JPH0316639B2 - - Google Patents
Info
- Publication number
- JPH0316639B2 JPH0316639B2 JP906085A JP906085A JPH0316639B2 JP H0316639 B2 JPH0316639 B2 JP H0316639B2 JP 906085 A JP906085 A JP 906085A JP 906085 A JP906085 A JP 906085A JP H0316639 B2 JPH0316639 B2 JP H0316639B2
- Authority
- JP
- Japan
- Prior art keywords
- nuclear fuel
- container
- annular
- loading basket
- fuel loading
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003758 nuclear fuel Substances 0.000 claims description 88
- 238000011068 loading method Methods 0.000 claims description 67
- 238000002844 melting Methods 0.000 claims description 34
- 230000008018 melting Effects 0.000 claims description 34
- 239000007788 liquid Substances 0.000 claims description 23
- 238000004090 dissolution Methods 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 17
- 239000002915 spent fuel radioactive waste Substances 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 10
- 238000005192 partition Methods 0.000 claims description 8
- 238000005260 corrosion Methods 0.000 claims description 5
- 230000007797 corrosion Effects 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims 1
- 239000000463 material Substances 0.000 description 43
- 239000000446 fuel Substances 0.000 description 29
- 239000000243 solution Substances 0.000 description 21
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 17
- 229910017604 nitric acid Inorganic materials 0.000 description 17
- 230000004992 fission Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- 229910052778 Plutonium Inorganic materials 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000005253 cladding Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000033001 locomotion Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 238000012958 reprocessing Methods 0.000 description 5
- 230000032258 transport Effects 0.000 description 5
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 5
- 229910052770 Uranium Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- OOAWCECZEHPMBX-UHFFFAOYSA-N oxygen(2-);uranium(4+) Chemical compound [O-2].[O-2].[U+4] OOAWCECZEHPMBX-UHFFFAOYSA-N 0.000 description 4
- FCTBKIHDJGHPPO-UHFFFAOYSA-N uranium dioxide Inorganic materials O=[U]=O FCTBKIHDJGHPPO-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000011437 continuous method Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 238000007664 blowing Methods 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- WJWSFWHDKPKKES-UHFFFAOYSA-N plutonium uranium Chemical compound [U].[Pu] WJWSFWHDKPKKES-UHFFFAOYSA-N 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910000439 uranium oxide Inorganic materials 0.000 description 1
- 229910002007 uranyl nitrate Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は使用済セラミツク核燃料の再処理工程
において、核燃料を加熱された硝酸に溶解し、不
溶解性の被覆材と分離する装置に係わり、特に、
核分裂性物質の濃度の高い核燃料を連続的に高能
率で溶解処理するに好適な装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an apparatus for dissolving nuclear fuel in heated nitric acid and separating it from an insoluble cladding material in a process of reprocessing spent ceramic nuclear fuel. ,
The present invention relates to an apparatus suitable for continuously dissolving nuclear fuel with a high concentration of fissile material at high efficiency.
セラミツク核燃料は通常、円柱型のペレツト状
に焼結加工された核燃料物質を金属製の被覆管中
に密封して燃料体となし、さらに束状に組立て
て、いわゆる核燃料集合体を構成する。
Ceramic nuclear fuel is usually produced by sintering nuclear fuel material into cylindrical pellets, sealing it in a metal cladding tube to form a fuel body, and then assembling it into a bundle to form a so-called nuclear fuel assembly.
核燃料物質には中性子の存在下に核分裂する核
分裂性物質と、中性子の存在下に核分裂性物質を
生成する核原料物質がある。 Nuclear fuel materials include fissile materials that fission in the presence of neutrons and nuclear source materials that generate fissile materials in the presence of neutrons.
質量数が233または235であるウランや質量数が
239または241であるプルトニウムは核分裂性物質
であり、質量数238であるウランはプルトニウム
を生成する核原料物質、質量数が232であるトリ
ウムは質量数が233のウランを生成する核原料物
質である。 Uranium with mass number 233 or 235 or mass number
Plutonium, which has a mass number of 239 or 241, is a fissile material, uranium, which has a mass number of 238, is a nuclear source material that produces plutonium, and thorium, which has a mass number of 232, is a nuclear source material that produces uranium, which has a mass number of 233. .
核分裂性物質の濃度はその燃料が用いられる原
子炉の種類、目的によつて異なつている。低エネ
ルギーに減速された中性子によつて核分裂を持続
させる型式の原子炉では通常は核分裂性物質の濃
度は低く、高エネルギーの中性子によつて核分裂
を持続させる型式の原子炉では通常は核分裂性物
質の濃度が高い。 The concentration of fissile material varies depending on the type and purpose of the reactor in which the fuel is used. Reactors that sustain fission using neutrons slowed down to low energy usually have a low concentration of fissile material, whereas reactors that sustain fission using high-energy neutrons usually have a low concentration of fissile material. The concentration of is high.
核燃料集合体は原子炉の炉心に挿入され、核分
裂性物質の原子は中性子の存在下に核分裂して2
原子の核分裂生成物原子に変ると同時に熱エネル
ギーと放射線を発生する。核原料物質の一部の原
子は中性子を吸収した後、一連の核反応を経て核
分裂性物質の原子となり、その一部は原子炉中で
核分裂する。 The nuclear fuel assembly is inserted into the core of a nuclear reactor, and the atoms of the fissile material are fissioned in the presence of neutrons into 2
Fission products of atomsWhen they change into atoms, they generate heat energy and radiation. After some atoms of the nuclear source material absorb neutrons, they undergo a series of nuclear reactions to become atoms of fissile material, and some of them undergo nuclear fission in the nuclear reactor.
核分裂性物質が消費され、発熱量が低下して原
子炉中での使用に適さなくなつた燃料集合体は原
子炉から取出され、使用済燃料といわれる。 A fuel assembly whose fissile material has been consumed and whose calorific value has decreased and is no longer suitable for use in a nuclear reactor is removed from the reactor and is called spent fuel.
使用済燃料の核分裂性物質、核原料物質を再使
用するため核分裂生成物と分離する工程が再処理
である。 Reprocessing is the process of separating spent fuel fissile materials and nuclear source materials from fission products for reuse.
再処理の工程は一般に多岐にわたる単位工程か
ら構成されるが、通常商業的に行われるピユレツ
クス法と呼ばれる公知の方法においては、その最
初の段階で核燃料体は小片に剪断され続いて核燃
料物質が硝酸に溶解される。核燃料体の被覆材は
一般にジルコニウム合金あるいはステンレス鋼で
硝酸に溶解しないので核燃料物質が溶解した後に
分別される。 The reprocessing process generally consists of a variety of unit steps, but in a commonly known commercial method called the Piurex process, the first step is to shear the nuclear fuel assembly into small pieces, and then the nuclear fuel material is exposed to nitric acid. dissolved in The cladding material of a nuclear fuel body is generally a zirconium alloy or stainless steel and is not dissolved in nitric acid, so it is separated after the nuclear fuel material is dissolved.
