JPS6330804A - Optical coupler - Google Patents

Optical coupler

Info

Publication number
JPS6330804A
JPS6330804A JP17424986A JP17424986A JPS6330804A JP S6330804 A JPS6330804 A JP S6330804A JP 17424986 A JP17424986 A JP 17424986A JP 17424986 A JP17424986 A JP 17424986A JP S6330804 A JPS6330804 A JP S6330804A
Authority
JP
Japan
Prior art keywords
diffraction grating
lens
substrate
waveguide layer
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17424986A
Other languages
Japanese (ja)
Inventor
Shoichi Uchiyama
正一 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP17424986A priority Critical patent/JPS6330804A/en
Publication of JPS6330804A publication Critical patent/JPS6330804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain an optical coupler which can be easily manufactured and has a high efficiency, by providing a collimating lens on a thin film waveguide, and providing a convex lens on an incident/emitting end face, so that a diffraction grating shape consists of a linear group for easily manufacturing a photomask. CONSTITUTION:A collimating lens 8 and a diffraction grating 3 consisting of a linear group are provided on the surface of an optical waveguide layer, the diffracted light by the diffraction grating 3 is inputted and outputted to and from the surface being different from the surface for contacting a thin film waveguide layer 2 of a substrate 1, and a diffracted light input/output surface is an end face of the substrate 1, and has a convex lens on its surface. The light beams which have been collimated by the lens 8 are diffracted to the substrate side by a diffraction grating 7 consisting of a linear group. The light beams which have been diffracted to the substrate side reach an incident/ emitting end face 11, and form an image in a focus 6 by a lens 9 which has been provided on the incident/emitting end face 11.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は回折格子をm−た光導波路型の光結合器に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical waveguide type optical coupler having an m-diffraction grating.

〔従来の技術〕[Conventional technology]

近年、光を利用し之情報通信や情報記録再生bz注目さ
れている中で、光学的情報入出力装置として回折格子を
有する薄膜光導波路の光結合器が種々提案されている。
2. Description of the Related Art In recent years, information communication and information recording/reproduction using light have been attracting attention, and various optical couplers of thin film optical waveguides having diffraction gratings have been proposed as optical information input/output devices.

第3図に例示するものけ、平板型光導波路に回折格子を
設けeIllaの従来の光結合器の概略構成を示すもの
である。即ち、この光結合器は、基板10表面に薄膜光
導波層2を形成し、この光導波層2の界面に不等間隔曲
線群からなる回折格子3を形成し之構造を有するもので
あり、上記光導波路2を伝搬する導波光4を上記回折格
子3にて回折して、上記導波層20表面より直接外部光
5として取出し焦点6に収束させるものである。ところ
がこのよ5な構造の光結合器では、導波光4が回折格子
により回折されて空中に出力されると同様に基板1側に
も回折されろ。
The Mononoke illustrated in FIG. 3 shows a schematic configuration of a conventional eIlla optical coupler in which a diffraction grating is provided in a flat plate optical waveguide. That is, this optical coupler has a structure in which a thin film optical waveguide layer 2 is formed on the surface of a substrate 10, and a diffraction grating 3 consisting of a group of unevenly spaced curves is formed at the interface of this optical waveguide layer 2. The guided light 4 propagating through the optical waveguide 2 is diffracted by the diffraction grating 3, and is extracted directly from the surface of the waveguide layer 20 as external light 5 and converged on an extraction focal point 6. However, in an optical coupler having such a structure, when the guided light 4 is diffracted by the diffraction grating and output into the air, it is also diffracted toward the substrate 1 side.

