JPS6330796A - Rotating drive for continuous melting treater - Google Patents
Rotating drive for continuous melting treaterInfo
- Publication number
- JPS6330796A JPS6330796A JP61173662A JP17366286A JPS6330796A JP S6330796 A JPS6330796 A JP S6330796A JP 61173662 A JP61173662 A JP 61173662A JP 17366286 A JP17366286 A JP 17366286A JP S6330796 A JPS6330796 A JP S6330796A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- shaft
- annular frame
- drive device
- fuel loading
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002844 melting Methods 0.000 title claims description 16
- 230000008018 melting Effects 0.000 title claims description 16
- 239000000446 fuel Substances 0.000 claims description 28
- 239000003758 nuclear fuel Substances 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 8
- 238000004090 dissolution Methods 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- 230000007797 corrosion Effects 0.000 claims description 4
- 238000005260 corrosion Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 6
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 5
- 229910017604 nitric acid Inorganic materials 0.000 description 5
- 230000000284 resting effect Effects 0.000 description 5
- 230000005855 radiation Effects 0.000 description 4
- 239000002915 spent fuel radioactive waste Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000011437 continuous method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
- 238000004148 unit process Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Landscapes
- Processing Of Solid Wastes (AREA)
- Gasification And Melting Of Waste (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は使用済核燃料の連続溶解処理装置の回転駆動装
置及び回転位置決め装置に係り、特にその運転方法によ
シ要求される燃料片装荷操作、燃料装荷かご取出し・再
配置操作等を的確に行うことに好適な装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rotational drive device and a rotational positioning device for a continuous melting and processing device for spent nuclear fuel, and in particular to a fuel piece loading operation required by its operating method. , relates to a device suitable for accurately performing operations such as removing and relocating a fuel loading basket.
従来の装置は、公転支持装置と一体の歯列を有するホイ
ールと協働するタンク外部のモータ駆動装置と、駆動ビ
ニオンに固定されたカムに可動部材が係合して位置決め
を確保する装置から成っている。しかし、モータを放射
線から守るために、モータと溶解処理部の距離を大きく
とりその間に遮蔽壁を設ける等の対策をとらねばならず
、装置も犬がかシなものになってしまっている。また、
モータ、駆動装置の場合公転支持装置を単にモータで駆
動する形にをっており、ある単位操作で公転支持装置を
1ステーシヨンずつ移動させることについては考慮され
ていなかった。位置決めを確保する装置においては、カ
ムと可動部材が受ける衝撃を緩和するだめの具体的な構
造について考慮されてい々かった。The conventional device consists of a motor drive device external to the tank that cooperates with a wheel having integral toothing with a revolution support device, and a device in which a movable member engages a cam fixed to the drive pinion to ensure positioning. ing. However, in order to protect the motor from radiation, it is necessary to take measures such as increasing the distance between the motor and the melting section and installing a shielding wall between them, making the device also very fragile. Also,
In the case of a motor and a drive device, the revolution support device is simply driven by a motor, and no consideration has been given to moving the revolution support device one station at a time in a certain unit operation. In devices for ensuring positioning, consideration has been given to a specific structure for mitigating the impact received by the cam and the movable member.
原子炉内における核分裂反応によりエネルギーを放出し
、核分裂性物質を消費して使用に適さなくなった核燃料
は、一般に使用済核燃料と呼ばれる。この使用済核燃料
に含まれている核分裂性物質や核原料物質を回収し、再
利用するための工程が7」処理である。Nuclear fuel that releases energy through a nuclear fission reaction in a nuclear reactor, consumes fissile material, and is no longer suitable for use is generally referred to as spent nuclear fuel. Process 7 is a process for recovering and reusing fissile materials and nuclear raw materials contained in this spent nuclear fuel.
再処理の工程は更に多岐にわたる単位工程から成ってい
る。ビニレックス法においては、その最初の段階で、燃
料棒は小片に剪断され、続いてその中味の核燃料物質が
溶解処理液として用いられている硝酸に溶解される。こ
の燃料片の被覆材は一般にジルコニウム合金あるいはス
テンレス鋼なので硝酸には溶解せず、核燃料物質が溶解
し終えた後に分別可能となる。The reprocessing process further consists of a wide variety of unit processes. In the Vinylex process, in the first step, the fuel rods are sheared into small pieces, and the nuclear fuel material inside is then dissolved in nitric acid, which is used as a dissolution solution. Since the covering material of this fuel piece is generally a zirconium alloy or stainless steel, it does not dissolve in nitric acid and can be separated after the nuclear fuel material has finished melting.
この核燃料の溶解を行う装置としては、核燃料を装荷し
た耐食性容器中に必要量の硝酸を加えて燃料溶解を完了
させ、溶解液を取り出すいわゆる回分方式と、容器に核
燃料と硝酸を装荷しながら溶解液を取り出す連続方式、
並びに両者の折衷的な性格を有する半連続方式がある。There are two methods for melting nuclear fuel: the so-called batch method, which adds the necessary amount of nitric acid to a corrosion-resistant container loaded with nuclear fuel, completes the fuel melting, and then takes out the dissolved liquid, and the other method, which melts while loading nuclear fuel and nitric acid into the container. Continuous method for extracting liquid,
There is also a semi-continuous system which is a compromise between the two.
一般に連続式は回分式に比べ高能率ではあるが、被覆材
等不溶解物の取シ出しに問題があう、その解決策とじて
処理物を連続的に処理する装置が考案されている。In general, continuous systems are more efficient than batch systems, but there is a problem in removing undissolved materials such as coating materials.As a solution to this problem, devices have been devised to continuously process the processed materials.
しかし、この装置は縦長構造であるために耐震性の点で
不利であること、また、構造が複雑であるために被覆材
による経路内目詰りを起こすという@念がちる。しかも
、外から眼でそれを確゛認することが不可能である。被
覆材による目詰シを回避するために水平に保持した円環
状溶解容器中の溶解処理液に燃料片を装荷した複数の燃
料装荷かごを浸漬し円周に沿って燃料装荷かごを頴次一
方向に移動することを特徴とする連続溶解処理装置の研
究開発が進められている。However, since this device has a vertical structure, it is disadvantageous in terms of earthquake resistance, and the complicated structure causes clogging of the passage by the covering material. Moreover, it is impossible to confirm this visually from the outside. In order to avoid clogging caused by the covering material, multiple fuel loading baskets loaded with fuel pieces are immersed in the dissolving treatment solution in a circular dissolving vessel held horizontally, and the fuel loading baskets are moved along the circumference. Research and development is progressing on a continuous melting treatment device that moves in the following directions.
第4図は連続溶解処理装置の溶解処理容器部の概略図で
ある。燃料装荷かごの円周方向動作については、1時間
毎に1ステーシヨンずつ、中心角にして30度ずつ反時
計回りに移動させる。この移動そのものは短時間で行い
、残り静止時間内に燃料片の装荷・被覆材の投棄等をす
べて完了させる。燃料片の装荷開始から燃料装荷かご取
り出しまでの所要時間は9時間である。FIG. 4 is a schematic diagram of the dissolution processing container section of the continuous dissolution processing apparatus. The circumferential motion of the fuel basket is moved counterclockwise by 30 degrees of central angle, one station per hour. This movement itself is carried out in a short period of time, and the loading of fuel pieces and the dumping of covering material are all completed within the remaining stationary time. The time required from the start of loading fuel chips to the removal of the fuel loading basket is 9 hours.
被覆材の投棄等の操作は各種のマニプレータを用いて行
うため、燃料装荷かごの位置を正確に決めてやる必要が
ある。また、位置決めを行う際に機器に負担がかからな
いよう燃料装荷かごを吊シ下げている環状わくの回転を
うまく制御することも重要である。前記の連続溶解処理
装置においても電動モータによる回転駆動装置と駆動ピ
ニオンに固定されたカムに可動部材が係合して位置決め
を行う装置が取り付けられているが、モータ部を放射線
から守るために溶解処理部との間に距離をおき、さらに
遮へいを設ける等、大がかりなものになってしまう。ま
たカムと可動部材に加わる衝撃の緩和対策がなく、強度
上問題となる。Operations such as dumping the cladding material are performed using various manipulators, so it is necessary to accurately determine the position of the fuel loading basket. It is also important to skillfully control the rotation of the annular frame that suspends the fuel loading basket so as not to place any strain on the equipment during positioning. The above-mentioned continuous melting processing equipment is also equipped with a rotary drive device using an electric motor and a device that performs positioning by engaging a movable member with a cam fixed to the drive pinion. This results in a large-scale installation that requires a distance from the processing section and a shield. Furthermore, there is no measure to reduce the impact applied to the cam and movable members, which poses a problem in terms of strength.
本発明の目的は、耐放射性・耐腐食性でかつコンパクト
、良好な衝撃対策を有する回転駆動装置と位置決め装置
を提供することにある。An object of the present invention is to provide a rotary drive device and a positioning device that are radiation-resistant, corrosion-resistant, compact, and have good impact protection.
本発明は、使用済核燃料の連続溶解処理装置における環
状わく回転駆動装置と、燃料片受は入れ、燃料装荷かご
の吊シ上げ、燃料装荷かごの溶解処理容器内への再配置
等の操作を確実に実施するために設けられた位置決め装
置に関するものである。The present invention provides an annular frame rotation drive device in a continuous melting treatment device for spent nuclear fuel, and a fuel receiving container that can be used for operations such as inserting a fuel loading basket, lifting a fuel loading basket, and relocating the fuel loading basket into a melting treatment container. This relates to a positioning device provided for reliable implementation.
回転、駆動装置は圧搾空気の注入により回転速度を自由
に変えられることを特徴とする特にロータリアクチュエ
ータとカムクラッチを採用することにより、耐放射線性
を高め定角度回転を正確に行うことを可能にした。位置
決め装置は環状わく上表面に設けられたディンプルにシ
ャフトを差し込んで、その静止位置を決めることを特徴
とし、特にバネの弾性力を利用したシャフトの差し込み
、前記回転駆動装置との連携によるシャフト差し込み時
の衝撃の緩和を可能にした。また駆動部分と腐食雰囲気
をベローズで仕切ることによって、腐食による信頼性の
低下を防止した。The rotation and drive device is characterized by the ability to freely change the rotation speed by injecting compressed air.In particular, by using a rotary actuator and cam clutch, it has improved radiation resistance and enables accurate rotation at a fixed angle. did. The positioning device is characterized by inserting the shaft into a dimple provided on the upper surface of the annular frame to determine its resting position, and in particular, shaft insertion using the elastic force of a spring, and shaft insertion by cooperation with the rotation drive device. This made it possible to alleviate the impact of time. Furthermore, by separating the driving part from the corrosive atmosphere with a bellows, we prevented a decrease in reliability due to corrosion.
〔作用〕
回転駆動装置によって環状わくを回転し、次の静止位置
が近づいてぐると、環状わくの上表面に設けられている
ディンプルの、進行方向の手前部分にシャツ)1適当な
バネの弾性力で押し付け、また同時に、回転車Psh装
置の回転速度を徐々に落すよう装置間の連携をとる。こ
れによって、デインブルにシャフトを差込む操作が滑ら
かになりディンプルやシャフトにかかる負担を嵯減する
ことができる。したがって、シャフトの変形等による誤
動作を少なくすることが可能である。[Function] When the annular frame is rotated by the rotary drive device and the next resting position approaches, a dimple provided on the upper surface of the annular frame is attached to the front part in the direction of movement. Force is applied, and at the same time, the devices cooperate to gradually reduce the rotational speed of the rotary wheel Psh device. This makes the operation of inserting the shaft into the dimple smoother and reduces the burden on the dimple and shaft. Therefore, it is possible to reduce malfunctions due to shaft deformation or the like.
ディンプルからシャフトを引き抜く場合も、シャフトを
完全に抜ききってから回転駆動装置を駆動させ、回転速
度を徐々に上げるよう装置間の連携をとるようにする。Even when the shaft is pulled out from the dimple, the rotational drive device is driven after the shaft is completely pulled out, and the devices cooperate to gradually increase the rotational speed.
以下、本発明の詳細な説明する。 The present invention will be explained in detail below.
第1図は一実施例になる回転駆動装置の構成を示す縦断
面図である。FIG. 1 is a longitudinal sectional view showing the configuration of a rotary drive device according to an embodiment.
装置は基本的にはロータリアクチュエータ1゜ギヤ6、
ギヤ7、ギヤ8、それにカムクラッチ9から成る。駆動
部分と、ケース2.ホルダ4から成る支持部分から構成
されている。The device is basically a rotary actuator with 1° gear and 6
It consists of gear 7, gear 8, and cam clutch 9. Drive part and case 2. It consists of a support part consisting of a holder 4.
第1図に構造を示す装置は、ロータリアクチュエータ1
に圧搾空気を供給することによって駆動し、その回転を
ギヤ8を介する形で燃料装荷かと25を吊り下げている
環状わく21のギヤ(図示せず)に伝達する。The device whose structure is shown in FIG. 1 is a rotary actuator 1.
It is driven by supplying compressed air to and transmits its rotation via a gear 8 to a gear (not shown) of an annular frame 21 suspending a fuel load 25.
ロータリアクチュエータ1に十分な量の圧搾空気を供給
し、ギヤ6をある一定の角度だけ回転させる。この回転
はギヤ7とカムクラッチ9を経てそのままギヤ8に伝達
され、環状わく21を回転させる。このときのギヤ6、
ギヤ7、ギヤ8の寸法は、1回の圧搾空気の供給でギヤ
8が1回転し、かつギヤ8の1回転分が燃料装荷かと2
5を1ステーシヨン移動させる分に対応するように設定
する。A sufficient amount of compressed air is supplied to the rotary actuator 1 to rotate the gear 6 by a certain angle. This rotation is directly transmitted to gear 8 via gear 7 and cam clutch 9, and rotates annular frame 21. Gear 6 at this time,
The dimensions of gear 7 and gear 8 are such that gear 8 rotates once with one supply of compressed air, and one rotation of gear 8 corresponds to 2 times when fuel is loaded.
5 to correspond to moving one station.
次に圧搾空気の供給を断つと、ギヤ6とギヤ7は逆回転
して元に戻るが、カムクラッチ9の働きによシ、ギヤ8
は元に戻ることなくそのままの状態に保持される。Next, when the supply of compressed air is cut off, gears 6 and 7 rotate in the opposite direction and return to their original positions, but due to the action of cam clutch 9, gear 8
remains as it is without returning to its original state.
以上の過程を繰り返すことによシ、環状わく21の一定
角度での断続的な回転が行われ、また後述する第2図に
構造を示した位置決め装置においてシャフト18がディ
ンプル23に差し込まれるとき及びディンプル23から
引き抜かれるときは、ロータリアクチュエータ1へ供給
する圧搾空気の単位時間当りの流量を変化させ、回転速
度を制御して、シャフト18及びディンプル23に大き
な衝撃が加わらないよう配慮している。By repeating the above process, the annular frame 21 is rotated intermittently at a constant angle, and when the shaft 18 is inserted into the dimple 23 in the positioning device whose structure is shown in FIG. When pulling out from the dimple 23, the flow rate of compressed air supplied to the rotary actuator 1 per unit time is changed to control the rotational speed so as to prevent a large impact from being applied to the shaft 18 and the dimple 23.
第2図は一実施例になる位置決め装置の構成を示す縦断
面図である。FIG. 2 is a longitudinal sectional view showing the configuration of a positioning device according to an embodiment.
装置は基本的にエアシリンダ10、ナックルジヨイント
11.ビン12、シャフト18.及びバネ16から成る
駆動部分と、溶解槽本体上ぶた22に固定するためのホ
ルダ15、キャップ14、プレート19、ロンド20か
ら成る支持部分から構成されている。シャフト18の上
部に長孔をあけることにより上下方向の自由度を与え、
ビン12を介してナックルジヨイント11に接続する。The device basically consists of an air cylinder 10, a knuckle joint 11. Bin 12, shaft 18. and a driving part consisting of a spring 16, and a supporting part consisting of a holder 15, a cap 14, a plate 19, and a rond 20 for fixing to the upper lid 22 of the dissolution tank main body. By making a long hole in the upper part of the shaft 18, it gives freedom in the vertical direction,
It is connected to the knuckle joint 11 via the pin 12.
この装置は、エアシリンダ10を駆動させることによシ
ナックルジョイント11を上下に動作させることを可能
にする。燃料装荷かと25を吊り下げて回転移動する環
状わく21の上表面には位置決め用のディンプル23が
溶解処理に必要な分だけ設けられており、前述のシャフ
ト18をそのディンプル23に差し込んで環状わく21
の位置を固定する。This device makes it possible to move the synakkle joint 11 up and down by driving the air cylinder 10. Dimples 23 for positioning are provided on the upper surface of the annular frame 21 which suspends and rotates the fuel loading cylinder 25, as many as are necessary for the melting process. 21
fix the position.
第3図はこの装置の動作原理を順をユaって示したもの
である。FIG. 3 sequentially shows the principle of operation of this device.
環状わく21は、溶解処理において新たに燃料片を燃料
装荷かと25に投入しようとする時以外は、はとんど静
止したままの状態になっている(第3図(a))。この
ときナックルジヨイント11は下降した状態に々ってお
り、シャフト18はバネ16の弾性力によってディンプ
ル23の中に差し込まれている。シャフト18の上部に
長孔をあけてビン12の自由度を確保し、バネ16の弾
性力によってのみシャフト18を下に押し付ける機構と
しであるため、必要以上の力が加わることはない。The annular frame 21 remains stationary most of the time, except when new fuel pieces are to be introduced into the fuel loading tank 25 during the melting process (FIG. 3(a)). At this time, the knuckle joint 11 is in a lowered state, and the shaft 18 is inserted into the dimple 23 by the elastic force of the spring 16. A long hole is made in the upper part of the shaft 18 to ensure the degree of freedom of the bottle 12, and the mechanism is such that the shaft 18 is pressed downward only by the elastic force of the spring 16, so that no more force than necessary is applied.
環状わく21を回転させようとする場合、エアシリンダ
10を駆動してナックルジヨイント11及びシャフト1
8を引き抜き、固定を解除する(第3図(b))。引き
抜きを完了の鏝、回転駆動装置(第1図参照)によって
環状わく21を徐々に回転させる(第3図(C))。次
の静止位置が近づくまではシャフト18は引き抜かれた
ままの状態になっているが、静止位置が近づいてきたと
き、環状わく21の表面の、回転進行方向の手前部分に
シャフト18f!:押し付けるようタイミングを図り、
同時にディンプル23にシャフト18が差し込まれるの
に備えて、環状わく21の回転速度を落とす(第3図(
d))。When trying to rotate the annular frame 21, the air cylinder 10 is driven to rotate the knuckle joint 11 and the shaft 1.
8 to release the fixation (Fig. 3(b)). When the drawing is completed, the annular frame 21 is gradually rotated by the rotation drive device (see FIG. 1) (FIG. 3(C)). The shaft 18 remains pulled out until the next resting position approaches, but when the resting position approaches, the shaft 18f! : Plan the timing to push,
At the same time, in preparation for the shaft 18 being inserted into the dimple 23, the rotational speed of the annular frame 21 is reduced (see Fig. 3).
d)).
シャフト18は環状わぐ21の表面に擦り付けられた状
四のまま次の静止位置に対応するディンプル23に差し
込まれ、再びそれを固定する(第3図(a))。The shaft 18 is inserted into the dimple 23 corresponding to the next resting position while keeping the shape of the shaft rubbed against the surface of the annular arm 21, and is fixed again (FIG. 3(a)).
以上の動作を繰り返えすことにより、顆次位置決めが行
われる。By repeating the above operations, condylar positioning is performed.
本発明は前述した長所の他、駆動部分に小さな粒子が付
着して動作を妨げることについて対策をたてることが容
易である。また、第2図に示したようにベローズ17を
設ける等、核燃料の溶解雰囲気中での使用に適したもの
となっている。更に加えて、これらの装置は遠隔保守が
容易に行えるよう考鷹されている。In addition to the above-mentioned advantages, the present invention makes it easy to take measures against the problem of small particles adhering to the driving part and interfering with the operation. Furthermore, as shown in FIG. 2, a bellows 17 is provided, making it suitable for use in an atmosphere where nuclear fuel is dissolved. Additionally, these devices are designed to facilitate remote maintenance.
本発明による効果としては、 (1)高放射線及び硝酸雰囲気中の使用に耐える。 The effects of the present invention include: (1) Can withstand use in high radiation and nitric acid atmospheres.
(2)環状わくの位置決めを円滑かつ的確に実施するこ
とが可能である。(2) It is possible to position the annular frame smoothly and accurately.
(3)構造が比較的簡単でかつコンパクトであシ構造的
に安定である。(3) The structure is relatively simple, compact, and structurally stable.
(4)可動部分に対し、小粒子の付着対策等が容易に行
える。(4) Measures against adhesion of small particles to moving parts can be easily taken.
(5)溶解処理装置本体への取付け・取りはずしを遠隔
操作によって行え、また保守も容易である。(5) It can be installed and removed from the main body of the melting treatment device by remote control, and maintenance is also easy.
第1図は本発明の一実施例になる環状わく回転駆動装は
の基本的構成を示す縦断面図、第2図は本発明の実施例
になる環状わく位置決め装置の基本的構成を示す縦断面
図、第3図は第2図に示した位置決め装置の動作原理を
示した縦断面図、第4図は核燃料の連続溶解処理装置の
溶解処理容器部の概略を示す斜視図である。
1・・・ロータリアクチュエータ、2・・・ケース、3
・・・プンート、4・・・ホルダ、5・・・ブンート、
9・・・カムクラッチ、10・・・エアシリンダ、11
・・・ナックルジヨイント、21・・・環状わく、22
・・・溶解処理装置本体上ぶた、23・・・ディンプル
、24・・・外壁、25・・・燃料装荷かと、26・・
・隔壁、27・・・溶解処理液、28・・・ローラ、2
9・・・回転駆動装置、30・・・回転位置決め装置。FIG. 1 is a vertical cross-sectional view showing the basic configuration of an annular frame rotation drive device according to an embodiment of the present invention, and FIG. 2 is a vertical cross-sectional view showing the basic configuration of an annular frame positioning device according to an embodiment of the present invention. 3 is a longitudinal cross-sectional view showing the operating principle of the positioning device shown in FIG. 2, and FIG. 4 is a perspective view schematically showing the melting processing container section of the continuous nuclear fuel melting processing apparatus. 1...Rotary actuator, 2...Case, 3
...Punto, 4...Holder, 5...Bunto,
9...Cam clutch, 10...Air cylinder, 11
... Knuckle joint, 21 ... Annular frame, 22
... Upper lid of the melting treatment equipment main body, 23... Dimples, 24... Outer wall, 25... Fuel loading, 26...
・Partition wall, 27...Dissolving treatment liquid, 28...Roller, 2
9... Rotation drive device, 30... Rotation positioning device.
Claims (1)
食性燃料装荷かごを配置し、燃料装荷かごの下部を溶解
処理液に浸漬しつつ、順次一方向に回転移動させて核燃
料を溶解する連続溶解処理装置の、燃料装荷かごを吊下
げた環状わくを回転させて燃料装荷かごを移動させる連
続溶解処理装置の回転駆動装置において、ある一方向に
ある定まつたピッチで正確な回転を伝達し、その回転速
度を制御できることを特徴とする連続溶解処理装置の回
転駆動装置。1. A plurality of corrosion-resistant fuel loading baskets are arranged in a horizontal annular container that holds a dissolution treatment liquid, and while the lower part of the fuel loading basket is immersed in the dissolution treatment liquid, the nuclear fuel is melted by sequentially rotating and moving in one direction. Transmits accurate rotation at a fixed pitch in one direction in the rotary drive device of continuous melting processing equipment, which moves the fuel loading basket by rotating the annular frame on which the fuel loading basket is suspended. A rotary drive device for a continuous melting treatment device, characterized in that the rotation speed can be controlled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61173662A JPS6330796A (en) | 1986-07-25 | 1986-07-25 | Rotating drive for continuous melting treater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61173662A JPS6330796A (en) | 1986-07-25 | 1986-07-25 | Rotating drive for continuous melting treater |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6330796A true JPS6330796A (en) | 1988-02-09 |
Family
ID=15964773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61173662A Pending JPS6330796A (en) | 1986-07-25 | 1986-07-25 | Rotating drive for continuous melting treater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6330796A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6221096A (en) * | 1985-07-19 | 1987-01-29 | 三菱重工業株式会社 | Melter for previously irradiated nuclear fuel |
-
1986
- 1986-07-25 JP JP61173662A patent/JPS6330796A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6221096A (en) * | 1985-07-19 | 1987-01-29 | 三菱重工業株式会社 | Melter for previously irradiated nuclear fuel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2536664B1 (en) | Method and apparatus for the extraction and processing of molybdenum-99 | |
JPS6330796A (en) | Rotating drive for continuous melting treater | |
JPH03123896A (en) | Recovery of actinides | |
Uozumi et al. | Recovery of transuranium elements from real high-level liquid waste by pyropartitioning process | |
US4297324A (en) | Apparatus for the continuous processing of compounds in a liquid | |
JPH0356439B2 (en) | ||
US3837065A (en) | Method of semi-automatic encapsulation and a semi-automatic encapsulating apparatus | |
CN110600155B (en) | Logging isotope capsule and split charging device used for same | |
JPH0316639B2 (en) | ||
JPWO2004036595A1 (en) | Light water reactor spent fuel reprocessing method and apparatus | |
Hill et al. | Scale-up problems in the plutonium separations program | |
JP2006313134A (en) | Drum conceal type ion-exchange resin column | |
JPS6330795A (en) | Fuel charging cage conveyor for continuous melting treater | |
JP7298052B2 (en) | Method for separating cesium and technetium | |
JPS6236593A (en) | Melter for irradiated nuclear fuel | |
JPH0664179B2 (en) | Spent nuclear fuel dissolution processing equipment | |
JPS6361195A (en) | Continuous melter for spent nuclear fuel | |
JP2740282B2 (en) | Swing type spiral lift | |
Wymer et al. | Status and Progress Report for Thorium Fuel Cycle Development for Period Ending December 31, 1963 | |
Childress et al. | A Potential Method for Stabilization and Packaging of Damaged Naval Spent Fuel | |
Levitz et al. | Volume reduction and salvage considerations for plutonium-contaminated ferrous metal | |
Odom | CONTINUOUS OR SEMICONTINUOUS LEACHER FOR LEACHING SOLUBLE CORE MATERIAL FROM SHEARED SPENT NUCLEAR FUEL TUBES. | |
JPH01116496A (en) | Hull recovery mechanism for dissolving tank | |
Davydov et al. | Recovery of Pd from spent fuel: 5. Recovery of Pd from high-level PUREX raffinate | |
Watson et al. | A STUDY OF THE REPROCESSING OF SPENT FAST TEST REACTOR FUEL (AND OTHER LMFBR FUELS) IN THE NUCLEAR FUEL SERVICES PLANT. |