial cells, and purified enzymes. can be used. Furthermore, immobilized products obtained by immobilizing these by known methods can also be effectively used. Specifically, the genus Candida, the genus Saccharomyces, the genus Torulo-psis, the genus Trichosporon, and the genus Pichia M.
p i Ch i a ), Hansenula spp.
enu-1a), Geotrichum (C) eozric
hum ), Endomyces spp.
), Debaryomyces manuscript
), Sporopolomyces sp.
Yces) and other yeasts to Aureobacterium (Au
reobacierium ) 754 Alcallgenes genus Agrobacterium (
Agrobaczerium ) genus Arilobacter (
ArthrObaCter) Genus Amorphosporan-gium Genus Ampullariella Genus Brevibaczerium
Genus Bacillus Genus Corynebacterium
m) Genus Cellulomonas
14 Escherichia genus Enterobacter (Ent, erobaczer) genus Flavobacterium (Fl, avobacterium)
) genus Haftnia I/f4 Kurzhia 84 Lactobacillus genus Micrococcus uicrOcOccus genus MsZhanomonas lf4 Methylobacillus cillus ) Genus Miku 1
Genus Microbispora (Micromonospora) Genus Nocardia Genus Prozeus 14 Genus Pseudomonas Pe
diococcus ) genus Cyranomonospora (Plan
omonospora) Genus Protomonas (Prot.
, omonas ) genus Rhodococcus
s) Genus Serratia Genus Strepzomyces - Thermoaczinomyces
Bacteria belonging to the genus Xant, homonas, genus Yersinia, and fungi such as Aspergilla and Mucor, respectively.
ucor), Fusarium,
Rhizopus (Rh1zopus), Penicillium (Penicillium), Neurospora (Ne
urospo-ra), Plularia sp.
ria), Uszilago, and Verzicilium.

これら酵素源には、AAEを不斉的に還元し、(8)−
HBE又は(s) −HBEを生成したり、また光学的
に選択性がなく(P5体/(S)体が混合したHBEを
生成するものもある。しかし、本発明の方法によれば、
これら酵素源に限定されるものではなく、AAEをHB
Eに還元する反応には、上記以外でも適用可能である。
These enzyme sources include asymmetric reduction of AAE and (8)-
Some produce HBE or (s)-HBE, while others produce HBE with no optical selectivity (a mixture of P5 form/(S) form). However, according to the method of the present invention,
Not limited to these enzyme sources, AAE can be
Reactions other than those described above can also be applied to the reaction for reducing to E.

還元反応には、還元酵素以外に通常補酵素として還元型
ニコチンアミド・アデニンジヌクレオチド(NADH)
又はニコチンアミド・アデニンジヌクレオチドリン酸(
NADPH)を必要とするので、反応系に添加するかN
ADH又はNADPH’を生成する反応システムを還元
反応系中に共存させる必要がある。例えば、グルコース
デヒドロデナーゼによるグルコースからのグルコン酸生
成反応におけるNAD又はNADPの各々NADH又は
NADPHへの変換を利用するNADH又はNADPH
再生システム等を好適に利用できる。
In the reduction reaction, reduced nicotinamide adenine dinucleotide (NADH) is usually used as a coenzyme in addition to the reductase.
or nicotinamide adenine dinucleotide phosphate (
NADPH) is required, so either add it to the reaction system or
It is necessary to coexist a reaction system that produces ADH or NADPH' in the reduction reaction system. For example, NADH or NADPH that utilizes the conversion of NAD or NADP to NADH or NADPH, respectively, in the gluconic acid production reaction from glucose by glucose dehydrodenase.
A playback system etc. can be suitably used.

使用するAAEの種類に関しては、r−位置換基として
は、クロル、ブロム、フルオロ、アシド基などが、エス
テル基としては炭素数1〜10のアルキル基が望ましい
Regarding the type of AAE used, as the r-position substituent, chloro, bromo, fluoro, acid group, etc. are preferable, and as the ester group, an alkyl group having 1 to 10 carbon atoms is preferable.