核燃料の溶解工程において第一に考慮すべき技
術的問題点は臨界安全対策すなわち連鎖的核分裂
反応の防止対策である。 The first technical issue to be considered in the nuclear fuel melting process is criticality safety measures, that is, measures to prevent chain fission reactions.
臨界安全上の対策は核燃料中の核分裂性物質の
濃度に依存するが、一般に極めて保守的に取扱わ
れ、いかなる場合にも臨界安全が達成されるよう
に配慮される。 Criticality safety measures depend on the concentration of fissile material in the nuclear fuel, but are generally treated very conservatively and care is taken to ensure criticality safety is achieved in any case.
一般に、核分裂性物質の濃度は原子炉中で消費
される前の高濃度であり、核分裂生成物や残存す
る可燃性中性子毒物の中性子吸収は無いものと
し、また、溶解装置の中では最も核分裂反応が起
りやすい条件にあるものとする。 In general, the concentration of fissile material is high before it is consumed in the reactor, and there is no neutron absorption of fission products or residual flammable neutron poisons. Assume that conditions are such that it is easy for this to occur.
核燃料の溶解装置の設計においては、構成する
部分の幾何学的形状を装荷する可能性のある核分
裂性物質の量に対応して制限するのが通常であ
る。 In the design of nuclear fuel melting devices, it is common to limit the geometry of the constituent parts in accordance with the amount of fissile material that may be loaded.
すなわち、円筒形の容器においてはその直径、
平板状の容器ではその厚さをそれぞれ制御する。
容器の外側に水または蒸気を通すための外套を持
つ場合には当該外套まで含めた寸法で制限され
る。円筒と平板の折衷として厚さを制限した円環
状の容器が用いられることがある。 In other words, for a cylindrical container, its diameter,
For flat containers, the thickness is controlled.
If the container has a jacket on the outside to allow water or steam to pass through, the dimensions are limited by including the jacket. An annular container with a limited thickness is sometimes used as a compromise between a cylinder and a flat plate.
特に円環状の容器の場合に、内筒の外側に熱中
性子を効果的に吸収するカドミウムの薄板を貼り
つけ、かつ、内筒内に中性子を減速して熱中性子
化するために効果的な物質を配置して、安全性を
高め、あるいは、厚さの制限を緩めることが公知
である。 Particularly in the case of an annular container, a thin cadmium plate that effectively absorbs thermal neutrons is pasted on the outside of the inner cylinder, and a material that is effective for decelerating neutrons and converting them into thermal neutrons is placed inside the inner cylinder. It is known to increase safety or relax thickness restrictions by arranging
核燃料を装荷するかごを用いる場合にはかごの
寸法は容器とは別に制限される必要がある。 When using a cage for loading nuclear fuel, the dimensions of the cage must be limited separately from the container.
核燃料の溶解工程において第二に考慮すべき技
術的問題点は溶解に伴う反応の制御である。 The second technical issue to be considered in the nuclear fuel melting process is the control of the reactions involved in melting.
セラミツク核燃料の代表的な物質である二酸化
ウランを硝酸に溶解する場合、溶解速度は二酸化
ウランの表面積と硝酸の濃度および温度に影響さ
れる。実際の場合にはさらに二酸化ウランの表面
で溶解生成物である硝酸ウラニル水溶液と硝酸を
置換する速度に影響される。 When uranium dioxide, a typical substance in ceramic nuclear fuel, is dissolved in nitric acid, the dissolution rate is affected by the surface area of uranium dioxide, the concentration of nitric acid, and temperature. In actual cases, it is further influenced by the rate at which nitric acid is replaced by an aqueous solution of uranyl nitrate, which is a dissolved product, on the surface of uranium dioxide.
限られた形状の溶解装置で能率を高めるために
硝酸の温度を沸騰点まで高め、また、熱サイホン
によつて容器内の硝酸を循環させ、あるいは、気
体を吹き込んで流動させるなどの方法が既に提案
されている。 In order to increase the efficiency of a melting device with a limited shape, there are already methods such as raising the temperature of nitric acid to the boiling point, circulating the nitric acid in a container using a thermosiphon, or making it flow by blowing gas. Proposed.
一方、二酸化ウランが硝酸に溶解する反応に伴
つて多量の酸化窒素ガスを発生するため、溶解速
度が大きすぎると容器から泡が噴出し、これに伴
つて高放射性の溶解液が不用に拡散する恐れがあ
る。核燃料の剪断で生じた微小な粉末が溶解する
場合に特に著しい問題となる。 On the other hand, the reaction of uranium dioxide dissolving in nitric acid generates a large amount of nitrogen oxide gas, so if the dissolution rate is too high, bubbles will erupt from the container, causing the highly radioactive solution to spread unnecessarily. There is a fear. This becomes a particularly serious problem when fine powder generated by shearing nuclear fuel dissolves.
核燃料の溶解装置として、核燃料の装荷した容
器中に必要なだけの硝酸を加えて溶解を完結し、
溶解液を取り出すいわゆる回分方式と容器に核燃
料と硝酸を装荷しながら溶解液を取り出すいわゆ
る連続方式ならびに両者を折衷した半連続方式が
ある。 As a nuclear fuel melting device, the necessary amount of nitric acid is added to the container loaded with nuclear fuel to complete the melting.
There is a so-called batch method in which a solution is taken out, a so-called continuous method in which a container is loaded with nuclear fuel and nitric acid while the solution is taken out, and a semi-continuous method that is a compromise between the two.
一般に連続方式は高能率であるが、被覆材から
なる不溶解物の取り出しに問題があり、この点を
解決するために、特開昭56−94297号公報記載の
処理物を液中で連続的に処理する装置が提案され
ている。しかし、この装置は、縦長構造のために
耐震性の点で不利であること、又、構造が複雑な
ためハルにより経路内で目詰りを起すという懸念
がある。 Continuous methods are generally highly efficient, but there is a problem in removing insoluble materials from the coating material. A device for processing this has been proposed. However, this device is disadvantageous in terms of earthquake resistance due to its vertical structure, and there is also concern that the hull may clog the channel due to its complex structure.
