JPS63308907A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPS63308907A
JPS63308907A JP14558687A JP14558687A JPS63308907A JP S63308907 A JPS63308907 A JP S63308907A JP 14558687 A JP14558687 A JP 14558687A JP 14558687 A JP14558687 A JP 14558687A JP S63308907 A JPS63308907 A JP S63308907A
Authority
JP
Japan
Prior art keywords
magnetized
magnetic
magnetizing
permanent magnet
magnetic poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14558687A
Other languages
Japanese (ja)
Inventor
Chiyuki Fujii
千之 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP14558687A priority Critical patent/JPS63308907A/en
Publication of JPS63308907A publication Critical patent/JPS63308907A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To obtain a permanent magnet wherein an intensive magnetic pole is formed at a specified position of a member to be magnetized, by a method wherein leakage flux is prevented from permeating into the member to be magnetized, by arranging perfect diamagnet ic material around the member to be magnetized, and the magnetic path and the direction of magnetizing flux itself are controlled. CONSTITUTION:Perfect diamagnetic members 3A-3C act so as to repel leakage flux toward a member to be magnetized, so that the magnetizing action of the member to be magnetized is increased, and the effect is remarkable in the case of manufacturing a multipole magnet. In the example wherein a ring type member 2 to be magnetized is subjected to magnetization with magnetic poles 1A-1D of one or more magnetizing yokes, the interference caused by mutual leakage flux of yokes can be prevented by inserting the perfect diamagnetic members 3A-3C between the magnetic poles of each magnetizing yoke. Further, by arranging the perfect diamagnetic member 3D on the outer periphery of the ring type member to be magnet ized, a magnet can be manufactured, wherein leakage magnetic flux from the outer periphery is pervented, magnetic poles are concentrated on the inner periphery, and the generation of magnetic poles on the outer periphery is restricted. The perfect diamagnetic member can be selected from superconducting materials. Thereby, a permanent magnet can be obtained wherein the intensity of magnetization is large, and pole position is clear.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は永久磁石の製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method of manufacturing a permanent magnet.

(従来の技術) 磁性材料の着磁によって永久磁石’ffd、造するには
、通常、励磁コイルあるいは励磁マグネットに備えたヨ
ークにより磁路を形成し、その磁路の開路部分(間隙部
)に被磁化部材を接触あるいは接近させて閉磁路を形成
させて着磁する。また、前記着磁の際に被磁化部材の表
面に局部的に高透磁性の部材を密着させることによって
両端以外の任意の部位に磁極を形成した永久磁石、いわ
ゆる多極磁石’tl造する方法も知られている(特開昭
60−107809号公報)。
(Prior art) To create a permanent magnet 'ffd' by magnetizing a magnetic material, a magnetic path is usually formed using an excitation coil or a yoke provided in the excitation magnet, and the open circuit portion (gap) of the magnetic path is The members to be magnetized are brought into contact with each other or brought close to each other to form a closed magnetic path and are magnetized. In addition, a method for producing a permanent magnet, a so-called multipolar magnet, in which magnetic poles are formed at any part other than both ends by locally adhering a highly permeable member to the surface of the magnetized member during magnetization. is also known (Japanese Unexamined Patent Publication No. 107809/1983).

(発明が解決しようとする問題点) 着磁された永久磁石の磁極の強さは素材の残留磁束密度
と磁極間の距離とその体積で規定されるが、実用的には
さらに作用を受ける点(位t)での磁束密度とその方向
が重要である。従来の着磁方法では目的の磁路を通過す
る磁束の他に被磁化部材周辺の空間や池の部材を通過す
るいわゆる漏洩磁束が存在し、この干渉により着磁の目
的が撹乱されるのを避けることができなかった。この影
響は磁極間の距離が短かくいわゆる高′lソ度着磁とな
るとともに大きくなり、各磁極の強度低下、磁極位置の
不鮮明化の原因となっていた。また、永久磁石の製造に
あたって、しばしば形成された磁極が強力であることが
要求される。また、磁極の位置が明確であり、磁、函間
の磁界の遷移が急峻でるることが要求される。
(Problem to be Solved by the Invention) The strength of the magnetic poles of a magnetized permanent magnet is determined by the residual magnetic flux density of the material, the distance between the magnetic poles, and their volume, but in practical terms, there are additional effects. The magnetic flux density at (t) and its direction are important. In conventional magnetization methods, in addition to the magnetic flux that passes through the target magnetic path, there is so-called leakage magnetic flux that passes through the space and pond members around the magnetized member, and it is necessary to prevent this interference from disturbing the purpose of magnetization. I couldn't avoid it. This effect increases as the distance between the magnetic poles becomes shorter and magnetization becomes so-called high-magnetization degree, causing a decrease in the strength of each magnetic pole and an indistinct position of the magnetic poles. Furthermore, in the production of permanent magnets, it is often required that the formed magnetic poles be strong. It is also required that the position of the magnetic pole be clear and that the transition of the magnetic field between the magnet and the box be sharp.

本発明は着磁中に漏洩磁束の発生あるいは通過を抑止し
、また磁束の方向を誘導制御することによって漏洩磁束
の影**なくシ、着磁磁束全所定の位置と方向に適確に
導入させることにより、被磁化部材の所定の位置に強力
な磁極を形成させた永久磁石の製造方法を提供すること
を目的とする。
The present invention suppresses the generation or passage of leakage magnetic flux during magnetization, and controls the direction of the magnetic flux to eliminate the influence of leakage magnetic flux and ensure that all of the magnetizing magnetic flux is properly introduced at a predetermined position and direction. It is an object of the present invention to provide a method of manufacturing a permanent magnet in which strong magnetic poles are formed at predetermined positions of a member to be magnetized.

(問題点を解決するための手段) 本発明は着磁時に漏洩磁束の影響により所定の着磁磁束
の密度と方向が撹乱されるのを防止するために、被磁化
部材の周辺に完全反磁性部材を配、直することによって
被磁化部材への漏洩磁束の侵入を遮断することを骨子と
し、さらに着磁磁束自体の磁路と方向を制御することを
骨子とするものである。
(Means for Solving the Problems) The present invention provides a complete diamagnetic structure around the magnetized member in order to prevent the density and direction of the predetermined magnetizing magnetic flux from being disturbed due to the influence of leakage magnetic flux during magnetization. The main idea is to block the leakage magnetic flux from entering the magnetized member by arranging and adjusting the members, and the main idea is to control the magnetic path and direction of the magnetizing magnetic flux itself.

すなわち、本発明の第1は励磁ヨークの磁極間に被磁化
部材を法んで該被磁化部材全磁化させて永久磁石全製造
する方法において、被磁化部材の周辺に完全反磁性部材
全配設し、−′−−また、本発明の第2は励磁ヨークの
磁極間に被磁化部材を挾んで該被磁化部材を磁化させて
永久磁石’tN造する方法において、被磁化部材の周辺
に完全反磁性部材と高透磁性部材全配設して、該被磁化
部材を磁化させること全特徴とする永久磁石の製造方法
である。
That is, the first aspect of the present invention is a method for manufacturing a permanent magnet by inserting a magnetized member between the magnetic poles of an excitation yoke and fully magnetizing the magnetized member, in which a completely diamagnetic member is entirely disposed around the magnetized member. , -'--Also, the second aspect of the present invention is a method of sandwiching a magnetized member between the magnetic poles of an excitation yoke and magnetizing the magnetized member to create a permanent magnet. This method of manufacturing a permanent magnet is characterized in that a magnetic member and a highly permeable member are all disposed, and the member to be magnetized is magnetized.

以下、本発明全図面により説明する。第4図および第5
図は従来の永久磁石の製造方法を示すものである。励磁
ヨークの磁極IAIIBから出た磁束は被磁化部材2の
内部全通過する有効な磁束7ばかりでなく、被磁化部材
周辺の空間や他の部材を通過する漏洩磁束8があるため
被磁化部刊の磁化作用が弱くなる。とくに第5図に示す
ように被磁化部材周辺に局部的に高透磁性部材4 A 
+ 4Bを配設することによって被磁化部材全多極的に
励磁して多極磁石全製造する場合には、磁束を被磁化部
材から出入りさせるため漏洩磁束の影響が大きく、磁極
の磁化強度が低くなり、また磁極位置が不鮮明になりや
すい。
The present invention will be explained below with reference to all the drawings. Figures 4 and 5
The figure shows a conventional method for manufacturing permanent magnets. The magnetic flux emitted from the magnetic pole IAIIB of the excitation yoke is not only an effective magnetic flux 7 that passes through the inside of the magnetized member 2, but also a leakage magnetic flux 8 that passes through the space around the magnetized member and other members. The magnetizing effect of becomes weaker. In particular, as shown in FIG. 5, a highly permeable member 4 A is locally placed around the magnetized member.
When all multipolar magnets are produced by energizing all the magnetized members by arranging +4B, the influence of leakage magnetic flux is large because the magnetic flux is moved in and out of the magnetized member, and the magnetization strength of the magnetic poles is reduced. The magnetic pole position tends to be low and the magnetic pole position becomes unclear.

これに対して、第1図および第2図に示す本発明の永久
磁石の製造方法によれば、被磁化部材の周辺に配設した
完全反磁性部材3# 3Al  38130が漏洩磁束
を被磁化部材内へ押し戻す作用をするので被磁化部材の
磁化作用が強くなる。とぐに第2図に示す多極磁石を製
造する際にこの効果が顕著である。
On the other hand, according to the method of manufacturing a permanent magnet of the present invention shown in FIGS. 1 and 2, the completely diamagnetic member 3#3Al 38130 disposed around the magnetized member directs leakage magnetic flux to the magnetized member. Since it acts to push the magnetized member back inward, the magnetizing effect on the magnetized member becomes stronger. This effect is particularly noticeable when manufacturing the multipolar magnet shown in FIG.

第3図はリング状の被磁化部材2に複数の励磁ヨークの
磁ff11A〜1Dで着磁全行なう例である。
FIG. 3 shows an example in which the ring-shaped magnetized member 2 is fully magnetized by the magnets ff11A to 1D of a plurality of excitation yokes.

各励磁ヨークの磁極の間に完全反磁性部材3八〜3Cを
挿入することにより、ヨーク相互の漏洩磁束による干渉
を防止できる。さらにリング状の被磁化部材の外周にも
完全反磁性部材3D’に配設することにより、外周面か
らの磁束漏洩全防止して内周面に磁極を集中し外周面へ
の磁極の出現を抑制した磁石全製造できる。
By inserting completely diamagnetic members 38 to 3C between the magnetic poles of each excitation yoke, interference due to leakage magnetic flux between the yokes can be prevented. Furthermore, by disposing a completely diamagnetic member 3D' on the outer circumference of the ring-shaped magnetized member, magnetic flux leakage from the outer circumferential surface is completely prevented, magnetic poles are concentrated on the inner circumferential surface, and magnetic poles are prevented from appearing on the outer circumferential surface. All suppressed magnets can be manufactured.

完全反磁性部材は超電導材として知られているものより
選定することができる。完全反磁性部材の材質およびこ
れを配設する被磁化部材の周辺に関してはとくに限定は
ないが、被磁化部材の漏洩磁束金受ける部分への空間や
他の部材との露出部をできるだけ少なくするように完全
反磁性部材を被磁化部材を取囲み、しかも被磁化部材に
密着させて配設することが好ましい。
The fully diamagnetic material can be selected from those known as superconducting materials. There are no particular limitations on the material of the completely diamagnetic member and the surroundings of the magnetized member in which it is arranged, but it is important to minimize the space in the part of the magnetized member that receives the leakage magnetic flux and the exposed area with other members. Preferably, a completely diamagnetic member is provided surrounding the magnetized member and in close contact with the magnetized member.

完全反磁性部材は磁極を形成させる部分以外のところに
配設することが好ましく、また、磁束の方向や磁路を考
慮した要所局部に配設するのがよい。必要によっては超
電導性および完全反磁性維持のための加工や、表面への
絶縁コーティングを施してもよい。但し、本発明に於て
は超電導を維持する際に必要な材料としての連続相の形
成は必須ではない。したがって磁力線の遅閉あるいは偏
向効果を妨げない程度に他種材料の混入や複合化がされ
てもよい。
It is preferable that the completely diamagnetic member be disposed at a location other than the portion where the magnetic poles are formed, and it is also preferable that the completely diamagnetic member be disposed at a key local portion in consideration of the direction of the magnetic flux and the magnetic path. If necessary, processing may be performed to maintain superconductivity and complete diamagnetism, or an insulating coating may be applied to the surface. However, in the present invention, the formation of a continuous phase as a material necessary to maintain superconductivity is not essential. Therefore, other types of materials may be mixed or composited to the extent that they do not hinder the slow closing or deflection effect of the lines of magnetic force.

被磁化部材の種類はとくに制限はない。目的とする残留
磁束密度、保磁力、温度特性、機械的特性その他の条件
により炭素鋼、合金磁性材、フェライト、希土類磁石、
プラスチック(ゴム)磁石、磁気記録材など適宜選定で
きる。
There are no particular restrictions on the type of magnetized member. Carbon steel, alloy magnetic materials, ferrite, rare earth magnets,
Plastic (rubber) magnets, magnetic recording materials, etc. can be selected as appropriate.

高透磁性部材の種類についてもとくに制限はなく、純鉄
、あるいはパーマロイなどがその例である。高透磁性部
材の形状およびこれを配設する被磁化部材の周辺に関し
てはとくに限定はなく、被磁化部材に形成させる磁極の
位置によって前記各部材の大きさと配設位置を定めるこ
とができる。
There are no particular restrictions on the type of highly permeable material, and examples include pure iron and permalloy. There are no particular limitations on the shape of the highly permeable member and the periphery of the magnetized member on which it is disposed, and the size and arrangement position of each member can be determined depending on the position of the magnetic pole formed on the magnetized member.

磁比させるときには当然のことながら完全反磁性部材全
完全反磁性を示す温度以下の温度にしなげればならない
。そのためには励磁ヨークを含む装置全体を前記温度に
する方法、被磁化部材、完全反磁性部材および高透磁性
部材を前記温度にする方法、または完全反磁性部材のみ
を前記温度にする方法がある。これらの方法のいずFL
 ’Ft □”cχ刑するかについては被磁化部材の大
きさ、形状、磁極の形成位置等を考慮して定めればよい
When adjusting the magnetic ratio, it is a matter of course that the temperature must be lower than the temperature at which the completely diamagnetic member exhibits its complete diamagnetic property. For this purpose, there are methods to bring the entire device including the excitation yoke to the above temperature, a method to bring the magnetized member, a completely diamagnetic member, and a highly permeable member to the above temperature, or a method to bring only the completely diamagnetic member to the above temperature. . Which of these methods is FL?
'Ft □"cχ may be determined by considering the size and shape of the member to be magnetized, the position where the magnetic pole is formed, etc.

(発明の効果) 本発明の方法によれば被磁化部材全磁化して永久磁石を
製造する際に漏洩磁束の影響がなく、また、磁束の方向
と磁路が制御され、被磁化部材に有効に磁束が作用する
ため磁極の磁化強度が大きく、かつ磁極位置が鮮明な永
久磁石が得られる。
(Effects of the Invention) According to the method of the present invention, there is no influence of leakage magnetic flux when the magnetized member is fully magnetized to produce a permanent magnet, and the direction and magnetic path of the magnetic flux are controlled, which is effective for the magnetized member. Since magnetic flux acts on the magnetic flux, a permanent magnet with high magnetic pole magnetization strength and a clear magnetic pole position can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図および第6図は本発明の永久磁石の製造
方法を示す装置および各部材の断面図である。第4図お
よび第5図は従来の永久磁石の製造方法を示す装置およ
び各部材の断面図である。 符  号 1A、iB、  1c、  1D・・励磁ヨークの磁玉
、2・・・被磁化部材、3.3AP 3B、3C,3D
−・・完全反磁性部材、4 A*  4 B・・・高透
磁性部材、5A、15B・・・励磁ヨーク、6A、6B
・・・コイル、7・・・有効な磁束、8・・・漏洩磁束
特許出願人 電気化学工業株式会社 第1図 B $2図
FIGS. 1, 2, and 6 are sectional views of an apparatus and each member showing the method of manufacturing a permanent magnet of the present invention. FIGS. 4 and 5 are cross-sectional views of an apparatus and each member showing a conventional permanent magnet manufacturing method. Codes 1A, iB, 1c, 1D...Magnetic ball of excitation yoke, 2...Member to be magnetized, 3.3AP 3B, 3C, 3D
-... Completely diamagnetic member, 4 A* 4 B... Highly permeable member, 5A, 15B... Excitation yoke, 6A, 6B
... Coil, 7... Effective magnetic flux, 8... Leakage magnetic flux Patent applicant Denki Kagaku Kogyo Co., Ltd. Figure 1B Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)励磁ヨークの磁極間に被磁化部材を挾んで該被磁
化部材を磁化させて永久磁石を製造する方法において、
被磁化部材の周辺に完全反磁性部材を配設して、該被磁
化部材を磁化させることを特徴とする永久磁石の製造方
法。
(1) In a method of manufacturing a permanent magnet by sandwiching a magnetized member between the magnetic poles of an excitation yoke and magnetizing the magnetized member,
A method of manufacturing a permanent magnet, which comprises arranging a completely diamagnetic member around a member to be magnetized and magnetizing the member to be magnetized.
(2)励磁ヨークの磁極間に被磁化部材を挾んで該被磁
化部材を磁化させて永久磁石を製造する方法において、
被磁化部材の周辺に完全反磁性部材と高透磁性部材を配
設して、該被磁化部材を磁化させることを特徴とする永
久磁石の製造方法。
(2) A method of manufacturing a permanent magnet by sandwiching a magnetized member between the magnetic poles of an excitation yoke and magnetizing the magnetized member,
A method of manufacturing a permanent magnet, which comprises arranging a completely diamagnetic member and a highly permeable member around a member to be magnetized, and magnetizing the member to be magnetized.
JP14558687A 1987-06-11 1987-06-11 Manufacture of permanent magnet Pending JPS63308907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14558687A JPS63308907A (en) 1987-06-11 1987-06-11 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14558687A JPS63308907A (en) 1987-06-11 1987-06-11 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPS63308907A true JPS63308907A (en) 1988-12-16

Family

ID=15388514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14558687A Pending JPS63308907A (en) 1987-06-11 1987-06-11 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPS63308907A (en)

Similar Documents

Publication Publication Date Title
US5635889A (en) Dipole permanent magnet structure
CA1214509A (en) Permanent magnet multipole with adjustable strength
US4672346A (en) Magnetic field generating device for NMR-CT
US4859975A (en) Electromagnetic actuator
US5886609A (en) Single dipole permanent magnet structure with linear gradient magnetic field intensity
EP0645641B1 (en) Improvements in or relating to MRI magnets
CN103155720B (en) The multipole magnet improved
GB2046528A (en) Permanent magnets
US4122386A (en) Uniform magnetic field generating device
JPH09177880A (en) Electromagnetic damper
US6744341B2 (en) Polarizing device for a permanent magnet rotor
US4306206A (en) Linear solenoid device
JPH0794321A (en) Magnetic chuck
JPS63308907A (en) Manufacture of permanent magnet
JPS63190311A (en) Permanent magnet type magnetic field generating device
KR19990006818A (en) Electromagnetic Drive with Movable Permanent Magnet
US4887058A (en) Periodic permanent magnet structures
JP2007502183A (en) Magnetic field generation system applicable to nuclear magnetic resonance apparatus
Sotgiu Fields and gradients in multipolar magnets
JPS62139304A (en) Magnetic circuit with excellent uniformity of magnetic field
JPH06215899A (en) Multipolar magnet for accelerator
JPH03195343A (en) Magnetizer for step motor
US4904971A (en) Superconductive electromagnet
JPWO2004077413A1 (en) Magnetic field heat treatment equipment
US6621396B2 (en) Permanent magnet radial magnetizer