反応温度は5〜70°C1好ましくは20〜400c1
反応−は4〜10好ましくは6〜8に調整すれば本発明
の効果は十分に発揮される。かくして得られた反応液は
二相が分離する迄静置するか、遠心分離機等で分離し、
HBEの大部分を含有する有機層部分を集める。水層残
存HBEは必要に応じ同−又は他の抽出溶媒等で回収す
ることもできる。
The reaction temperature is 5-70°C1, preferably 20-400°C1
If the reaction value is adjusted to 4 to 10, preferably 6 to 8, the effects of the present invention can be fully exhibited. The reaction solution thus obtained is either left to stand until the two phases are separated, or separated using a centrifuge, etc.
Collect the portion of the organic layer containing the majority of the HBE. The HBE remaining in the aqueous layer can be recovered using the same or other extraction solvent, if necessary.

HBEを含有する有機層を合わせ硫酸ナトリウム等の脱
水剤で脱水後、有機溶媒を減圧下で除去し、必要に応じ
更に減圧蒸留又はクロマト分離等の処理をすれば純度の
高いHBgが高収率で得られる。
After combining the organic layers containing HBE and dehydrating with a dehydrating agent such as sodium sulfate, the organic solvent is removed under reduced pressure, and if necessary, further treatment such as vacuum distillation or chromatographic separation can be performed to obtain high purity HBg. It can be obtained with

以下、実施例で本発明の詳細な説明するが、本発明は、
これらに限定されるものではない。
Hereinafter, the present invention will be explained in detail with reference to Examples.
It is not limited to these.

〔実施例〕〔Example〕

実施例1 グルコース5重量係、コーン・ステイープ・リカー5重
量係から成る培地(p)16.0)51dを試験管にと
り、スポロざロマイセス・サルモニカラー(Sporo
bolomyces Salmonicolor ) 
IFO1038を接種し、28°Cで2日間培養した。
Example 1 51 d of a medium (p) 16.0) consisting of 5 parts by weight of glucose and 5 parts by weight of corn steep liquor was placed in a test tube, and Sporozaromyces salmonicolar
bolomyces Salmonicolor)
IFO1038 was inoculated and cultured at 28°C for 2 days.

これと同一組成の培地100rLlを5001容フラス
コに取り、種培養5 atを接種し、28℃で4日間振
とり培養を行なった。遠心分離機により集菌し、0.O
IMリン酸緩衝液CF)17.0 )で洗浄後、同一緩
衝液で全容10tnlに調整し、水冷下超音波破砕器に
より2Q KHzで5分間菌体を破砕したものを粗#素
液として反応に用いた。反応は粗酵素液101Ltに補
酵素としてNADPH300μモル、基質t−クロルア
セト酢酸エチル600μモル及び酢酸エチル10酎添加
し、−を8に調整後、300Cで攪拌下開始した。20
時間後、有機層と水層を分け、水層区分を酢酸エチル5
IrLtで2回抽出した。酢酸エチル区分を合わせ、無
水硫酸ナトvウムで脱水後、減圧濃縮して油状物を得た
。このものを減圧蒸留して、IR(品性製作所製IR4
55)、N”’(日本電子社HPMX 60SI ) 
、ガスクロマトグラフィー(品性製作所HGC−9AP
F、 PEG 2Q M xll、150℃、N260
ILt/分)テ分析シタトコろ、1−yロルーβ−ハイ
ドロキシ酪酸エチルであることを確認した。
100 rL of a medium having the same composition as this was placed in a 5,001-volume flask, inoculated with 5 at of seed culture, and cultured with shaking at 28°C for 4 days. Bacteria were collected using a centrifuge and 0. O
After washing with IM phosphate buffer (CF) 17.0), the total volume was adjusted to 10 tnl with the same buffer, and the bacterial cells were disrupted for 5 minutes at 2Q KHz using an ultrasonic disrupter under water cooling, and then reacted as a crude solution. It was used for. The reaction was started by adding 300 μmol of NADPH as a coenzyme, 600 μmol of substrate ethyl t-chloroacetoacetate, and 10 μmol of ethyl acetate to 101 L of the crude enzyme solution, and after adjusting - to 8, the reaction was started at 300 C with stirring. 20
After a period of time, separate the organic layer and aqueous layer, and separate the aqueous layer with ethyl acetate.
Extracted twice with IrLt. The ethyl acetate fractions were combined, dehydrated with anhydrous sodium sulfate, and concentrated under reduced pressure to obtain an oil. This product was distilled under reduced pressure and IR (IR4 manufactured by Konsei Manufacturing Co., Ltd.)
55), N"' (JEOL HPMX 60SI)
, gas chromatography (Kinsei Seisakusho HGC-9AP
F, PEG 2Q M xll, 150℃, N260
ILt/min) analysis confirmed that it was ethyl 1-yro-β-hydroxybutyrate.