本発明の目的は、核分裂性物質の濃度が高い核
燃料を溶解処理液に溶解するにあたり、臨界安全
性を保ちながら処理容量を大きく保ち、溶解工程
の進行を完全ならしめ、剪断片の装荷や被覆材の
取出しに際して経路の詰りがなく、高腐食性の雰
囲気中で機械的耐久性を保ち、故障時にあつても
保守の容易な核燃料の連続溶解処理装置を提供す
ることにある。
The purpose of the present invention is to maintain a large processing capacity while maintaining criticality safety when dissolving nuclear fuel with a high concentration of fissile material in a dissolution treatment solution, to complete the progress of the dissolution process, and to load and coat sheared fragments. To provide a continuous melting and processing device for nuclear fuel that does not cause clogging in a path when taking out materials, maintains mechanical durability in a highly corrosive atmosphere, and is easy to maintain even in the event of a failure.
本発明の溶解装置は、環状容器と該容器の液面
上で支えられた環状の駆動わくから核燃料装荷か
ごを吊下げ、かごの下部を硝酸溶液などに浸しな
がら環状容器中を一方向に水平移動させる構造と
したことを特徴とする。
The melting device of the present invention suspends a nuclear fuel loading basket from an annular container and an annular drive frame supported above the liquid surface of the container, and moves horizontally in one direction in the annular container while dipping the lower part of the basket in a nitric acid solution or the like. It is characterized by having a structure that allows it to be moved.
本発明の特徴によれば、環状容器を用いている
ので容器の厚さが小さいにも拘らず内容積は大き
くすることができ、また、断面が扇形の核燃料装
荷かごの採用によつて核燃料の装荷容量も大きく
することができる。 According to the features of the present invention, since an annular container is used, the internal volume can be increased despite the small thickness of the container, and by adopting a nuclear fuel loading basket with a fan-shaped cross section, nuclear fuel can be Loading capacity can also be increased.
本発明の別の特徴は、環状容器に隔壁を設ける
ことにあり、これによつて核燃料が移動につれて
向流する硝酸と接触できることである。 Another feature of the invention is that the annular vessel is provided with a partition, which allows the nuclear fuel to come into contact with countercurrent nitric acid as it travels.
本発明のさらに別の特徴によれば、溶解される
べき核燃料の体積の割に装荷かごの開口面積が大
きく、さらに上部に連通した空間が存在させるこ
とにあり、これにより溶解に伴う酸化窒素の泡発
の影響をまぬがれることができる。 According to yet another feature of the present invention, the opening area of the loading cage is large in relation to the volume of the nuclear fuel to be melted, and a communicating space is also present in the upper part. It can avoid the effects of foaming.
以下、本発明の実施例を説明する。 Examples of the present invention will be described below.
第1図は一実施例になる溶解装置の基本構成を
示す斜視図である。 FIG. 1 is a perspective view showing the basic configuration of a melting device according to an embodiment.
装置は基本的に外壁1、内壁2、底板3から構
成される環状容器と複数の同一形状を有する燃料
装荷かご4から構成される。底板3は連続して滑
らかな傾斜を有しており、燃料装荷かご4の目孔
から落下した小さな不溶性片は次第に最深部に移
動する。燃料装荷かご4の下半は溶解処理液5の
液面下に浸つている。 The device basically consists of an annular container consisting of an outer wall 1, an inner wall 2, and a bottom plate 3, and a plurality of fuel loading baskets 4 having the same shape. The bottom plate 3 has a continuous and smooth slope, and small insoluble pieces that fall through the holes of the fuel loading basket 4 gradually move to the deepest part. The lower half of the fuel loading basket 4 is immersed below the surface of the dissolving treatment liquid 5.
第1図に基本構成を示す装置は定つた位置にお
いて核燃料を装荷かごに装荷すれば順次一方向に
移動してゆき、別の定つた場所において不溶性の
残留物を排出することによつて連続的に運転でき
るものである。 The basic configuration of the device is shown in Figure 1. When nuclear fuel is loaded into a loading basket at a fixed location, it is sequentially moved in one direction, and in another fixed location, the insoluble residue is discharged, thereby allowing continuous operation. It is something that can be driven.
第2図は実施例の下位構成を示す図である。第
2図に追加されたものは環状わく6である。環状
わく6は環状容器の本体部分の上部で支持され回
転運動する。環状わく6は内輪7、外輪8とさん
9で一体に構成され、燃料装荷かご4を吊り下げ
る扇形わく10を形成している。 FIG. 2 is a diagram showing the lower structure of the embodiment. What has been added to FIG. 2 is an annular frame 6. The annular frame 6 is supported on the upper part of the main body portion of the annular container and rotates. The annular frame 6 is integrally constituted by an inner ring 7, an outer ring 8, and a ring 9, forming a fan-shaped frame 10 from which the fuel loading basket 4 is suspended.
第3図は実施例のさらに下位構成を説明する概
要図である。第3図は燃料装荷かご4の詳細を示
す。 FIG. 3 is a schematic diagram illustrating a further lower structure of the embodiment. FIG. 3 shows details of the fuel loading basket 4.
燃料装荷かご4は断面が扇形で扇形底板11、
側板12および縁わく13よりなつている。底板
11および側板12の接液部には多数の目孔(図
示せず)を有している。燃料装荷かご4の形状は
環状容器の外壁1、内壁2のそれぞれ表面と等間
隔の距離を保つように設定される。縁わく13は
環状わく6の扇形わく10と共動し燃料装荷かご
4を吊下げるよう作動する。 The fuel loading basket 4 has a fan-shaped cross section and a fan-shaped bottom plate 11;
It consists of a side plate 12 and an edge frame 13. The liquid contact portions of the bottom plate 11 and the side plates 12 have a large number of holes (not shown). The shape of the fuel loading basket 4 is set so as to maintain equal distances from the surfaces of the outer wall 1 and inner wall 2 of the annular container. The edge frame 13 cooperates with the sector frame 10 of the annular frame 6 and operates to suspend the fuel loading basket 4.
第4図は実施例における装置の構成を説明する
概略図である。第4図では環状容器は隔壁14で
区画されている。この場合核燃料装荷かご4は反
時計方向に順次移動する。燃料装荷口15はその
直下に核燃料装荷かご4が位置した時に燃料体剪
断機(図示せず)から核燃料剪断片を通過させ核
燃料を核燃料装荷かご4に装荷する。排気口16
は溶解装置内で発生する気体類を排気し、内部を
負圧に保つために排気設備(図示せず)に接続さ
れる。搬送部17は環状容器の上部で隔壁14を
またぐように設置されており、まず定位置まで到
達した核燃料装荷かご4を吊上位置18まで引上
げられ、扉19を開いて開口部20から受渡装置
(図示せず)によつて取り出され、不溶解の内容
物が排出された後に元の吊上位置18に戻され
る。核燃料装荷かご4は搬送部17によつて吊下
位置21まで移送し、溶解処理液5に浸漬され
る。 FIG. 4 is a schematic diagram illustrating the configuration of the apparatus in the embodiment. In FIG. 4, the annular container is partitioned by partition walls 14. In FIG. In this case, the nuclear fuel loading cage 4 sequentially moves counterclockwise. When the nuclear fuel loading basket 4 is positioned directly below the fuel loading port 15, nuclear fuel sheared pieces from a fuel body shearer (not shown) pass therethrough, and the nuclear fuel is loaded into the nuclear fuel loading basket 4. Exhaust port 16
is connected to exhaust equipment (not shown) in order to exhaust gases generated within the melting device and maintain a negative pressure inside. The transport section 17 is installed at the upper part of the annular container so as to straddle the partition wall 14. First, the nuclear fuel loading basket 4 that has reached the fixed position is lifted up to the lifting position 18, and the door 19 is opened and the delivery device is opened through the opening 20. (not shown) and returned to the original lifting position 18 after the undissolved contents have been evacuated. The nuclear fuel loading basket 4 is transported to the hanging position 21 by the transport section 17 and immersed in the dissolution treatment liquid 5.
第5図は実施例における装置の1断面の構造を
示す概略図である。環状わく6は下方ローラ21
と側方ローラ22と環状ガイド23によつて水平
かつ偏心なく支えられている。環状わく6にはま
たラツク歯24が取りつけられ、ピニオン歯車2
5およびこれと接続された駆動装置(図示せず)
で回転される。環状容器の頂部は接液部より拡巾
された環状フランジ26を形成しており、蓋27
がガスケツト28を介して遠隔操作が可能なねじ
29で締つけられ、気密性を保つている。ここで
は、排気口16が蓋27と一体化している場合を
示している。 FIG. 5 is a schematic diagram showing the structure of one cross section of the device in the embodiment. The annular frame 6 is a lower roller 21
It is supported horizontally and without eccentricity by the side rollers 22 and the annular guide 23. A rack tooth 24 is also attached to the annular frame 6, and the pinion gear 2
5 and a drive device connected thereto (not shown)
It is rotated by The top of the annular container forms an annular flange 26 wider than the wetted part, and a lid 27.
is tightened with a remotely controllable screw 29 via a gasket 28 to maintain airtightness. Here, a case is shown in which the exhaust port 16 is integrated with the lid 27.
第5図から明らかなように、蓋27を取り外せ
ば環状わく6は真直ぐ上方に引上げることによつ
て容易に取はずすことができ、下方ローラ21、
側方ローラ22、ラツク歯24の点検保守を容易
に行うことができる。 As is clear from FIG. 5, once the lid 27 is removed, the annular frame 6 can be easily removed by pulling it straight upwards, and the lower roller 21,
Inspection and maintenance of the side rollers 22 and the rack teeth 24 can be easily performed.
ジヤケツト30は蒸気を導入して加熱あるいは
冷水を導入して冷却を行うために用いられる。ジ
ヤケツト30は環状容器の外壁1および内壁2の
延長部と底板3およびジヤケツト底31で囲われ
ている。この構成は万一ジヤケツト30内に溶解
液が侵入しても臨界安全上支障がないよう配慮さ
れている。 The jacket 30 is used for heating by introducing steam or for cooling by introducing cold water. The jacket 30 is surrounded by an extension of the outer wall 1 and inner wall 2 of the annular container, the bottom plate 3 and the jacket bottom 31. This configuration is designed to ensure that even if the solution should enter the jacket 30, there will be no problem in terms of criticality safety.
熱中性子吸収板32は水タンク33と内壁2の
隙き間に強固に取りつけてあり、核燃料が発生す
る中性子が水タンク33の中で減速して熱中性子
になつた後は吸収してしまい中性子増倍率が高く
なることを防止する。 The thermal neutron absorption plate 32 is firmly attached to the gap between the water tank 33 and the inner wall 2, and absorbs the neutrons generated by the nuclear fuel after they decelerate in the water tank 33 and become thermal neutrons. Prevent the multiplication factor from increasing.
第6図は実施例における装置の一部を示す断面
図である。1または複数の空気揚液器34が環状
容器の最深部から溶液を汲み上げ吐出口35から
環状わく6の外輪8に設けた切欠36を通して核
燃料装荷かご4中に戻す。環状容器の底部に留る
不溶片を核燃料装荷かご4中に戻すと同時に溶液
の撹拌を行つている。空気吹込口37もまた環状
容器の最深部に設置され、溶液の撹拌・均一化を
図る。溶液排出口38は溶液面からの溢流分を排
出するが、溶液排出管39は蒸気エジエクタ(図
示せず)と共動して環状容器中の液体をすべて排
出する場合に用いられる。燃料装荷口15は蓋3
1と一体となり、ガスケツト28を介して遠隔操
作が可能なねじ29で環状フランジ26に締めつ
けられている。 FIG. 6 is a sectional view showing a part of the device in the embodiment. One or more air lifters 34 pump the solution from the deepest part of the annular container and return it to the nuclear fuel loading basket 4 through a discharge port 35 and a notch 36 provided in the outer ring 8 of the annular frame 6. The solution is stirred at the same time as the insoluble pieces remaining at the bottom of the annular container are returned to the nuclear fuel loading basket 4. An air inlet 37 is also installed at the deepest part of the annular container to stir and homogenize the solution. The solution outlet 38 drains the overflow from the solution surface, and the solution drain pipe 39 is used in conjunction with a steam ejector (not shown) to drain all the liquid in the annular container. The fuel loading port 15 is connected to the lid 3
1 and is tightened to the annular flange 26 via a gasket 28 with a screw 29 that can be remotely operated.
第7図は実施例における装置の他の一部断面を
示す図である。この断面では核燃料装荷かご4が
吊上位置18に位置している。内扉40は環状容
器の負圧を維持するために常時閉じているが、吊
上装置41が降下する前には開放する。吊上装置
41は搬送部17に付属しており、環状わく6の
扇形わく10の中から核燃料装荷かご4を吊り上
げる。スプレー42は水または蒸気を噴射して核
燃料装荷かご4に付着した溶解処理液を洗い落
す。放射線検出器43は核燃料装荷かご4の中に
溶け残つた核燃料物質が発生する放射線を選択的
に測定する。溶け残りがないと判断されれば扉1
9を開き、開口部20を通して受渡装置44で核
燃料装荷かご4を外部に取り出す。受渡装置44
は回転機構を持ち、内容物を受け皿45を介して
容器46に移した後、核燃料装荷かご4を吊上装
置41に受渡す。扉19を閉じた後に搬送部17
は核燃料装荷かご4を吊下位置20まで移送す
る。吊下位置20の直下の内扉40を開いて核燃
料装荷かご4を扇形わく10の中に吊り下ろし、
引上装置41が引込んでから内扉40を閉じる。
空の核燃料装荷かご4は下部が溶解処理液5に浸
漬され、次に燃料装荷口15の直下に移動した時
に装荷が行われる。 FIG. 7 is a diagram showing another partial cross section of the device in the embodiment. In this cross section, the nuclear fuel loading cage 4 is located at the lifting position 18. The inner door 40 is always closed to maintain negative pressure in the annular container, but is opened before the lifting device 41 is lowered. The lifting device 41 is attached to the transport section 17 and lifts the nuclear fuel loading basket 4 from inside the fan-shaped frame 10 of the annular frame 6. The spray 42 injects water or steam to wash off the dissolution treatment liquid adhering to the nuclear fuel loading cage 4. The radiation detector 43 selectively measures radiation generated by nuclear fuel material remaining dissolved in the nuclear fuel loading basket 4. If it is determined that there is no melting remaining, door 1
9 is opened, and the nuclear fuel loading basket 4 is taken out to the outside by the delivery device 44 through the opening 20. Delivery device 44
has a rotation mechanism, and after transferring the contents to a container 46 via a receiving tray 45, delivers the nuclear fuel loading basket 4 to the lifting device 41. After closing the door 19, the transport section 17
transports the nuclear fuel loading basket 4 to the hanging position 20. Open the inner door 40 directly below the hanging position 20 and suspend the nuclear fuel loading basket 4 into the fan-shaped frame 10.
After the lifting device 41 is retracted, the inner door 40 is closed.
The lower part of the empty nuclear fuel loading basket 4 is immersed in the dissolution treatment liquid 5, and then loading is performed when the empty nuclear fuel loading basket 4 is moved directly below the fuel loading port 15.
溶解処理液供給口47は複数個設置され、少く
とも1個は溶解処理液を切欠36を通して核燃料
装荷かご4に直接供給する。ここで、次の段階で
は吊上げられる燃料装荷かご4には十分に溶解能
力のある新溶解処理液が注がれ、不溶性の被覆材
に付着する可溶性の核燃料物質は効果的に除去さ
れる。 A plurality of dissolution treatment liquid supply ports 47 are installed, and at least one of them directly supplies the dissolution treatment liquid to the nuclear fuel loading basket 4 through the notch 36. In the next step, a new dissolution treatment liquid having sufficient dissolution ability is poured into the fuel loading basket 4 to be lifted, and the soluble nuclear fuel material adhering to the insoluble covering material is effectively removed.
第8図は実施例装置の運転状況を説明するため
の側面からの展開図である。装置内には環状わく
6に配置された扇形わく10の数量より2個少な
い数の核燃料装荷かご4が最大限配置される。 FIG. 8 is a side development view for explaining the operating conditions of the embodiment device. The maximum number of nuclear fuel loading baskets 4 that is two fewer than the number of fan-shaped frames 10 arranged in the annular frame 6 is arranged in the device.
核燃料装荷かご4の移動は常時連続的である必
然性はなく、むしろ、少なくとも核燃料装荷と核
燃料装荷かご4の吊上げ、吊下ろしとは環状わく
6を一定位置に停止した状態で行うことが好まし
い。核燃料の核燃料装荷かご4への装荷方法は本
発明の範囲外であるが、この装置の運転上は溶解
反応に伴う酸化窒素の多量の発泡を防ぐための装
荷速度を制限して行う。 The movement of the nuclear fuel loading basket 4 does not necessarily have to be continuous at all times; rather, it is preferable that at least the loading of nuclear fuel and the lifting and lowering of the nuclear fuel loading basket 4 be carried out with the annular frame 6 stopped at a fixed position. Although the method of loading nuclear fuel into the nuclear fuel loading basket 4 is outside the scope of the present invention, the loading speed is limited in order to prevent a large amount of nitrogen oxide from foaming due to the dissolution reaction when operating this device.
次に、本発明を核分裂性物質濃度の高い高速増
殖炉、炉心燃料の溶解に用いた場合の実施例につ
いて説明する。 Next, an embodiment will be described in which the present invention is applied to a fast breeder reactor with a high concentration of fissile material and melting of core fuel.
高速増殖炉、炉心燃料は外径6.5mm、肉厚0.47
mmのステンレス鋼被覆管に核分裂性プルトニウム
を20%含むウラン−プルトニウム混合酸化物ペレ
ツト220gと劣化ウランの酸化物からなるペレツ
ト150gを装填して端栓を密封した燃料棒から構
成されている。燃料棒の重量は520gである。 Fast breeder reactor, core fuel has an outer diameter of 6.5 mm and a wall thickness of 0.47 mm.
The fuel rod consists of a stainless steel cladding tube with a diameter of 1.5 mm, filled with 220 g of uranium-plutonium mixed oxide pellets containing 20% fissile plutonium, and 150 g of depleted uranium oxide pellets, with the end plugs sealed. The weight of the fuel rod is 520g.
この燃料は原子炉中で定格まで使用された後、
燃料棒中の核分裂性プルトニウムは約半分に減少
しているが再処理のための溶解装置の説明にあた
つては、燃焼が進んでいない場合にも備え、ま
た、核分裂性プルトニウムの含量が多い部分のみ
が溶解装置に装荷されることにも対処しなければ
ならない。 After this fuel has been used up to its rating in the reactor,
The amount of fissile plutonium in the fuel rods has been reduced by about half, but when explaining the melting equipment for reprocessing, it is necessary to prepare for cases where combustion has not progressed, and the content of fissile plutonium is high. It must also be accommodated that only parts are loaded into the melting device.
耐硝酸性の金属材料製で内側壁のカドミウム薄
板を貼りつけ、さらに水タンクを中心に配置して
構成された環状溶解容器で上記の高核分裂性物質
濃度燃料を溶解する場合、臨界安全を確保するた
めに必要な容器厚さ制限値は内法で75mmであり、
燃料棒の剪断片を装荷するためのかごの厚さ制限
値は内法で50mmであつた。 Criticality safety is ensured when melting the above-mentioned high fissile material concentration fuel in an annular melting vessel made of nitric acid-resistant metal material with a thin cadmium plate attached to the inner wall and a water tank placed in the center. The container thickness limit required for this purpose is 75 mm based on the internal method.
The thickness limit of the cage for loading the sheared pieces of fuel rods was 50 mm based on the internal method.
溶解に先立つて長さ約30mmに剪断された燃料棒
は核燃料装荷かごに容積1あたり4.8Kgが装荷
される。このうち、核燃料酸化物は3.4Kgである。 Prior to melting, the fuel rods are sheared to a length of about 30 mm and loaded into a nuclear fuel loading basket at 4.8 kg per volume. Of this, 3.4 kg is nuclear fuel oxide.
内径2m、容器壁厚さ10mm、内法厚さ75mm最深
液深500mm、最浅液深300mmの環状容器の溶解処理
液収容量は197である。 The dissolution processing solution capacity of the annular container with an inner diameter of 2 m, a container wall thickness of 10 mm, an inner thickness of 75 mm, a deepest liquid depth of 500 mm, and a shallowest liquid depth of 300 mm is 197.
一方、核燃料装荷かごとしては、弧の長さが内
法で532mmと505mmで厚さが50mmで深さが450mmと
し、溶解装置には10個を装荷する。 On the other hand, the nuclear fuel loading basket will have arc lengths of 532 mm and 505 mm, a thickness of 50 mm, and a depth of 450 mm, and 10 will be loaded into the melting device.
1個の核燃料装荷かごの液浸容積は液浸深さが
300mmの場合に7.77であり、核燃料の充填高さ
を200mmとすれば5.18となり、燃料棒の装荷量
は24.86Kg、核燃料酸化物量は17.6Kgである。こ
の量は燃料棒単位として約48本分である。 The immersion volume of one nuclear fuel loading basket is determined by the immersion depth.
In the case of 300mm, it is 7.77, and if the filling height of nuclear fuel is 200mm, it becomes 5.18, the fuel rod loading amount is 24.86Kg, and the amount of nuclear fuel oxide is 17.6Kg. This amount is equivalent to approximately 48 fuel rods.
1個の核燃料装荷かごへの装荷サイクルは1時
間であり、装荷の開始から取出しまでの溶解時間
は9時間となる。本装置が1日で溶解できる核燃
料棒の重量は最大で596Kgでここに含まれる核燃
料酸化物量は422Kgである。 The loading cycle for one nuclear fuel loading basket is 1 hour, and the melting time from the start of loading to unloading is 9 hours. The maximum weight of nuclear fuel rods that this device can melt in one day is 596 kg, and the amount of nuclear fuel oxide contained in this rod is 422 kg.
酸化物燃料の溶解に消費する硝酸量は1日あた
り630Kgで、8規程の硝酸が1日あたり1250供
給された。溶解液の平均濃度は384gU+Pu/
で、硝酸濃度は3規程であつた。 The amount of nitric acid consumed to dissolve the oxide fuel was 630 kg per day, and 1250 nitric acid of 8 regulations was supplied per day. The average concentration of the solution was 384gU+Pu/
The nitric acid concentration was according to 3 regulations.
溶解にあたつて、環状容器の底部に分割して設
置されたジヤケツトに適宜加熱用水蒸気を供給す
ることによつて溶解反応部の液温を90℃に保つ
た。 During dissolution, the liquid temperature in the dissolution reaction section was maintained at 90° C. by appropriately supplying heating steam to jackets installed separately at the bottom of the annular container.
溶解処理液の対流、空気吹込み撹拌、空気揚液
器による循環によつて溶解溶液の取出濃度は事実
上一様に保たれた。 Convection of the lysis solution, air blowing agitation, and circulation by an air lifter kept the concentration of the lysis solution virtually uniform.
溶解装置中で9時間保持された核燃料装荷かご
中には平均して7.3Kgのステンレス鋼被覆材が残
つており、1時間に1回あたり装置外に取出され
て、収納容器に移された。 On average, 7.3 kg of stainless steel cladding material remained in the nuclear fuel loading basket held in the melter for 9 hours, and was removed from the reactor once every hour and transferred to a storage container.
実施例の記載に拘らず、本発明の効果は他の変
形例においても発揮できるものである。 Irrespective of the description of the embodiments, the effects of the present invention can also be exhibited in other modifications.
例えば、環状容器の寸法は必らずしも本発明の
効果を制限するものではなく、再処理工程の必要
性と臨界安全上の制限から定まるものである。 For example, the dimensions of the annular vessel do not necessarily limit the effectiveness of the present invention, but are dictated by the needs of the reprocessing process and criticality safety constraints.
ただし、容器の深さを極端に深くすることは溶
解装置の製品である溶解液の濃度を一定に保つ上
で好ましいものではない。 However, it is not preferable to make the depth of the container extremely deep in order to maintain a constant concentration of the solution that is the product of the dissolution device.
本発明に係わる装置で実施例に用いられている
各種の構成、部品、構造についても目的を達成し
うるものであればその種類を限定されるものでは
ない。 The various configurations, parts, and structures used in the embodiments of the apparatus according to the present invention are not limited in type as long as they can achieve the purpose.
例えば、環状わくの駆動方法は実施例の記載に
拘わらず一般的な各種歯車を用いた等速回転機構
あるいは、爪車による不等速回転機構などの中か
ら選択できる。本機構で求められる必要条件は回
転運動そのものではなく、所定位置における停止
の精度と確実性であつて、本発明の下位概念の一
つである核燃料装荷かごの環状わくへの装脱着を
達成するために必要である。この目的からは、歯
車に回転運動を伝達する方式よりも往復運動の回
数が回転角度に対応する方式の方が好ましい。 For example, the method for driving the annular frame may be selected from a constant speed rotation mechanism using various general gears, an inconstant speed rotation mechanism using a ratchet, etc., regardless of the description of the embodiments. The required condition for this mechanism is not rotational movement itself, but accuracy and certainty of stopping at a predetermined position, which is one of the sub-concepts of the present invention, which is to achieve the attachment and detachment of the nuclear fuel loading basket to the annular frame. It is necessary for For this purpose, a system in which the number of reciprocating movements corresponds to the rotation angle is preferable to a system in which rotational motion is transmitted to gears.
本発明は、臨界安全の確保という核燃料物質に
特有の特殊な条件において好適な効果を有するも
のであり、この目的のためには装置の形状におい
て容器の厚さ、かごの厚さの増大を伴う変形は厳
に防止せねばならない。この点で、単なる平板構
造よりも環状構造は構造力学的な安定性を有して
いるが、さらに補強を付加することは本発明の有
効性を損うものではない。 The present invention has a favorable effect under the special conditions peculiar to nuclear fuel materials such as ensuring criticality safety, and for this purpose, the shape of the device is accompanied by an increase in the thickness of the container and the thickness of the cage. Deformation must be strictly prevented. In this respect, the annular structure has more structural and mechanical stability than a simple plate structure, but the addition of further reinforcement does not impair the effectiveness of the present invention.
本発明の適用にあたり、実施例における対象核
燃料物質はプルトニウムとウランの混合酸化物と
したが、本発明は臨界安全を配慮する必要がある
程度において核分裂性物質を含有する核燃料物質
と当該物質を溶解する溶解処理液との組み合わせ
に対して有効である。装置を構成する材料は加熱
された溶解処理液に対して耐腐食性を有し、かつ
耐放射線性を有すればよい。運動を伴う部品の摺
動部は腐食による損傷を受けやすいため他の部分
と異なる材料を用いることができる。 In applying the present invention, the target nuclear fuel material in the examples was a mixed oxide of plutonium and uranium, but the present invention dissolves the material with nuclear fuel material containing fissile material to the extent that it is necessary to consider criticality safety. Effective in combination with dissolving treatment liquid. The material constituting the device only needs to be corrosion resistant to the heated dissolution treatment solution and radiation resistant. The sliding parts of moving parts are easily damaged by corrosion, so they can be made of a different material from other parts.
本発明によれば環状容器中で核燃料装荷かごを
一方向に移動させながら連続的に溶解を行わせる
ため以下に示す効果がある。
According to the present invention, melting is performed continuously while moving the nuclear fuel loading basket in one direction in the annular container, so that the following effects can be achieved.
(1) 容器の厚さを一定値以下に制限した場合でも
容器の容積は大きく、かつ据付面積は小さい。(1) Even if the thickness of the container is limited to a certain value or less, the volume of the container is large and the installation area is small.
(2) 環状容器は平板状容器と比較して構造力学的
安定性がある。(2) Annular containers have more structural and mechanical stability than flat containers.
(3) 移動機構は環状のわくを溶解液面により離れ
た場所で水平に支持しながら回転して行うた
め、位置制御の信頼性があり、また、駆動部に
腐食の問題が少ない。(3) The movement mechanism rotates an annular frame while supporting it horizontally at a distance from the solution surface, so position control is reliable and there are fewer corrosion problems in the drive part.
(4) 装置に装荷した核燃料は工程中を通じて同一
のかご中に存在するため経路における詰りは最
小限とされる。(4) Nuclear fuel loaded into the equipment remains in the same cage throughout the process, so clogging in the route is minimized.
(5) 核燃料装荷かご中の残存物質を含む状態は一
工程サイクル毎に監視できるため工程の管理が
容易で、かつ、溶解不良等の非定常状態の発生
に対しても対策が容易である。(5) The state of the nuclear fuel loading basket, including residual materials, can be monitored for each process cycle, making it easy to manage the process and to take measures against the occurrence of unsteady conditions such as poor melting.
(6) 装置の基本的構成がすべての部品を上方に向
けて撤去できるようになつており、遠隔操作に
よつて解体し、保守を行うことが容易である。(6) The basic structure of the device is such that all parts can be removed by pointing upwards, making it easy to disassemble and maintain by remote control.
第1図ないし第4図は本発明の実施例になる使
用済核燃料の連続溶解装置の基本構成を示す斜視
図、第5図は実施例の溶解装置の一部分の断面を
示す図、第6図及び7図は実施例の溶解装置の他
の部分断面を示す図、第8図は実施例の溶解装置
の運転状況を示す側面からの展開図である。
1……外壁、2……内壁、3……底板、4……
核燃料装荷かご、5……溶解処理液、6……環状
わく、7……内輪、8……外輪、9……さん、1
0……扇形わく、11……扇形底板、12……側
板、13……縁わく、14……隔壁、15……燃
料装荷口、16……排気口、17……搬送部、1
8……吊上位置、19……扉、20……開口部、
21……吊下位置、22……ローラ、23……環
状ガイド、24……ラツク歯、25……ピニオン
歯車、26……環状フランジ、27……蓋、28
……ガスケツト、29……ねじ、30……ジヤケ
ツト、31……ジヤケツト底、32……熱中性子
吸収板、33……水タンク、34……空気揚液
器、35……吐出口、36……切欠、37……空
気吹込口、38……溶液排出口、39……溶液排
出管、40……内扉、41……吊上装置、42…
…スプレー、43……放射線検出器、44……受
渡装置、45……受け皿、46……容器、47…
…溶解処理液供給口。
1 to 4 are perspective views showing the basic configuration of a continuous melting device for spent nuclear fuel according to an embodiment of the present invention, FIG. 5 is a cross-sectional view of a portion of the melting device of the embodiment, and FIG. 7 are views showing other partial cross sections of the melting device of the example, and FIG. 8 is a developed view from the side showing the operating status of the melting device of the example. 1... Outer wall, 2... Inner wall, 3... Bottom plate, 4...
Nuclear fuel loading basket, 5...Dissolution processing liquid, 6...Annular frame, 7...Inner ring, 8...Outer ring, 9...Mr., 1
0... Fan-shaped frame, 11... Fan-shaped bottom plate, 12... Side plate, 13... Edge frame, 14... Partition wall, 15... Fuel loading port, 16... Exhaust port, 17... Conveying section, 1
8... Lifting position, 19... Door, 20... Opening,
21... Hanging position, 22... Roller, 23... Annular guide, 24... Rack tooth, 25... Pinion gear, 26... Annular flange, 27... Lid, 28
... Gasket, 29 ... Screw, 30 ... Jacket, 31 ... Jacket bottom, 32 ... Thermal neutron absorption plate, 33 ... Water tank, 34 ... Air pump, 35 ... Discharge port, 36 ... ... Notch, 37 ... Air inlet, 38 ... Solution discharge port, 39 ... Solution discharge pipe, 40 ... Inner door, 41 ... Lifting device, 42 ...
...Spray, 43...Radiation detector, 44...Delivery device, 45...Saucer, 46...Container, 47...
...Dissolution processing liquid supply port.