この為、光の回折効率、結合効率が約%になってしまう
。ま之回折格子の格子間隔は例えば使用波長CL79μ
m実効屈折率を1.52とすると回折格子3の最小格子
間隔を0.5μm程変にすることが必要である。このよ
うな回折格子3を形究する之めにけその線@シ0.2μ
m程度としなければならず、7オトマスクを用いた作成
法では上述し定回折格子3な形成することは困難である
。ま九光結合器の光源を半導体レーザを使用するとなる
と、ホログラフィック技術では使用波長が異なるtめ理
想的な回折格子は得られない。電子ビーム描画法では、
技術的には可能であるh;、その量産性は悪く、装置め
;高価であるという欠点を有する。以上述べ次欠点な補
うために図4のような光結合器ht提案されている(特
開昭58−169107)。この光結合器の回折格子3
け図2の回折格子3に比べて最小格子間隔を犬きく設定
することができ、しかも回折光を一方向ての入高効率だ
取出すことができる簡易で実用性の高い光結合器である
。しかしながら1図4の回折格子3の格子間隔は図5の
それに比して約2倍桿度としかならず、その線幅はCL
5μm8度である。
For this reason, the diffraction efficiency and coupling efficiency of light are approximately %. The grating spacing of Mano's diffraction grating is, for example, the wavelength used CL79μ.
If m-effective refractive index is 1.52, it is necessary to vary the minimum grating spacing of the diffraction grating 3 by about 0.5 μm. In order to investigate such a diffraction grating 3, the line @ 0.2μ
m, and it is difficult to form the constant diffraction grating 3 as described above using a manufacturing method using 7 otomasks. If a semiconductor laser is used as the light source of the optical coupler, an ideal diffraction grating cannot be obtained using holographic technology since the wavelengths used are different. In electron beam lithography,
Although it is technically possible, it has the drawbacks of poor mass productivity and expensive equipment. In order to compensate for the above-mentioned drawbacks, an optical coupler ht as shown in FIG. 4 has been proposed (Japanese Patent Laid-Open No. 169107/1983). Diffraction grating 3 of this optical coupler
This is a simple and highly practical optical coupler that allows the minimum grating spacing to be set more closely than the diffraction grating 3 of FIG. However, the grating spacing of the diffraction grating 3 in FIG. 1 is only about twice the radius compared to that in FIG. 5, and the line width is CL
It is 5 μm and 8 degrees.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のような線幅0.5μm程度の不等間隔曲線群から
なる回折格子3を光学フォトリングラフィ技術で作製し
ようとすると、フォトマスクに曲線を電子ビームでバタ
ーニングする際だ、電子ビーム矩形スポットで曲線形状
を理想的に近似するには数ミクロンの線@カーなければ
ならず、0.5μm程度の線幅では、光学フォトI+ソ
グラフイ技術でけ理想的な回折格子を得ることはで鎗な
込。
When trying to fabricate the diffraction grating 3 consisting of a group of unevenly spaced curves with a line width of about 0.5 μm using optical photolithography technology, it is difficult to pattern the curves on a photomask with an electron beam. In order to ideally approximate a curved shape with a spot, a line of several microns is required, and with a line width of about 0.5 μm, it is difficult to obtain an ideal diffraction grating using optical photoI + lithography technology. Nakomi.

本発明けこのような事情を考慮してなされ念もので、そ
の目的は、薄慣導波路上にコリメートレンズを設け、か
つ入出射端ff1lc凸レンズを設けることにより、回
折格子形状をフォトマスク作製が容易な直線群よりなる
ようにし、以って作製h;容易で高効率な光結合器を量
産性良く提供することにある。
The present invention was developed taking these circumstances into consideration, and its purpose is to provide a collimating lens on a thin inertial waveguide and a convex lens at the input/output end ff1lc, so that the shape of the diffraction grating can be easily fabricated into a photomask. The object is to provide an optical coupler that is easy to manufacture and is highly efficient, with good mass productivity.

〔問題点を解決するための手段〕[Means for solving problems]

問題点を解決する之めの手段を図1.2に沿って説明す
る。回折格子7を直線群にする之めにけ導波層2を伝搬
する元は平行光でなければならない。従って光源10を
出之光を平行光とするtめに導波層2上にコリメートレ
ンズ8を備よる。レンズ8によってコリメートされ次光
は、直線群よりなる回折格子7によって基板側に回折す
る。基板@に回折しt光は入出射端面11に到達し入出
射側11上に設けられ几レンズ9により焦点6に結像す
る。この際、焦点位fl16は入出射端面に設けられ九
レンズ9の形状によって任意に変化させることh’−で
きるのはい5士でもない。
The means to solve the problem will be explained with reference to Figure 1.2. In order to make the diffraction grating 7 into a linear group, the source propagating through the waveguide layer 2 must be parallel light. Therefore, a collimating lens 8 is provided on the waveguide layer 2 to convert the light emitted from the light source 10 into parallel light. The secondary light collimated by the lens 8 is diffracted toward the substrate by the diffraction grating 7 consisting of a group of straight lines. The light diffracted by the substrate reaches the input/output end face 11 and is imaged at a focal point 6 by a lens 9 provided on the input/output side 11. At this time, the focal position fl16 can be arbitrarily changed depending on the shape of the nine lenses 9 provided at the entrance and exit end faces.

〔実施例〕〔Example〕

第1図にかいて、凸レンズ9形状をもった入出射端面を
持つ基板1け、ガラス(例えば、ぶつけい酸クラウンガ
ラス)をプレス成形することにより得られる。基板1上
に基板より屈折率の高い材料(例えば、コーニング70
59ガラス)をスパッタし導波層2を形成する。導波路
上に形成するコリメートレンズは、グレーティングレン
ズなどう1使用できろ。グレーティングレンズ形状と直
線群回折格子形状シパターンニングし次マスクを作製し
、導波層上にレジストを塗布し、光学フォ) I+ソグ
ラフイにより、導波層上にグレーティングレンズ形状と
直線群回折格子形状を持つレジストの立体パターンを形
喫する。その後、コーニング7059シ再びスパッタし
、レジストを除去することにより、導波層上にグレーテ
ィングレンズと直線群回折格子を有する光結合器を得る
As shown in FIG. 1, a single substrate having an entrance/exit end face in the shape of a convex lens 9 is obtained by press-molding a glass (for example, borosilicate crown glass). A material having a higher refractive index than the substrate (for example, Corning 70
59 glass) is sputtered to form the waveguide layer 2. A collimating lens formed on the waveguide can be used as a grating lens. The grating lens shape and the linear group diffraction grating shape are patterned, a mask is made, a resist is applied on the waveguide layer, and the grating lens shape and the linear group diffraction grating shape are placed on the waveguide layer using optical photolithography. Enjoy the 3D pattern of the resist. Thereafter, Corning 7059 is sputtered again and the resist is removed to obtain an optical coupler having a grating lens and a linear group diffraction grating on the waveguide layer.

導波層の光源部が接する端面を研磨し、その端面に光学
接着剤で半導体レーザ10を結合する。
The end face of the waveguide layer in contact with the light source section is polished, and the semiconductor laser 10 is bonded to the end face with an optical adhesive.

半導体レーザ10より出射され次光は、グレーティング
レンズ8によりコリメート光となり、直線群回折格子7
により基板1側に回折され1入出射端面11に達すると
、凸レンズ9により、焦点6に結像することなる。
The next light emitted from the semiconductor laser 10 is collimated by the grating lens 8 and collimated by the linear group diffraction grating 7.
When the light is diffracted toward the substrate 1 side and reaches the input/output end face 11, it is imaged at the focal point 6 by the convex lens 9.

〔発明の効果〕〔Effect of the invention〕

以上述べ友ように本発明によれば、薄膜光導波層を含む
光結合器において、その回折格子を直線群とならしめる
光結合器の構成を与えることにより5回折格子が光学的
フォトリングラフィ技術により作製可能となる。これは
回折格子を有する光結合器を量産性良く簡便に作成する
ことめ;可能なことを意味する。このよ5な構成の光結
合器は、例えば、直積が5’wm X I Qu+程度
、厚さ数I程度の簿型軽量の光メモリ用へラド等に応用
することができ1元利用技術において啄めて有用である
As described above, according to the present invention, in an optical coupler including a thin film optical waveguide layer, by providing an optical coupler configuration in which the diffraction grating is made into a group of straight lines, a five-diffraction grating can be realized using optical photolithography technology. It can be manufactured by This means that it is possible to easily produce an optical coupler having a diffraction grating with good mass production. An optical coupler with such a configuration can be applied, for example, to a book-shaped light-weight optical memory disk with a direct product of about 5'wm x I Qu+ and a thickness of about I, and is very effective in one-element utilization technology. It is very useful.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概略構成の斜視図。 第2図はそのvfl而図面 第3図は従来装置の一例を示す図。 第4図は従来装置を改良し之装置の図。 1・・・・・・基板    2・・・・・・導波層3・
・・・−・不等間隔曲線群回折格子4・・・・・・導波
光   5・・・・・・回折光6・・・・・・焦点  
  7・・・・・・直線群回折格子8・・・・・・コリ
メートレンズ(グレーティングレンズ)9・・・・・・
凸レンズ10・・・・・・光源(半導体レーザ)11・
・・・・・入出射端面 以  上 出願人 セイコーエプソン株式会社 第1図 第2図
FIG. 1 is a perspective view of a schematic configuration showing an embodiment of the present invention. FIG. 2 is a diagram showing an example of a conventional device. FIG. 3 is a diagram showing an example of a conventional device. FIG. 4 is a diagram of a device improved from the conventional device. 1... Substrate 2... Waveguide layer 3.
--- Unequally spaced curve group diffraction grating 4 --- Guided light 5 --- Diffracted light 6 --- Focal point
7... Linear group diffraction grating 8... Collimating lens (grating lens) 9...
Convex lens 10... Light source (semiconductor laser) 11.
...Input/output end face and above Applicant: Seiko Epson Corporation Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 基板表面に形成された薄膜光導波層を含む光結合器にお
いて、前記光導波層面上にコリメートレンズと直線群か
らなる回折格子とを備え、前記回折格子による回折光を
前記基板の薄膜導波層に接する面とは異なる面より入出
力させ、回折光入出力面は、上記基板の端面であって、
その面上に凸レンズを持つことを特徴とする光結合器。
An optical coupler including a thin film optical waveguide layer formed on the surface of a substrate, which includes a collimating lens and a diffraction grating consisting of a group of straight lines on the surface of the optical waveguide layer, and transmits diffracted light by the diffraction grating to the thin film waveguide layer of the substrate. The diffracted light input/output surface is an end surface of the substrate, and the diffracted light input/output surface is an end surface of the substrate,
An optical coupler characterized by having a convex lens on its surface.
JP17424986A 1986-07-24 1986-07-24 Optical coupler Pending JPS6330804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17424986A JPS6330804A (en) 1986-07-24 1986-07-24 Optical coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17424986A JPS6330804A (en) 1986-07-24 1986-07-24 Optical coupler

Publications (1)

Publication Number Publication Date
JPS6330804A true JPS6330804A (en) 1988-02-09

Family

ID=15975323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17424986A Pending JPS6330804A (en) 1986-07-24 1986-07-24 Optical coupler

Country Status (1)

Country Link
JP (1) JPS6330804A (en)

Similar Documents

Publication Publication Date Title
JP4475501B2 (en) Spectroscopic element, diffraction grating, composite diffraction grating, color display device, and duplexer
US20180004077A1 (en) Integrated light pipe for optical projection
JP2000056146A (en) Light self-guide optical circuit
JPH0774342A (en) Integrated optical device and manufacture thereof
JPS59174803A (en) Wavelength multiplexer or demultiplexer
JPH0642291B2 (en) Integrated optical head
CA2004634C (en) Light source device
JPS61156004A (en) Optical apparatus having concave mirror or concave grating
CN111308598B (en) Diffractive optical element, manufacturing method thereof and display device
JPS5844414A (en) Wavelength multiplexer or wavelength demultiplexer
Laao et al. High-efficiency focusing waveguide grating coupler with parallelogramic groove profiles
JPS6330804A (en) Optical coupler
KR100261297B1 (en) Optical fiber device with grating at the end-surface and the fabrication method
JP2004309552A (en) Optical circuit member and its manufacturing method
JPS5849910A (en) Positioning method
JPS63164034A (en) Optical waveguide type optical pickup
JP4730490B2 (en) Manufacturing method of optical fiber with display function
JPH02116809A (en) Optical coupler
JP3555888B2 (en) Self-guided optical circuit
JPS60140204A (en) Light guide lens and its manufacture
JPH03182705A (en) Optical element and its manufacture
JPH08220357A (en) Optical connecting device and its production
JPS62259241A (en) Optical pickup
JP2002082260A (en) Optical device for optical communication terminal and optical communication system
KR100526679B1 (en) Focusing waveguide grating coupler and method of fabricating the same