NMR(CDC!3) J (pI)m) : 1.2
5 (3H,tr)4.20 (3B、 q ) 3.6  (2H,d ) 3.2  (IH,br) 2.6  (2H,d) 比較のために、酢酸エチルを添加せず、水性媒体単独系
で同一条件下反応させた結果も合せて第1表に示した。
NMR (CDC!3) J (pI)m): 1.2
5 (3H, tr) 4.20 (3B, q) 3.6 (2H, d) 3.2 (IH, br) 2.6 (2H, d) For comparison, without adding ethyl acetate, Table 1 also shows the results of the reaction in an aqueous medium alone under the same conditions.

第1表 実施例2 第2表の各種有機溶媒を添加して反応した以外は実施例
1と同様に行なった。収率は第2表のとおりであった。
Table 1 Example 2 The same procedure as Example 1 was carried out except that the various organic solvents shown in Table 2 were added and reacted. The yield was as shown in Table 2.

第2表 実施例6 第6表の菌株を用いた以外は実施例1と同様に行なった
。結果を第6衆に示す。
Table 2 Example 6 The same procedure as Example 1 was carried out except that the strains shown in Table 6 were used. Show the results to the 6th group.

光学純度の測定は次によった。The optical purity was measured as follows.

生成?−クロルーβ−ハイドロキシ酪酸エチルトケ)−
α−メトキシ−α−トリフルオロメチルフェニル酢酸と
のエステルを合成し、ジアステレオマー化合物とした後
、HPLC分析し、光学純度を算出した。
Generate? -Chloro-β-hydroxybutyric acid ethyltoke)-
After synthesizing an ester with α-methoxy-α-trifluoromethylphenylacetic acid to form a diastereomer compound, HPLC analysis was performed to calculate the optical purity.

HPLC分析条件 カラム:パーティジル(Parzisil 5 (φ4
.6×250fl、ワットマン社製) 移動相:ヘキサン:テトラハイドロ7ラン:メタノール
=600:100:1(J&量基準) 速 度:2.Od/分 検 出: 217 nmでの吸光度 いずれも高い光学純度を有する(S)一体であった。
HPLC analysis conditions Column: Parzisil 5 (φ4
.. (6 x 250 fl, manufactured by Whatman) Mobile phase: Hexane: Tetrahydro 7 run: Methanol = 600:100:1 (J & amount basis) Speed: 2. Od/min detection: Both absorbances at 217 nm were (S) monolithic with high optical purity.

実施例4 第4表の菌株を用いた以外は実施例1と同様に行なった
。結果を第4表に示す。
Example 4 The same procedure as Example 1 was carried out except that the strains shown in Table 4 were used. The results are shown in Table 4.

生成したr−クロル−β−ハイドロキシ酪酸エチルの光
学活性分析は実施例6記載のHPLC法によった。その
結果(R)体と(S)体の混合物であることが解った。
The optical activity of the produced ethyl r-chloro-β-hydroxybutyrate was analyzed by the HPLC method described in Example 6. As a result, it was found to be a mixture of (R) and (S) forms.

実施例5 第5表の基質を用いた以外は実施例1と同様に行なった
。結果を第5表に示す。
Example 5 The same procedure as Example 1 was carried out except that the substrates shown in Table 5 were used. The results are shown in Table 5.