Claims (1)
に複数の耐腐食性核燃料装荷かごを配置し、核燃
料かごの下部を溶解処理液に浸漬しつつ、順次一
方向に移動させるようにしたことを特徴とする使
用済核燃料の連続溶解装置。 2 核燃料装荷かごが環状のわくに吊下げられ、
該環状わくは環状容器の頂部で支持されており、
かつ前記かごと共に水平方向に回転しうるように
構成したことを特徴とする特許請求の範囲第1項
記載の使用済核燃料の連続溶解装置。 3 前記核燃料装荷かごは前記環状容器中に設置
したときの水平断面が扇形構造であることを特徴
とする特許請求の範囲第1項又は第2項記載の使
用済核燃料の連続溶解装置。 4 前記環状容器は少なくとも1個所に隔壁を設
けて仕切られており、仕切られた一端の容器液深
が他端より深く、かつ仕切の間では底部が平滑で
連続していることを特徴とする特許請求の範囲第
3項記載の使用済核燃料の連続溶解装置。 5 前記核燃料装荷かごが前記環状容器内で順次
一方向に移動するにあたり、前記隔壁の手前で容
器外に取出され、水平に移動して前記隔壁の後側
に再配置する構造としたことを特徴とする特許請
求の範囲第3項記載の使用済核燃料の連続溶解装
置。 6 前記環状容器の最深部から液体を連続的に汲
み上げ1ケまたは複数の前記核燃料装荷かご内に
移す構造としたことを特徴とする特許請求の範囲
第1項の装置。 7 前記環状容器において前記核燃料装荷かごの
移動を液深の深い端から浅い端に向けて行われ、
溶解処理液の供給と溶解溶液の排出によつて生ず
る液流と対向的に行なうようにしたことを特徴と
する特許請求の範囲第4項記載の使用済核燃料の
連続溶解装置。 8 前記核燃料装荷かごを吊下げる一体化された
環状のわくは、前記環状容器の上部構造物を取除
くことにより上方に吊り上げて容易に取外すこと
ができる構造としたことを特徴とする特許請求の
範囲第2項記載の使用済核燃料の連続溶解装置。 9 前記核燃料装荷かごを吊下げ、順次一方向に
移動させるための前記環状わくにおいて、前記環
状容器の最深部から連続して汲み上げた液体を前
記核燃料装荷かご中に導入するため部分的な切欠
き部を有することを特徴とする特許請求の範囲第
6項記載の使用済核燃料の連続溶解装置。[Claims] 1. A plurality of corrosion-resistant nuclear fuel loading baskets are arranged in a corrosion-resistant annular container that holds a dissolution treatment solution, and the lower part of the nuclear fuel basket is immersed in the dissolution treatment solution, and the nuclear fuel baskets are sequentially loaded in one direction. A continuous melting device for spent nuclear fuel, characterized in that it is moved. 2 A nuclear fuel loading basket is suspended from a ring-shaped frame,
the annular frame is supported at the top of the annular container;
2. The continuous melting device for spent nuclear fuel according to claim 1, wherein the spent nuclear fuel continuous melting device is configured to be able to rotate horizontally together with the cage. 3. The spent nuclear fuel continuous melting device according to claim 1 or 2, wherein the nuclear fuel loading basket has a fan-shaped horizontal cross section when installed in the annular container. 4. The annular container is partitioned by a partition at at least one location, and the container liquid depth at one partitioned end is deeper than the other end, and the bottom is smooth and continuous between the partitions. A continuous melting device for spent nuclear fuel according to claim 3. 5. When the nuclear fuel loading basket sequentially moves in one direction within the annular container, it is taken out of the container in front of the partition wall, moved horizontally, and relocated to the rear side of the partition wall. An apparatus for continuously melting spent nuclear fuel according to claim 3. 6. The device according to claim 1, characterized in that the liquid is continuously pumped up from the deepest part of the annular container and transferred into one or more of the nuclear fuel loading cages. 7. In the annular container, the nuclear fuel loading basket is moved from an end with a deep liquid depth to an end with a shallow liquid depth,
5. The continuous melting apparatus for spent nuclear fuel according to claim 4, wherein the dissolving process is carried out in opposition to the liquid flow generated by supplying the dissolving treatment liquid and discharging the dissolving solution. 8. The integrated annular frame for suspending the nuclear fuel loading basket has a structure that can be lifted upward and easily removed by removing the upper structure of the annular container. A continuous melting device for spent nuclear fuel according to scope 2. 9 In the annular frame for suspending the nuclear fuel loading basket and moving it sequentially in one direction, a partial notch is provided for introducing liquid continuously pumped from the deepest part of the annular container into the nuclear fuel loading basket. 7. A continuous melting device for spent nuclear fuel according to claim 6, characterized in that the device has a continuous melting device for spent nuclear fuel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60009060A JPS61169798A (en) | 1985-01-23 | 1985-01-23 | Continuous melter for spent nuclear fuel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60009060A JPS61169798A (en) | 1985-01-23 | 1985-01-23 | Continuous melter for spent nuclear fuel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61169798A JPS61169798A (en) | 1986-07-31 |
JPH0316639B2 true JPH0316639B2 (en) | 1991-03-06 |
Family
ID=11710070
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60009060A Granted JPS61169798A (en) | 1985-01-23 | 1985-01-23 | Continuous melter for spent nuclear fuel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61169798A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6361195A (en) * | 1986-09-01 | 1988-03-17 | 株式会社日立製作所 | Continuous melter for spent nuclear fuel |
JPH07122680B2 (en) * | 1986-09-18 | 1995-12-25 | 株式会社日立製作所 | Main structure of continuous reactor for nuclear fuel |
JPH0668551B2 (en) * | 1987-06-19 | 1994-08-31 | 株式会社日立製作所 | Continuous spent fuel processing equipment |
JPH0658430B2 (en) * | 1987-06-19 | 1994-08-03 | 株式会社日立製作所 | Continuous spent fuel processing equipment |
JP4940114B2 (en) * | 2007-11-30 | 2012-05-30 | 株式会社東芝 | Criticality safety management method for continuous dissolution tank in reprocessing facility |
-
1985
- 1985-01-23 JP JP60009060A patent/JPS61169798A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61169798A (en) | 1986-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3241217B1 (en) | Fission reaction control in a molten salt reactor | |
JP7030965B2 (en) | Molten salt reactor | |
JP2001133572A (en) | Molten salt reactor | |
JPS6262308B2 (en) | ||
JPH0316639B2 (en) | ||
CN109887628A (en) | A kind of weary pond of PWR nuclear power plant and refuelling pool integrated apparatus | |
CN209487163U (en) | The refuelling system of pool reactor | |
CN111712886A (en) | Method for long-term storage of spent fuel and cooled storage tank for its implementation | |
US4297324A (en) | Apparatus for the continuous processing of compounds in a liquid | |
US4435363A (en) | Continuous countercurrent liquid-solids contactor | |
US4312836A (en) | Apparatus for the continuous treatment of the compounds in a corrosive liquid | |
Groenier | Equipment for the dissolution of core material from sheared power reactor fuels | |
JP2500408B2 (en) | Continuous melting device for nuclear fuel | |
JP2016031356A (en) | New fuel rod surface decontamination method and new fuel rod surface decontamination apparatus | |
RU2742178C1 (en) | Device for liquid cleaning of long surface area of nuclear reactor core | |
JPS61272697A (en) | Method and apparatus for dissolving used nuclear fuel | |
CN105489254B (en) | The method for managing the hyperreactive in fission-type reactor | |
JPH0552979A (en) | Small-sized fast breeder reactor | |
US3232840A (en) | Nuclear reactor fuel handling apparatus | |
Buck et al. | Chemical processes at UKAEA Works, Dounreay | |
JPS63315994A (en) | Continuous dissolving treatment device for spent nuclear fuel | |
JPS6361195A (en) | Continuous melter for spent nuclear fuel | |
JP2740282B2 (en) | Swing type spiral lift | |
US3481831A (en) | Method of containing and withdrawing fuel from the fuel space in a nuclear reactor | |
Hesson et al. | Nuclear Criticality Control in the EBR-II Fuel Cycle Facility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |