JPH03285689A - Production of optically active 3-hydroxyfatty ester derivative - Google Patents

Production of optically active 3-hydroxyfatty ester derivative

Info

Publication number
JPH03285689A
JPH03285689A JP8292590A JP8292590A JPH03285689A JP H03285689 A JPH03285689 A JP H03285689A JP 8292590 A JP8292590 A JP 8292590A JP 8292590 A JP8292590 A JP 8292590A JP H03285689 A JPH03285689 A JP H03285689A
Authority
JP
Japan
Prior art keywords
acid ester
ester derivative
formula
optically active
fatty acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8292590A
Other languages
Japanese (ja)
Inventor
Takehiko Miyai
武彦 宮井
Jiyunkichi Oono
大野 惇吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Finechem Co Ltd
Original Assignee
Asahi Kasei Finechem Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Finechem Co Ltd filed Critical Asahi Kasei Finechem Co Ltd
Priority to JP8292590A priority Critical patent/JPH03285689A/en
Publication of JPH03285689A publication Critical patent/JPH03285689A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To enable production of the subject compounds of high optical purity using a simple operation at a low cost by reducing a specified 3-oxofatty ester derivative using a specified enzyme component separated from baker's yeast and a specified coenzyue. CONSTITUTION:A 3-oxofatty ester derivative represented by formula I (In formula, X is 1-3C alkyl group which may be substituted with hydrogen atom or halogen atom. Y is hydrogen atom or 1-3C hydrocarbon group and R shows 1-10C hydrocarbon group) is suspended or dissolved in a solution of a component containing an enzyme component of about 32000 molecular weight separated from baker's yeast with a simple operation and non-adsorbable to a weakly basic ion-exchange resin and a coenzyme, nicotinamide adenine dinucleotide phosphate for reduction thereof. After completion of the reduction, extraction is carried out using a solvent to obtain the objective product expressed by formula II (In formula, X, Y and R are same as in the above-mentioned definition). The cost goes down thereby and a product of high optical purity can be obtained. Industrial significance is high.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、パン酵母中に含まれる酵素の1成分を用いて
、光学活性な3−ヒドロキシ脂肪酸エステル誘導体を、
対応する3−オキソ脂肪酸エステル誘導体の還元反応に
よって製造する方法に関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention uses one component of an enzyme contained in baker's yeast to produce optically active 3-hydroxy fatty acid ester derivatives.
The present invention relates to a method for producing a corresponding 3-oxo fatty acid ester derivative by reduction reaction.

〔従来の技術〕[Conventional technology]

光学活性3−ヒドロキシ脂肪酸エステル誘導体は、天然
物や生理活性物質などの合成中間体として重要なもので
ある。特に、L体の4−クロロ3−ヒドロキシ酪酸エス
テルは、L−力ルニチンの合成原料として用いられてい
る。
Optically active 3-hydroxy fatty acid ester derivatives are important as synthetic intermediates for natural products, physiologically active substances, and the like. In particular, L-form 4-chloro3-hydroxybutyric acid ester is used as a raw material for the synthesis of L-lunithine.

光学活性3−ヒドロキシ脂肪酸エステル誘導体を得るた
めに、3−オキソ脂肪酸エステル誘導体を還元する方法
を用いる場合、化学的合成法では、ラセミ体から0体と
L体とを光学分割する必要があるため、収率が50%を
越えることはなく、光学分割の方法も簡単なことではな
い。また4位にハロゲン原子を有する場合、脱ハロゲン
を起こしやすいために収率が向上しないという欠点があ
った。
When using a method of reducing a 3-oxo fatty acid ester derivative to obtain an optically active 3-hydroxy fatty acid ester derivative, the chemical synthesis method requires optical resolution of the 0-form and the L-form from the racemic body. However, the yield never exceeds 50%, and the optical resolution method is not simple. Furthermore, when a halogen atom is present at the 4-position, dehalogenation is likely to occur, resulting in a disadvantage that the yield cannot be improved.

この欠点を克服するために生物学的方法が用いられてお
り、その手法として微生物を用いる方法と酵素を用いる
方法とが存在する。
Biological methods have been used to overcome this drawback, including methods using microorganisms and methods using enzymes.

2位にアルキル基を有しない3−オキソ酪酸エステル誘
導体の還元反応について、微生物を用いる方法としては
、パン酵母を用いる方法(J、 Am。
Regarding the reduction reaction of 3-oxobutyric acid ester derivatives that do not have an alkyl group at the 2-position, a method using a microorganism includes a method using baker's yeast (J, Am.

Chem、 Soc、、 105.5925(1983
))あるいば他の菌体を用いる方法(特開昭59−11
8093号)などが示されている。更に酵素を用いる方
法としては、馬肝臓アルコール脱水素酵素を用いる方法
(J、Am、Chem。
Chem, Soc, 105.5925 (1983
)) In other words, a method using other bacterial cells (Unexamined Japanese Patent Publication No. 59-11
No. 8093), etc. are shown. Furthermore, as a method using an enzyme, a method using horse liver alcohol dehydrogenase (J, Am, Chem.

Soc、+ H斤、 4028(1985))、パン酵
母より抽出した酵素を用いる方法(J、Am、Chem
、Soc、、 107.2993(1985)及び特開
昭64−60391号)が示されている。
Soc, + H, 4028 (1985)), a method using an enzyme extracted from baker's yeast (J, Am, Chem.
, Soc, 107.2993 (1985) and Japanese Patent Application Laid-Open No. 64-60391).

また、2位にアルキル基を有する3−ヒドロキシ脂肪酸
エステル誘導体の光学活性体を、2−アルキル−3−オ
キソ脂肪酸エステル誘導体の還元によって得る方法とし
ては、生物学的にパン酵母を用いる方法(Bull、 
Chem、 Soc、 Jpn、+ 61+ 2089
(1988)及びBull、 Chem、 Soc、 
Jpn、、 fll、、 1179(1989) )が
示されている。
In addition, as a method for obtaining an optically active form of a 3-hydroxy fatty acid ester derivative having an alkyl group at the 2-position by reduction of a 2-alkyl-3-oxo fatty acid ester derivative, there is a biological method using baker's yeast (Bull ,
Chem, Soc, Jpn, +61+2089
(1988) and Bull, Chem, Soc.
Jpn,, fll,, 1179 (1989)).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

パン酵母あるいは微生物を用いる方法では、必ずしも目
的とする立体配置を持つ生成物が得られるとは限らない
し、光学収率が高くないという問題点がある。更に、光
学収率を向上させるために、オクチルエステルや他のエ
ステルへの変換が必要であり、コストがかさむという問
題点がある。また、酵素を用いる方法については、上記
のような欠点は減少するものの酵素自体が高価であった
り、酵素の単離や精製の方法が複雑であり、−船釣手法
として使用しにくいという欠点がある。
Methods using baker's yeast or microorganisms have problems in that a product with the desired steric configuration is not necessarily obtained and the optical yield is not high. Furthermore, in order to improve the optical yield, conversion to octyl ester or other esters is required, resulting in increased costs. In addition, although methods using enzymes reduce the disadvantages mentioned above, the enzymes themselves are expensive, the methods for isolating and purifying the enzymes are complicated, and the disadvantages are that they are difficult to use as boat fishing methods. be.

本発明は、光学純度の高い光学活性な3−ヒドロキシ脂
肪酸エステル誘導体を簡単な操作方法で安価に製造でき
る方法を提供することを目的とする。
An object of the present invention is to provide a method for producing optically active 3-hydroxy fatty acid ester derivatives with high optical purity at low cost using simple operations.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の光学活性3−ヒドロキシ脂肪酸エステル誘導体
の製造方法は、 一般式(I): (式中、Xは水素原子又はハロゲン原子で置換されてい
てもよい炭素数1〜3のアルキル基を表し、Yは水素原
子又は炭素数1〜3の炭化水素基を表し、Rは炭素数1
〜1oの炭化水素基を表す。)で示される3−オキソ脂
肪酸エステル誘導体を、パン酵母より分離される分子量
的32000の酵素成分を含む弱塩基性イオン交換樹脂
非吸着成分及びニコチンアミドアデニンジヌクレオチド
リン酸(以下rNADPH,という)を用いて還元する
ことを特徴とする 一般式(■): で示される光学活性3−ヒドロキシ脂肪酸エステル誘導
体を製造方法することを特徴とするものである。
The method for producing an optically active 3-hydroxy fatty acid ester derivative of the present invention has the following general formula (I): (wherein, , Y represents a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and R represents a hydrogen atom having 1 to 3 carbon atoms.
~1o represents a hydrocarbon group. ), a weakly basic ion exchange resin containing an enzyme component with a molecular weight of 32,000 separated from baker's yeast, and a non-adsorbable component of nicotinamide adenine dinucleotide phosphate (hereinafter referred to as rNADPH). The present invention is characterized by producing an optically active 3-hydroxy fatty acid ester derivative represented by the general formula (■):

前記式(I)及び(rl)において、Xで表されるハロ
ゲン原子で置換されていてもよい炭素数1〜3のアルキ
ル基としては、メチル基、エチル基、プロピル基、イソ
プロピル基及びこれらのアルキル基が塩素原子、臭素原
子、フッ素原子、ヨウ素原子で置換されたもの、好まし
くはメチル基、クロロメチル基が挙げられる。また、Y
で表される炭素数1〜3の炭化水素基としては、前記ア
ルキル基の他、例えばアリル基、プロパルギル基が挙げ
られる。また、Rで表される炭素数1〜1oの炭化水素
基としては、例えば炭素数1〜1oの直鎖状、分岐状又
は環状の飽和又は不飽和の脂肪族炭化水素基が挙げられ
る。
In the formulas (I) and (rl), the alkyl group having 1 to 3 carbon atoms which may be substituted with a halogen atom represented by X includes a methyl group, an ethyl group, a propyl group, an isopropyl group, and Examples include those in which an alkyl group is substituted with a chlorine atom, a bromine atom, a fluorine atom, or an iodine atom, preferably a methyl group or a chloromethyl group. Also, Y
Examples of the hydrocarbon group having 1 to 3 carbon atoms represented by include, in addition to the alkyl group described above, an allyl group and a propargyl group. Further, examples of the hydrocarbon group having 1 to 1 o of carbon atoms represented by R include linear, branched, or cyclic saturated or unsaturated aliphatic hydrocarbon groups having 1 to 1 o of carbon atoms.

本発明に用いるパン酵母より分離される分子量約3シ0
00の酵素成分を含む弱塩基性イオン交換樹脂非吸着成
分は、例えば、次のようにして得ることができる。即ち
、パン酵母を公知の方法、例えばフレンチプレスにより
細胞壁を破壊し、ジエチルアミノエチルの層を通して口
過し、口液を得る。
The molecular weight isolated from baker's yeast used in the present invention is approximately 30
The weakly basic ion exchange resin non-adsorbed component containing the enzyme component of No. 00 can be obtained, for example, as follows. That is, the cell walls of baker's yeast are destroyed by a known method, such as a French press, and the yeast is passed through a layer of diethylaminoethyl to obtain oral fluid.

ここで用いる弱塩基性イオン交換樹脂としては、例えば
、ジエチルアミノエチルトヨバール(東ソー■製、DE
AE l−ヨパール) 、DEAEセルロースを使用す
ることができる。また、本割分の分離に際して、洗浄液
には、酵素安定化剤の添加された緩衝液を用いるだけで
よい。得られる割分に含まれる酵素は、他の蛋白質との
混合物として分画されるが、本発明に使用するにはこれ
以上の複雑な精製の必要がな(、混合物のままでも副反
応を起こしたり光学収率が低下したりするような欠点は
ない。
As the weakly basic ion exchange resin used here, for example, diethylaminoethyltoyovar (manufactured by Tosoh Corporation, DE
DEAE cellulose can be used. Further, in the separation of the main fraction, it is sufficient to use a buffer solution to which an enzyme stabilizer is added as a washing solution. The enzyme contained in the obtained aliquot is fractionated as a mixture with other proteins, but for use in the present invention there is no need for any more complicated purification (no side reactions may occur even as a mixture). There are no drawbacks such as deterioration or decrease in optical yield.

このように、安価なパン酵母から極めて簡単な操作で、
目的とする酵素が含まれる溶液として得られるために、
低コストで、かつ、手間のかからない方法として用いる
ことができる。
In this way, you can use inexpensive baker's yeast with extremely simple operations.
To obtain a solution containing the desired enzyme,
It can be used as a low-cost and hassle-free method.

本酵素成分の活性は、本酵素成分の50μ℃を含む0.
1Mリン酸緩衝溶液(pH7,0) 3 ml、中に、
0.1mMのNADPHと1μlの3−オキソ脂肪酸エ
ステル誘導体(I)(例えば4−クロロアセト酢酸エチ
ル)を加えて、吸収波長340nmでNADPHの吸光
度をスペクトロフォトメーターにより測定し、その減少
量から測定した。
The activity of this enzyme component is 0.00000000000 at a temperature of 50μ℃.
In 3 ml of 1M phosphate buffer solution (pH 7.0),
0.1 mM NADPH and 1 μl of 3-oxo fatty acid ester derivative (I) (e.g., ethyl 4-chloroacetoacetate) were added, and the absorbance of NADPH was measured using a spectrophotometer at an absorption wavelength of 340 nm, and the amount of decrease was measured. .

本発明で用いる割分中に含まれる酵素の性質を次に示す
The properties of the enzyme contained in the fraction used in the present invention are shown below.

0作   用:NADPH共存下に3−オキソ脂肪酸エ
ステル誘導体(1)を不斉 還元する。
0 action: Asymmetric reduction of 3-oxo fatty acid ester derivative (1) in the presence of NADPH.

■基質特異性:α−ケトエステル、β−ケトエステル、
アルデヒド類及びα−ジケ トンには作用するが、モノケトン やβ−ジケトンには作用しない。
■Substrate specificity: α-ketoester, β-ketoester,
It acts on aldehydes and α-diketones, but not on monoketones and β-diketones.

■分 子 量:約32000 3−オキソ脂肪酸エステル誘導体と本酵素成分との反応
は、0.1Mリン酸緩衝溶液(pH7,0)に酵素成分
及び補酵素NADPHを適量加え、次に室温で3−オキ
ソ脂肪酸エステル誘導体を0.1〜10重量%の濃度に
懸濁又は溶解させ、攪拌下1〜2日間反応を行う。この
際、グルコース脱水素酵素とD−グルコース、又はグル
コース−6−リン酸脱水素酵素とD−グルコース−6−
リン酸を適量添加してもよい。反応温度は、通常10〜
40°C1好ましくは20〜35°Cである。
■Molecular weight: Approximately 32,000 The reaction between the 3-oxo fatty acid ester derivative and this enzyme component is carried out by adding appropriate amounts of the enzyme component and coenzyme NADPH to a 0.1M phosphate buffer solution (pH 7.0), and then stirring at room temperature for 30 minutes. - The oxo fatty acid ester derivative is suspended or dissolved at a concentration of 0.1 to 10% by weight, and the reaction is carried out with stirring for 1 to 2 days. At this time, glucose dehydrogenase and D-glucose, or glucose-6-phosphate dehydrogenase and D-glucose-6-
An appropriate amount of phosphoric acid may be added. The reaction temperature is usually 10~
40°C, preferably 20-35°C.

反応終了後は、酢酸エチルなどの溶剤を用いて抽出を行
い、抽出液を脱水後、溶剤を留去させて目的物である光
学活性3−ヒドロキシ脂肪酸エステル誘導体を得る。
After the reaction is completed, extraction is performed using a solvent such as ethyl acetate, and after the extract is dehydrated, the solvent is distilled off to obtain the optically active 3-hydroxy fatty acid ester derivative that is the target product.

以下に実施例をあげて本発明の方法を更に詳しく説明す
る。但し、以下の実施例は本発明の具体例であって、本
発明を限定するものではない。
The method of the present invention will be explained in more detail with reference to Examples below. However, the following examples are specific examples of the present invention, and do not limit the present invention.

なお、以下の実施例において、パン酵母としては、オリ
エンタル酵母工業■から入手したものを用いた。
In the following examples, baker's yeast obtained from Oriental Yeast Industry (2) was used.

実施例1 (酵素成分の分離) ]、Om Mリン酸緩衝液(pH7,0)に1mMジチ
オスレト−ル、1mMフッ化フェニルメチルスルホニル
及び0.05%の2−メルカプトエタノールの溶解して
いる溶液(基本緩衝液とする)の500d中にパン酵母
1kgを懸濁させ、フレンチプレスを用いて20000
10 psi の圧力で細胞膜を破砕し、遠心分離した後上澄
み液670雄を得た。この溶液を充分透析した後、DE
AEI−ヨパール層に通した後、基本緩衝液を流して洗
浄し、活性画分を取得した。この溶液の全活性は2−メ
チルア七1・酢酸コーチルを元にして60ユニツト、4
−クロロアセト酢酸エチルを元にして590ユニツト 
(1ユニツトとは1分間に1μmolの基質を還元する
のに必要な酵素量を表示した。)であった。
Example 1 (Separation of Enzyme Components)] A solution of 1mM dithiothretol, 1mM phenylmethylsulfonyl fluoride and 0.05% 2-mercaptoethanol in OmM phosphate buffer (pH 7,0). Suspend 1 kg of baker's yeast in 500 d of (basic buffer), and use a French press to
Cell membranes were disrupted at a pressure of 10 psi and a supernatant solution of 670 cells was obtained after centrifugation. After thoroughly dialyzing this solution, DE
After passing through the AEI-Yopal layer, the base buffer was washed to obtain an active fraction. The total activity of this solution is 60 units, 4 units based on 2-methyl acetate,
-590 units based on ethyl chloroacetoacetate
(One unit indicates the amount of enzyme required to reduce 1 μmol of substrate per minute.)

(4−クロロアセト酢酸エチルの還元)0.1Mリン酸
緩衝溶液(p H7,0) 2OmQ中にNAD PH
10111g、グルコース−6−リン酸300mg、グ
ルコース−6−リン酸脱水素酵素50ユニツト、パン酵
母由来の酵素成分1.54ユニツトを溶解した後、室温
で4−クロロアセト酢酸エチルを82111g加えた。
(Reduction of ethyl 4-chloroacetoacetate) 0.1M phosphate buffer solution (pH 7,0) NAD PH in 20mQ
After dissolving 10,111 g of glucose-6-phosphate, 300 mg of glucose-6-phosphate dehydrogenase, 50 units of glucose-6-phosphate dehydrogenase, and 1.54 units of an enzyme component derived from baker's yeast, 82,111 g of ethyl 4-chloroacetoacetate was added at room temperature.

30゛Cで一夜攪拌した後、酢酸エチルで抽出し、ガス
クロ分取によって単離を行い、収量82mg、収率10
0%で4−クロロ−3−ヒドロキシ酪酸エチルを得た。
After stirring at 30°C overnight, extraction with ethyl acetate and isolation by gas chromatography were carried out, yield 82 mg, yield 10
Ethyl 4-chloro-3-hydroxybutyrate was obtained at 0%.

このようにして得られた生成物の旋光度を測定したとこ
ろ[α]、+31.5 (1,0、ベンゼン)であり、
3g体であることが判明した。また生成物10mgを窒
素雰囲気上無水ベンゼン1戚に渚解し、ピリジン250
μlとR(+)−メトキシトリフルオロメチルフェニル
酢酸クロリド50μ!を加え、夜攪拌したく以下rMT
PA化jという)。反応混合物をジエチルエーテルで抽
出を行いHP L Cにて光学異性体の定量を行った。
When the optical rotation of the product thus obtained was measured, it was [α], +31.5 (1,0, benzene),
It turned out to be a 3g body. In addition, 10 mg of the product was dissolved in anhydrous benzene 1 relative in a nitrogen atmosphere, and pyridine 250
μl and 50 μl of R(+)-methoxytrifluoromethylphenylacetic acid chloride! Add the following rMT and stir at night.
(referred to as PA). The reaction mixture was extracted with diethyl ether, and optical isomers were determined by HPLC.

その結果、光学1[too%で3g体の4−クロロ−3
−ヒドロキシ酪酸エチルが得られたことを確認した。
As a result, optical 1 [too% of 3 g of 4-chloro-3
- It was confirmed that ethyl hydroxybutyrate was obtained.

比較例 特開昭64−60391号より、引用した。Comparative example Quoted from Japanese Patent Application Laid-open No. 64-60391.

500戚容の坂ロフラスコに0.2M酢酸緩衝液(pH
5,5)50mRを入れ、ポリオキシエチレンソルビタ
ンモノオレート0.1gを含有する蒸留水32.5mR
を加えた後、4−クロロアセト酢酸エチルを100mg
 (0,61mmol)添加した。
Add 0.2M acetate buffer (pH
5,5) 32.5 mR of distilled water containing 50 mR and 0.1 g of polyoxyethylene sorbitan monooleate
After adding 100 mg of ethyl 4-chloroacetoacetate
(0.61 mmol) was added.

次にパン酵母から抽出した4−クロロアセト酢酸エチル
還元酵素の水溶液5mfi(100ユニツト含有)とN
ADP H*溶液12.5mQ(0,61mmol含有
)を加えて、27°Cで1時間往復振盪反応させた。反
応終了後にヘキサンを加え、生成物を抽出し、ヘキサン
層を無水硫酸マグネシウムで乾燥後、真空下にヘキサン
を蒸発させて、4−クロロ−3(R)−ヒドロキシ酪酸
エチル94■を得た。この生成物の比旋光度は[α10
 +23.0 (5,0,CHCl3)であった。
Next, 5 mfi of an aqueous solution (containing 100 units) of 4-chloroacetoacetate ethyl reductase extracted from baker's yeast and N
12.5 mQ (containing 0.61 mmol) of ADP H* solution was added and reacted with reciprocating shaking at 27°C for 1 hour. After the reaction was completed, hexane was added to extract the product, and the hexane layer was dried over anhydrous magnesium sulfate, and the hexane was evaporated under vacuum to obtain 94 ml of ethyl 4-chloro-3(R)-hydroxybutyrate. The specific rotation of this product is [α10
+23.0 (5,0, CHCl3).

実施例2 0.1門リン酸緩衝液(p H7,0) 30 mg、
中にNADPH8+ng、グルコース−6−リン酸30
0mg、グルコース−6−リン酸脱水素酵素9.2ユニ
ツト、パン酵母由来の酵素成分0.44ユニツトを溶解
し、室温で2−メチル−3−オキソプロパン酸エチル6
5mg加えた。30°Cで一夜撹拌した後、酢酸エチル
で抽出し、シリカゲルカラムクロマトグラフィーによっ
て単離を行った。次に、実施例〕と同様にMTPA化を
行いHP L Cによって、光学収率100%で2R体
の2−メチル−3−ヒドロキシプロパン酸エチルを得た
Example 2 0.1 phosphate buffer (pH 7,0) 30 mg,
Contains 8+ng of NADPH, 30g of glucose-6-phosphate
0 mg, 9.2 units of glucose-6-phosphate dehydrogenase, and 0.44 units of the enzyme component derived from baker's yeast were dissolved, and 6 units of ethyl 2-methyl-3-oxopropanoate were dissolved at room temperature.
5 mg was added. After stirring overnight at 30°C, the mixture was extracted with ethyl acetate and isolated by silica gel column chromatography. Next, MTPA conversion was performed in the same manner as in Example], and the 2R form of ethyl 2-methyl-3-hydroxypropanoate was obtained by HPLC in an optical yield of 100%.

実施例3 0.1Mリン酸緩衝Na(p H7,0) 30mR中
にNADPHl 0 mg 、グルコース300mg、
グルコース脱水素酵素9.2ユニツト、パン酵母由来の
酵素成分0.88ユニツトを溶解し、室温で2−アリル
アセト酢酸エチルを85mg加えた。30°Cで48時
間攪拌した後、実施例2と同様に単離し、次に、実施例
1と同様にMTPA化を行いガスクロマドによって、光
学収率100%で2R,33体の2−アリル−3−ヒド
ロキシ醋酸エチルが生成していることが判明した。
Example 3 0 mg of NADPH1, 300 mg of glucose in 30 mR of 0.1M phosphate buffered Na (pH 7,0),
9.2 units of glucose dehydrogenase and 0.88 units of an enzyme component derived from baker's yeast were dissolved, and 85 mg of ethyl 2-allylacetoacetate was added at room temperature. After stirring at 30°C for 48 hours, it was isolated in the same manner as in Example 2, and then converted to MTPA in the same manner as in Example 1, and the 2R,33-2-allyl was purified by gas chromatography in an optical yield of 100%. It was found that -3-hydroxyethyl acetate was produced.

実施例4−12 0.1Mリン酸緩衝液(pH7,0) 3 ml中にN
AD P H8K、パン酵母由来の酵素成分0.16ユ
ニ・ノドを溶解し、室温で2−アルキルアセト酢酸エス
テルを5+ng加えた。30°Cで48時間攪拌した後
、実施例2と同様に単離し定量した。生成物は全て2R
933体であった。
Example 4-12 N in 3 ml of 0.1M phosphate buffer (pH 7.0)
AD P H8K, an enzyme component derived from baker's yeast, 0.16 units, was dissolved, and 5+ng of 2-alkyl acetoacetate was added at room temperature. After stirring at 30°C for 48 hours, it was isolated and quantified in the same manner as in Example 2. All products are 2R
There were 933 bodies.

(本頁以下余白) 3 4 学純度で得られるため、医薬品などの合成における中間
体の合成法として有用である。また、還元反応の際、用
いられる補助酵素N A D P Hの再生にはグルコ
ース脱水素酵素などを用いることが可能であり、使用す
る補酵素の量を減少することができる。それ故、方法は
の方法ではコストが非常に低減され、なおかつ光学純度
の高い高品質の製品を提供することができる。
(Margins below this page) 3 4 Because it can be obtained with scientific purity, it is useful as a method for synthesizing intermediates in the synthesis of pharmaceuticals, etc. Furthermore, glucose dehydrogenase or the like can be used to regenerate the coenzyme N A D P H used in the reduction reaction, and the amount of coenzyme used can be reduced. Therefore, the method can greatly reduce costs and provide high-quality products with high optical purity.

〔発明の効果〕〔Effect of the invention〕

本発明においては、上記実施例の如く安価なパン酵母か
ら複雑な精製を行う必要はなく゛、非常に簡単な操作で
反応触媒となる酵素成分を用いることにより光学純度の
高い光学活性3−ヒドロキシ脂肪酸エステル誘導体を製
造することができる。
In the present invention, there is no need to perform complicated purification from inexpensive baker's yeast as in the above embodiment, and optically active 3-hydroxy fatty acids with high optical purity can be obtained by using an enzyme component that acts as a reaction catalyst with a very simple operation. Ester derivatives can be produced.

Claims (1)

【特許請求の範囲】 1、一般式: ▲数式、化学式、表等があります▼ (式中、Xは水素原子又はハロゲン原子で置換されてい
てもよい炭素数1〜3のアルキル基を表し、Yは水素原
子又は炭素数1〜3の炭化水素基を表し、Rは炭素数1
〜10の炭化水素基を表す。) で示される3−オキソ脂肪酸エステル誘導体を、パン酵
母より分離される分子量約32000の酵素成分を含む
弱塩基性イオン交換樹脂非吸着成分及びニコチンアミド
アデニンジヌクレオチドリン酸を用いて還元することを
特徴とする 一般式: ▲数式、化学式、表等があります▼ (式中、X、Y及びRは前記と同義である。)で示され
る光学活性3−ヒドロキシ脂肪酸エステル誘導体の製造
方法。 2、光学活性3−ヒドロキシ脂肪酸エステル誘導体が(
R)4−ハロ−3−ヒドロキシ酪酸エステルである請求
項1記載の製造方法。 3、光学活性3−ヒドロキシ脂肪酸エステル誘導体が(
R)2−アルキル−3−ヒドロキシプロパン酸エステル
である請求項1記載の製造方法。 4、光学活性3−ヒドロキシ脂肪酸エステル誘導体が(
2R,3S)2−置換−3−ヒドロキシ酪酸エステルで
ある請求項1記載の製造方法。 5、上記反応によって消費されるニコチンアミドアデニ
ンジヌクレオチドリン酸の再生にグルコース脱水素酵素
又はグルコース−6−リン酸脱水素酵素を用いる請求項
1〜4のいずれか1項に記載の製造方法。
[Claims] 1. General formula: ▲ Numerical formula, chemical formula, table, etc. ▼ (In the formula, X represents an alkyl group having 1 to 3 carbon atoms which may be substituted with a hydrogen atom or a halogen atom, Y represents a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms, and R represents a hydrogen atom having 1 to 3 carbon atoms.
~10 hydrocarbon groups. ) is reduced using a weakly basic ion exchange resin non-adsorbent component containing an enzyme component with a molecular weight of about 32,000 separated from baker's yeast and nicotinamide adenine dinucleotide phosphate. Featured general formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ A method for producing an optically active 3-hydroxy fatty acid ester derivative represented by (wherein, X, Y, and R have the same meanings as above). 2. Optically active 3-hydroxy fatty acid ester derivative (
The method according to claim 1, wherein R) is 4-halo-3-hydroxybutyric acid ester. 3. Optically active 3-hydroxy fatty acid ester derivative (
The method according to claim 1, wherein R) is a 2-alkyl-3-hydroxypropanoic acid ester. 4. Optically active 3-hydroxy fatty acid ester derivative (
2. The method according to claim 1, wherein the ester is 2R,3S)2-substituted-3-hydroxybutyric acid ester. 5. The production method according to any one of claims 1 to 4, wherein glucose dehydrogenase or glucose-6-phosphate dehydrogenase is used to regenerate nicotinamide adenine dinucleotide phosphate consumed in the reaction.
JP8292590A 1990-03-31 1990-03-31 Production of optically active 3-hydroxyfatty ester derivative Pending JPH03285689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8292590A JPH03285689A (en) 1990-03-31 1990-03-31 Production of optically active 3-hydroxyfatty ester derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8292590A JPH03285689A (en) 1990-03-31 1990-03-31 Production of optically active 3-hydroxyfatty ester derivative

Publications (1)

Publication Number Publication Date
JPH03285689A true JPH03285689A (en) 1991-12-16

Family

ID=13787814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8292590A Pending JPH03285689A (en) 1990-03-31 1990-03-31 Production of optically active 3-hydroxyfatty ester derivative

Country Status (1)

Country Link
JP (1) JPH03285689A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245317B1 (en) 1999-04-19 2001-06-12 Duke University F18-labeled oxa fatty acids and methods of making and using the same
US7666659B2 (en) * 2002-12-06 2010-02-23 Kaneka Corporation Process for producing optically active 3-hydroxypropionic ester derivative

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6245317B1 (en) 1999-04-19 2001-06-12 Duke University F18-labeled oxa fatty acids and methods of making and using the same
WO2000063416A3 (en) * 1999-04-19 2001-08-16 Univ Duke F18-labeled oxa fatty acids and methods of making and using the same
US7666659B2 (en) * 2002-12-06 2010-02-23 Kaneka Corporation Process for producing optically active 3-hydroxypropionic ester derivative

Similar Documents

Publication Publication Date Title
JPS63273499A (en) Production of optically active compound
JP3610600B2 (en) Method for producing optically active endo-2-norborneols
Nakamura et al. Different stereochemistry for the reduction of trifluoromethyl ketones and methyl ketones catalyzed by alcohol dehydrogenase from Geotrichum
JPH03285689A (en) Production of optically active 3-hydroxyfatty ester derivative
JPH11215995A (en) Production of optically active 2-halo-1-(substituted phenyl) ethanol
JPH06256278A (en) Optically active alpha-carbamoylalkanoic acid derivative and its production
JP2566960B2 (en) Method for producing (R) -r-substituted-β-hydroxybutyric acid ester
JP4405631B2 (en) Method for purification of conjugated linoleic acid isomers
JP3129775B2 (en) Method for producing optically active secondary alcohol compound
JP3129776B2 (en) Method for producing optically active α-hydroxyalkene derivative
JPS5923794B2 (en) Manufacturing method of dihydroxyacetone
JPS63293A (en) Production of optically active 4-hydroxy-2-cyclopentenone
JP3766465B2 (en) Method for producing optically active secondary alcohol
JPH10248591A (en) Production of optically active alcohol
JP3217301B2 (en) Method for producing optically active glycidic acid ester and optically active glyceric acid ester
JPS61195690A (en) Production of p-substituted dihydrocinnamaldehyde derivative
JPH01281098A (en) Production of optically active carboxylic acid and optically active carboxylic acid ester
JP3169729B2 (en) Method for producing optically active secondary alcohol
JPS6261587A (en) Production of optically active (r)-hydroxymandelic acid ester intermediate
JPH02295970A (en) Preparation of optically active propane-2-ol derivative
JP2981250B2 (en) Method for producing D-pantothenonitrile
JPH0614876B2 (en) Process for producing optically active α-hydroxyketone and its carboxylic acid ester
JPH0585160B2 (en)
JPH03254694A (en) Production of optically active fluorine-containing alcohol
JP2875625B2 (en) Novel penicillin compounds and their production