実施例6 グルコース5重量%、コーン・スfイー7’・リカー5
1i%から成る培地(p86.0)5aZを試験管に取
り、スポロボロマイセス・サルモニカラ−IF0103
8を接種して28℃で2日間振とり培養を行ない種培養
を得た。上記と同一組成の培地500酎を21容フラス
コ10本に取り、種培養51を添加して28°Cで4日
間振とう培養を行なった。
Example 6 Glucose 5% by weight, corn sugar 7' liquor 5
A medium (p86.0) 5aZ consisting of 1i% was taken into a test tube, and Sporobolomyces salmonicolar-IF0103
8 was inoculated and cultured with shaking at 28°C for 2 days to obtain a seed culture. A medium 500 sake having the same composition as above was placed in 10 21-volume flasks, seed culture 51 was added thereto, and cultured with shaking at 28°C for 4 days.

次に、51の培養液から遠心分離(28000G、20
分間)で回収した培養菌体を0.01MIJン酸緩衝液
(−7,4)で洗浄後、ダイノミル(シンマルエンター
プライズ社製、ビーズ0.25〜0.5 taφ)で2
0分間処理を行ない、28000Gで20分間遠心分離
してケン濁物質を除き、粗酵素液を得た。このものに硫
酸アンモニウムを加えて60〜80飽和係の画分を遠心
分離(28000GX30分)により回収し、0.01
 Mリン酸緩衝液(p87.0)で20時間透析した。
Next, the culture solution of 51 was centrifuged (28000G, 20
After washing the cultured bacterial cells collected with 0.01 MIJ acid buffer (-7,4), they were washed with Dynomil (manufactured by Shinmaru Enterprises, beads 0.25-0.5 taφ) for 2 minutes.
The mixture was treated for 0 minutes and centrifuged at 28,000G for 20 minutes to remove suspended substances to obtain a crude enzyme solution. Ammonium sulfate was added to this, and the 60 to 80 saturated fraction was collected by centrifugation (28,000 GX 30 minutes).
Dialysis was performed for 20 hours against M phosphate buffer (p87.0).

次にDEAE −セファセル(ファーマシア社製)カラ
ムクロマトグラフィ(1,6φx30cIrL)に吸着
させ、上記緩衝液で洗浄後、塩化ナトリウムD〜0.6
 Mを含む同緩衝液による直線グラジェント溶出を行な
った。
Next, it was adsorbed on DEAE-Sephacel (manufactured by Pharmacia) column chromatography (1,6φ x 30cIrL), and after washing with the above buffer, sodium chloride D ~ 0.6
Linear gradient elution was performed using the same buffer containing M.

活性を示した画分を集め、限外ろ過機(アミコン社、Y
Mlo)で濃縮し、デルろ過方2ムクロマト(セファデ
ックス、G−100,2,OX 90GrrL)に供給
し、0.1 MのNa1Lf含む上記緩衝液でクロマト
グラフを行ない活性を示した画分を集めた。
Collect the fractions that showed activity and use an ultrafilter (Amicon, Y
Concentrate with Mlo), feed to Delfiltration 2M chromatograph (Sephadex, G-100,2, OX 90GrrL), perform chromatography with the above buffer containing 0.1 M Na1Lf, and collect the fractions that showed activity. collected.

上記同様の方法でデルろ過クロマトグラフィを行ない精
製酵素液を調製した。このものは電気泳動的に単一バン
ドを示した。かくして得られた精製#素を使用し、第6
表の条件下で反応した。結果を比較例と共に示す。
Purified enzyme solution was prepared by performing Delfiltration chromatography in the same manner as above. This product showed a single band electrophoretically. Using the thus obtained purified #6
The reaction was carried out under the conditions shown in the table. The results are shown together with comparative examples.

第6人 市活性測定法二基jj600nモルとNADPH192
nモルを0.61jの酵素液(0,1Mリン酸緩衝液、
p)17.0)KIIS加し、37°Cにおける3 4
 Q nmの吸光度変化を測定し、求めた。
6th Person City Activity Measurement Method Two groups jj600nmol and NADPH192
nmol to 0.61j enzyme solution (0.1M phosphate buffer,
p) 17.0) 3 4 at 37°C with KIIS
It was determined by measuring the change in absorbance at Q nm.

生成物を含有する酢酸エチルを無水硫酸ナトリウムで脱
水後、減圧除去し、得られた無色液体を実施例1と同様
に分析したところ、純度98%のt−クロル−β−ハイ
ドロキシ酪酸エチルであった。また、このものを実施例
3の方法で測定した光学純度は97%eeの(R)一体
であった。
Ethyl acetate containing the product was dehydrated with anhydrous sodium sulfate, then removed under reduced pressure, and the resulting colorless liquid was analyzed in the same manner as in Example 1. As a result, it was found to be ethyl t-chloro-β-hydroxybutyrate with a purity of 98%. Ta. Further, the optical purity of this product measured by the method of Example 3 was 97% ee of (R).

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、従来の水性媒体単独系ではなし
えなかった高収率、高純度かつ高鏝度のHBEを得るこ
とができる。
According to the method of the present invention, it is possible to obtain HBE with high yield, high purity, and high melting strength, which could not be achieved using conventional aqueous media alone.

特許出願人 電気化学工業株式会社 手続補正書 昭和62年7月11日 特許庁長官 小 川 邦 夫 殿 2、発明の名称 T−置換−β−ハイドロキシ酪酸エステルの製造法 3、補正をする者 事件との関係  特許出願人 住所 ■100東京都千代田区有楽町1丁目4番1号明
細書の発明の詳細な説明の欄 5、補正の内容 l)第4ページ第4行のr50150 Jをrlo/9
0 Jに訂正する。
Patent Applicant: Denki Kagaku Kogyo Co., Ltd. Procedural Amendment July 11, 1988 Director General of the Patent Office Kunio Ogawa 2. Title of Invention: Process for producing T-substituted-β-hydroxybutyric acid ester 3. Case made by the person making the amendment Relationship with Patent Applicant Address ■100 1-4-1 Yurakucho, Chiyoda-ku, Tokyo Column 5 of the detailed description of the invention in the specification, Contents of amendment l) r50150 J on page 4, line 4 rlo/9
Correct to 0 J.

Claims (2)

【特許請求の範囲】[Claims] (1)水性媒体中で、γ−置換アセト酢酸エステルをγ
−置換−β−ハイドロキシ酪酸エステルに還元する能力
を有する還元酵素を用い、γ−置換アセト酢酸エステル
からγ−置換−β−ハイドロキシ酪酸エステルを製造す
るに際し、水と二相を形成しうる有機溶媒を存在させる
ことを特徴とする該γ−置換−β−ハイドロキシ酪酸エ
ステルの製造法。
(1) In an aqueous medium, convert γ-substituted acetoacetate to γ
- An organic solvent that can form two phases with water when producing γ-substituted β-hydroxybutyrate from γ-substituted acetoacetate using a reductase that has the ability to reduce to substituted β-hydroxybutyrate. A method for producing the γ-substituted β-hydroxybutyric acid ester, characterized in that the γ-substituted β-hydroxybutyric acid ester is present.
(2)水と二相を形成しうる有機溶媒がエステル類、ア
ルコール類、芳香族類、エーテル類又はハロゲン化炭化
水素類である特許請求の範囲第(1)項記載の製造法。
(2) The production method according to claim (1), wherein the organic solvent capable of forming two phases with water is an ester, an alcohol, an aromatic, an ether, or a halogenated hydrocarbon.
JP62145587A 1987-06-11 1987-06-11 Method for producing γ-substituted-β-hydroxybutyric acid ester Expired - Fee Related JP2566962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62145587A JP2566962B2 (en) 1987-06-11 1987-06-11 Method for producing γ-substituted-β-hydroxybutyric acid ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62145587A JP2566962B2 (en) 1987-06-11 1987-06-11 Method for producing γ-substituted-β-hydroxybutyric acid ester

Publications (2)

Publication Number Publication Date
JPS63309195A true JPS63309195A (en) 1988-12-16
JP2566962B2 JP2566962B2 (en) 1996-12-25

Family

ID=15388535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62145587A Expired - Fee Related JP2566962B2 (en) 1987-06-11 1987-06-11 Method for producing γ-substituted-β-hydroxybutyric acid ester

Country Status (1)

Country Link
JP (1) JP2566962B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5559030A (en) * 1993-01-12 1996-09-24 Daicel Chemical Industries, Ltd. Processes for production of optically active 4-halo-3-hydroxybutyric acid esters
US5700670A (en) * 1995-04-13 1997-12-23 Mitsubishi Chemical Corporation Method for producing optically active ester of γ-substituted-β-hydroxybutyric acid
US7879585B2 (en) 2006-10-02 2011-02-01 Codexis, Inc. Ketoreductase enzymes and uses thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6884607B2 (en) 2000-12-07 2005-04-26 Sumitomo Chemical Company, Limited Process for producing optically active 4-halo-3-hydroxybutanoate
JP4228605B2 (en) 2002-07-02 2009-02-25 住友化学株式会社 Modified reductase, its gene and use thereof
JP4228606B2 (en) 2002-07-03 2009-02-25 住友化学株式会社 Modified reductase, its gene and use thereof
CN1948499B (en) * 2006-05-26 2010-12-08 江南大学 Method of preparing (R) 4,4,4-trifluoro 3-hydroxy ethyl butyrate by biocatalytic reaction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5559030A (en) * 1993-01-12 1996-09-24 Daicel Chemical Industries, Ltd. Processes for production of optically active 4-halo-3-hydroxybutyric acid esters
US5700670A (en) * 1995-04-13 1997-12-23 Mitsubishi Chemical Corporation Method for producing optically active ester of γ-substituted-β-hydroxybutyric acid
US7879585B2 (en) 2006-10-02 2011-02-01 Codexis, Inc. Ketoreductase enzymes and uses thereof
US8273547B2 (en) 2006-10-02 2012-09-25 Codexis, Inc. Engineered ketoreductases and methods for producing stereoisomerically pure statins
US8617864B2 (en) 2006-10-02 2013-12-31 Codexis, Inc. Polynucleotides encoding ketoreductases for producing stereoisomerically pure statins and synthetic intermediates therefor

Also Published As

Publication number Publication date
JP2566962B2 (en) 1996-12-25

Similar Documents

Publication Publication Date Title
Patel et al. Enzymatic resolution of racemic secondary alcohols by lipase B from Candida antarctica
JPS63309195A (en) Production of gamma-substituted-beta-hydroxybutyric acid ester
EP0149674B1 (en) Process for biochemical optical resulution of cyclopentenolone derivative
JP3476860B2 (en) Preparation of 3-hydroxy-5-oxo, 3-oxo-5-hydroxy and 3,5-dihydroxyesters by stereoselective microbial or enzymatic reduction of 3,5-dioxoesters
US5457052A (en) Process for the preparation of optically active 3-chloro-1-phenyl-propanol by a lipase catalyzed hydrolysis
JP3919918B2 (en) Process for producing optically active 2-halo-1- (substituted phenyl) ethanol
RU2235784C2 (en) Stereoselective bacterial reduction of racemic tetralone (its variants)
EP0784697B1 (en) Bacterial process for the resolution of racemic cis-diols
Patel et al. Synthesis of four chiral pharmaceutical intermediates by biocatalysis
JP2566960B2 (en) Method for producing (R) -r-substituted-β-hydroxybutyric acid ester
JP4744916B2 (en) Method for isolating and obtaining optically active alkyl alcohol derivative
EP0148272B1 (en) Process for producing optically active benzyl alcohol compounds
JPH10502531A (en) Chiral synthesis of 2-hydroxycarboxylic acid using dehydrogenase
JPH1094399A (en) Production of optically active alcohol using enzyme
JPH0147159B2 (en)
JPH0569512B2 (en)
JPS6112678B2 (en)
JP4536484B2 (en) Process for producing optically active 2-hydroxy-5- (4-methoxyphenyl) -pentanoic acid ester
JP3893721B2 (en) Method for producing optically active compound
JP4898129B2 (en) Process for producing optically active vinyl alcohols
JPH0146112B2 (en)
JPH02295970A (en) Preparation of optically active propane-2-ol derivative
JP2981250B2 (en) Method for producing D-pantothenonitrile
JP3843692B2 (en) Process for the production of optically active endo-norborneol
JPH03285689A (en) Production of optically active 3-hydroxyfatty ester derivative

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees