JPS63307916A - Rim molding method for synthetic resin molded product - Google Patents

Rim molding method for synthetic resin molded product

Info

Publication number
JPS63307916A
JPS63307916A JP2941888A JP2941888A JPS63307916A JP S63307916 A JPS63307916 A JP S63307916A JP 2941888 A JP2941888 A JP 2941888A JP 2941888 A JP2941888 A JP 2941888A JP S63307916 A JPS63307916 A JP S63307916A
Authority
JP
Japan
Prior art keywords
holes
electroforming
mandrel
main body
mold main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2941888A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Noda
泰義 野田
Yasuo Usami
宇佐美 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KTX Corp
Original Assignee
KTX Corp
Konan Tokushu Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KTX Corp, Konan Tokushu Sangyo Co Ltd filed Critical KTX Corp
Priority to JP2941888A priority Critical patent/JPS63307916A/en
Publication of JPS63307916A publication Critical patent/JPS63307916A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To lower the air flow resistance in a vent and prevent through-holes from getting clogged by injecting a reacting material into a mold main body having a number of through-holes constituted of micro non-electrodeposit sections, which are generated in the initial stage of electroforming, grown at the time of eletroforming and passed through between the front and rear faces, and carrying out the rim molding. CONSTITUTION:Mold main body 1 is formed by electroforming, and a number of through-holes 2 provided through the mold main body 1 are constituted of micro non-electrodeposit sections generated in the initial stage of electroforming and grown in the thickness direction at the time of electroforming, and the diameters of said through-holes are increased gradually from the surface of the mold main body 1 toward the back face. Desirably the maximum diameter of said through-holes 2 on the surface side of the mold main body 1 should be 0.1-0.5 mm, and the number of through-holes 2 should be 5-10000 per 10 cm<2> area of the mold main body 1 from the viewpoint of vacuum suction force. As the through-holes 2 are passed through by growing micro non-electrodeposit sections, air flow resistance in vacuum suction is low to carry out vacuum section more easily. Also, the through-holes 2 are seldom clogged and the inside of the through-holes 2 can be easily cleaned.

Description

【発明の詳細な説明】 発明の目的 〈産業上の利用分野〉 この発明は電鋳法によって形成される多孔質の成形用金
型を利用した合成樹脂成形品の反応射出成形方法(以下
リム成形という)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Purpose of the Invention (Field of Industrial Application) This invention relates to a reaction injection molding method (hereinafter referred to as rim molding) for synthetic resin molded products using a porous mold formed by electroforming. ).

(従来の技術及び発明が解決しようとする課題)従来の
リム成形法は金型内に反応硬化性樹脂を低圧で緩やかに
注入して成形するものであり、通常、注入時にガス抜き
が行われる。そのためのガス扱き孔はキャピテイの外周
の適宜箇所において両金型の分割面間で形成され、キャ
ビティに連通している。
(Prior art and problems to be solved by the invention) The conventional rim molding method involves slowly injecting a reactive hardening resin into a mold at low pressure, and gas is usually vented during injection. . Gas handling holes for this purpose are formed between the dividing surfaces of both molds at appropriate locations on the outer periphery of the cavity, and communicate with the cavity.

ところが、このガス抜き孔はキャビティの内面全体にあ
るわけではなく、特にガス扱きが困難な箇所にのみ形成
されているため、成形品の形状によっては決してガス抜
きが十分であるとは言えない。ガス扱きが不十分である
と、成形品に巣や焼けが生ずることもある。
However, these gas vent holes are not located on the entire inner surface of the cavity, but are formed only in areas where gas handling is particularly difficult, so depending on the shape of the molded product, gas venting may not be sufficient. Inadequate gas handling may cause cavities or burns in the molded product.

そこで、多孔質の金型を利用すれば、従来のガス扱き孔
が不要になるばかりではなく、キャビティの内面全体で
十分なガス抜きを行うことができる。
Therefore, by using a porous mold, the conventional gas handling holes are not only unnecessary, but also sufficient gas can be vented from the entire inner surface of the cavity.

従来、多孔質の金型を形成するには、旧制法により金型
を成形して自然に多孔質にしたり、合成IM脂材料に混
水させて金型を成形したのち脱水して多孔質゛にする方
法が採用されていた。
Conventionally, in order to form a porous mold, the mold was molded using the old method to make it naturally porous, or the mold was formed by mixing water with a synthetic IM resin material, and then dehydrated to make it porous. The method of doing so was adopted.

しかし、これらの方法では孔が細か過ぎてガス抜きを行
いにくい上、孔が貫通的にならずに詰り易く、孔の掃除
も困難であった。
However, in these methods, the holes are too small and it is difficult to vent gas, and the holes are not penetrating and are easily clogged, and cleaning the holes is also difficult.

また、メッキの応用技術である電鋳法によって金型を成
形する方法も採用されてい・た。この7jF!1法につ
いて以下略述する。
In addition, a method of forming molds using electroforming, which is an applied technology of plating, was also adopted. This 7jF! One method will be briefly described below.

■ まず、電鋳が施される模型(以下、マンドレルとい
う)に導電性付与塗膜、例えばペースト状銀ラッカーと
酢酸ブチル溶液とを混合したスプレー液をIII射して
、マンドレルに導電性を付与する。
■ First, a conductive coating film, such as a spray solution containing a paste silver lacquer and a butyl acetate solution, is sprayed on the model to be electroformed (hereinafter referred to as the mandrel) to impart conductivity to the mandrel. do.

■ 次に、純水にj!1llIと塩化第1スズとを混入
した前処理液を前記マンドレルにはけ等で塗布し、マン
ドレルの表面を活性化させてピンホールの発生を防止す
るための前処理を行う。
■ Next, add pure water! A pretreatment solution containing 1llI and stannous chloride is applied to the mandrel using a brush or the like to activate the surface of the mandrel and perform pretreatment to prevent the formation of pinholes.

■ 次に、電鋳を行う。その電解液には、スルファミン
酸ニッケル液と硼酸とを混合した後、界面活性添加剤と
して例えば少量のラウリル硫酸ナトリウムを添加したも
のを用いる。このラウリル硫酸ナトリウムは電鋳加工時
において、マンドレルの表面上の電鋳層にピンホールが
発生することを防止するものである。
■ Next, perform electroforming. The electrolytic solution used is one in which a nickel sulfamate solution and boric acid are mixed, and then a small amount of sodium lauryl sulfate, for example, is added as a surface active additive. This sodium lauryl sulfate prevents pinholes from forming in the electroformed layer on the surface of the mandrel during electroforming.

電解液槽内に貯留した前記電解液中に電鋳材料及びマン
ドレルを浸し、電解液を循環させるとともに、カソード
ロッカーを作動させてマンドレルを電解液中で移動させ
ながら、電鋳材料とマンドレルとの間にマンドレルの面
積100CIII  あたり0゜6Aの電流を3〜4時
間流して、マンドレルの表面全体に電鋳層を薄く電着さ
せる。
The electroformed material and the mandrel are immersed in the electrolyte stored in the electrolyte tank, the electrolyte is circulated, and the cathode rocker is operated to move the mandrel in the electrolyte. In the meantime, a current of 0.6 A per 100 CIII of the mandrel area is passed for 3 to 4 hours to electrodeposit a thin electroformed layer over the entire surface of the mandrel.

電鋳層が薄く電着されたのを確認した後、電流をマンド
レルの面!14100cm!あたり1〜2Aに変換し、
Wt電鋳層平滑になるように電鋳加工を続けて所望の形
状に仕上げ、さらにマンドレルとWIJ層とを分離して
金型本体を形成する。
After confirming that the electroformed layer is thinly electrodeposited, apply the current to the mandrel surface! 14100cm! Convert to 1~2A per
Electroforming is continued to make the Wt electroformed layer smooth and finished into a desired shape, and the mandrel and WIJ layer are separated to form a mold body.

■ 前記のようにし工形成した金型本体に、先端の直径
が0.3ivの錐、またはレーデ−光線によって多数個
の小孔を透設することにより多孔質の金型が完成する。
(2) A porous mold is completed by making a large number of small holes in the mold body formed as described above using a cone with a tip diameter of 0.3 IV or a laser beam.

しかし、上記のような電鋳法による金型においても、多
数個の小孔を形成する作業が非常に煩雑であるばかりで
なく、複雑な形状の金型の場合、場所によっては孔を透
設することができないという問題点があった。
However, even in the electroforming molds mentioned above, not only is the work of forming a large number of small holes extremely complicated, but in the case of molds with complex shapes, holes may be made transparent depending on the location. The problem was that it could not be done.

従って、このような金型によりガス扱きを行ってもガス
扱きが不十分になり、かつ通孔が詰まって通孔内の掃除
が困難になる問題があった。
Therefore, even if gas handling is performed using such a mold, there is a problem that the gas handling is insufficient and the through holes become clogged, making it difficult to clean the insides of the through holes.

この発明は前記問題点を解消するためになされたもので
あって、その目的はガス扱きが行い易く、かつ通孔が詰
ることが少なくて通孔内の掃除を簡単に行うことができ
るリム成形方法を提供することにある。
This invention was made in order to solve the above-mentioned problems, and its purpose is to form a rim that is easy to handle gas, is less likely to clog the through hole, and is easy to clean inside the through hole. The purpose is to provide a method.

発明の構成 (課題を解決するための手段) この発明は上述した目的を達成するために、電鋳により
形成した金型本体であって、同電鋳の初期に発生させた
微小な非電着部を同電鋳時に成長させることにより表裏
両面間に何通させた多数の通孔を有した金型本体内に、
反応材料を注入してリム成形を行うという手段を採った
Structure of the Invention (Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention provides a mold body formed by electroforming, in which minute non-electrodepositions generated in the early stage of electroforming are used. Inside the mold body, which has a large number of holes between the front and back surfaces, is grown during electroforming.
The method used was to inject a reactive material and form the rim.

(作用) 注入時に、金型本体の多数の通孔を通してガス扱きが行
われる。この通孔は微小な非電着部を成長させることに
より貫通させたものであることから、ガス扱きにおける
気流抵抗が低くなるばかりではなく、通孔が詰ることも
少ない。
(Function) At the time of injection, gas is handled through a large number of holes in the mold body. Since this through hole is penetrated by growing a minute non-electrodeposited portion, not only the airflow resistance when handling gas is lowered, but also the through hole is less likely to be clogged.

(第−実施例) 以下、この発明を具体化した第一実施例を図面に従って
説明する。
(Embodiment 1) Hereinafter, a first embodiment embodying the present invention will be described with reference to the drawings.

第1図において、1はこの発明に係る金型本体であって
、電鋳により形成されている。2はi型本体1に貫通し
て設けられた多数の通孔であって、後述する通り、同電
鋳の初期に発生させた微小な非電着部を同電鋳時に厚さ
方向(金型本体1の表裏両面間)へ成長さ往てなるもの
であり、第3図(b)に示すように金型本体1の表面か
ら裏向に向かうほど径が漸増している。なお、通孔2の
形状は第3図(b )に示すように甲純化してテーパ状
に図示しであるが、電鋳条件により、その拡がり方が種
々宍なることは言うまでもない。例えば、通孔2の内面
に凹凸が付いたり、隣接する通孔2が互いに゛つながる
こともある。
In FIG. 1, reference numeral 1 denotes a mold body according to the present invention, which is formed by electroforming. Reference numeral 2 denotes a large number of through holes provided through the i-type main body 1, and as will be described later, minute non-electrodeposited portions generated at the initial stage of the electroforming are removed in the thickness direction (metallic As shown in FIG. 3(b), the diameter gradually increases from the surface of the mold body 1 toward the reverse side. Although the shape of the through hole 2 is shown as a tapered shape as shown in FIG. 3(b), it goes without saying that the way it expands will vary depending on the electroforming conditions. For example, the inner surface of the through hole 2 may be uneven, or adjacent through holes 2 may be connected to each other.

金型本体1の表面側におけるこの通孔2の緑大径は0.
1〜0.5mmであることが望ましい。真空吸入力を^
める必要がある一方、合成樹脂成形特成形品に通孔2の
跡が残らないようにするためである。また、通孔2の個
数は真空吸入力の点で金型本体1の面積10CIIIL
あたり5〜10000個であることが望ましい。
The green diameter of this through hole 2 on the surface side of the mold body 1 is 0.
The thickness is preferably 1 to 0.5 mm. Vacuum suction power ^
On the one hand, this is to prevent any traces of the through holes 2 from remaining on the synthetic resin molded product. In addition, the number of through holes 2 is determined by the area of the mold body 1 10CIIIL in terms of vacuum suction force.
It is desirable to have 5 to 10,000 pieces per unit.

この金型本体1はリム成形製NDに取付けられ、ウレタ
ン反応材FIWが溶融されてこの金型本体1内に注入さ
れる。この注入時に、ウレタン反応材料Wは金型本体1
の表面全体で多数の通孔2を通して十分なガス抜きが行
われ、流動性も良くなる。
This mold body 1 is attached to an ND manufactured by Rim Molding, and the urethane reaction material FIW is melted and injected into the mold body 1. During this injection, the urethane reaction material W is added to the mold body 1.
Sufficient degassing is performed through the large number of through holes 2 over the entire surface, and fluidity is also improved.

従って、合成樹脂材料Wを金型本体1に対し確実にWr
着させてシボ目形成用の凹凸部やステッチ等糸目形成用
の凹凸部の形状を合成樹脂材料Wに付けることができる
Therefore, the synthetic resin material W can be reliably applied to the mold body 1.
It is possible to give the synthetic resin material W the shape of an uneven part for forming wrinkles and an uneven part for forming threads such as stitches by wearing the synthetic resin material W.

しかも、前記通孔2は微小な非Wi着部を成長させるこ
とにより貫通させたものであることから、真空吸入にお
ける気流抵抗が低く、真空吸入を行い易い。また、通孔
2が詰ることが少なくて通孔2内の掃除を簡単に行うこ
ともできる。さらに、同通孔2は電鋳と同時に形成され
たものであるから、電鋳後に通孔2の形成工程を行う必
要もなく、金型の¥J造が容易である。
Moreover, since the through hole 2 is formed by growing a minute non-Wi-bonded portion, the air flow resistance during vacuum suction is low, and vacuum suction is easy to perform. Further, the through hole 2 is less likely to be clogged, and the inside of the through hole 2 can be cleaned easily. Furthermore, since the through holes 2 are formed at the same time as electroforming, there is no need to perform the process of forming the through holes 2 after electroforming, and the mold can be easily manufactured.

また、本実施例の通孔2は電鋳の進行に伴って金型本体
1の裏面側はどその径が徐々に広くなっている。従って
、この通孔2は金型本体1の表面側では充分に径が小さ
いので、成形品の表面に通孔2の跡が残らないばかりで
なく、金型本体1の裏面側では径が大きくなるので、真
空吸入時の気流抵抗も低くなり吸入力が強まるという当
該金型にとって理想的な効果を発揮する。
Further, the diameter of the through hole 2 of this embodiment gradually increases on the back side of the mold body 1 as electroforming progresses. Therefore, the diameter of the through hole 2 is sufficiently small on the front side of the mold body 1, so that not only no trace of the through hole 2 remains on the surface of the molded product, but also the diameter is large on the back side of the mold body 1. Therefore, the airflow resistance during vacuum suction is also lowered, and the suction force is increased, which is ideal for the mold.

すなわち、従来の電鋳技術において、ピンホールは不規
則かつ不安定に発生するものであり、しかも表面に大き
く表れるため、もつとも避けなければならない欠陥と考
えられてきた。
That is, in conventional electroforming technology, pinholes occur irregularly and unstablely, and moreover, they appear largely on the surface, so they have been considered to be defects that must be avoided.

これに対し、本発明では電鋳の初期に発生させた微小な
非電着部を同電鋳時に成長させることにより貫通させて
、ピンホールではなく、真空吸入等に使用できる微小な
通孔2としたちのであり、まさに逆転の発想よりなる画
期的な金型といえるちのである。
In contrast, in the present invention, the minute non-electrodeposited portions generated at the initial stage of electroforming are allowed to grow during the same electroforming process, and are made to penetrate through the holes to form minute through holes 2 that can be used for vacuum suction, etc., instead of pinholes. It is Tochino, and it can be said that it is an epoch-making mold that is based on an idea that is completely reversed.

このように、電鋳の初期に発生させた微小な非電着部を
同電鋳時に成長させることにより質通させた多数の通孔
2を有する金型本体1をRIM成形に利用することは、
真空吸入力の向上維持、掃除等のメンテナンスの容易さ
及び金型の製造の容易さなどの点で大変有効である。
In this way, the mold body 1 having a large number of through holes 2 formed by growing the minute non-electrodeposited portions generated at the initial stage of electroforming during electroforming can be used for RIM molding. ,
It is very effective in improving and maintaining vacuum suction power, making maintenance such as cleaning easier, and making mold manufacturing easier.

次に、この金型本体1の製造に使用する装置、材料等に
ついて説明する。
Next, the equipment, materials, etc. used to manufacture this mold body 1 will be explained.

3は第2図(a)及び(b)に示すように電解液槽A内
に貯留した電解液であって、450 (J /J!  
のスルファミン酸ニッケル液と40(1々 以上の硼酸
とからなり、その温度は37℃〜40℃に保持されてい
る。この電解液3のl)l−1f1m+は添加剤として
の塩化ニッケル剤を加えることによって、3.8〜4.
2の範囲内に留まるように調整されている。
3 is an electrolytic solution stored in the electrolytic solution tank A as shown in FIGS. 2(a) and (b), and is 450 (J/J!).
The electrolytic solution 3 consists of a nickel sulfamate solution and 40 (more than one) boric acid, the temperature of which is maintained at 37°C to 40°C. By adding 3.8 to 4.
It is adjusted to stay within the range of 2.

電解液3のpillが前記の範囲を越えると、電鋳時に
お番ブるカソード電流効率が低下する一方、pHtuf
tが3.8に達しないときは電解液3中に塩基性沈澱物
が生成されて、電解された金属が変色し易くなる等の欠
陥が生ずるからである。
If the electrolyte 3 pill exceeds the above range, the cathode current efficiency that occurs during electroforming will decrease, and the pHtuf
This is because when t does not reach 3.8, basic precipitates are formed in the electrolytic solution 3, causing defects such as the electrolyzed metal becoming susceptible to discoloration.

ここで、本実施例の電解液3中にはラウリル硫酸ナトリ
ウム等の界面活性添加剤が含まれていないので、ピンホ
ールの生成を抑止する効果はない。
Here, since the electrolytic solution 3 of this example does not contain a surfactant additive such as sodium lauryl sulfate, it has no effect of suppressing the formation of pinholes.

従って、電鋳の初期に非ff1W部(従来はピンホール
の種になっていたものである)が発生し易くなり、通孔
2の成長も促進される。
Therefore, non-ff1W portions (which were conventionally the seeds of pinholes) are likely to occur in the initial stage of electroforming, and the growth of through holes 2 is also promoted.

4は電解液3内に配置したMu材料であって、この実施
例においてはニッケルが使用されている。
4 is a Mu material placed in the electrolyte 3, and in this embodiment nickel is used.

5は電解液3中において電鋳材料4と対向する位置に配
置したマンドレルであって、エポキシ、アクリル、アク
リル・ブタジェン・スチレン共重合体、塩化ビニル等の
合成樹脂材料、または固形ワックス、金属、木材、セラ
ミックス、布地、糸等にて形成されている。このマンド
レル5は第1図及び第3図(b)に示す金型本体1の模
型であって、電解液槽Aの上端に移動可能に取り付けた
カソードロッカー6から吊り下げられ、特に第2図(b
)に゛示すように、カン−ドロツカ−6の長さ方向の動
きに応じて電解?a3中を往復移動するようになってい
る。なお、7はカソードロッカー6を往復駆動する移動
装置である。また、電解液槽Aの外にはw!sisが設
けられ、電鋳材料4は陽極に、マンドレル5のスプレー
W!J8は陰極に対してそれぞれ電気的に接続されてい
る。
5 is a mandrel placed in the electrolytic solution 3 at a position facing the electroforming material 4, and is made of a synthetic resin material such as epoxy, acrylic, acrylic-butadiene-styrene copolymer, vinyl chloride, solid wax, metal, It is made of wood, ceramics, fabric, thread, etc. This mandrel 5 is a model of the mold body 1 shown in FIGS. 1 and 3(b), and is suspended from a cathode rocker 6 movably attached to the upper end of the electrolyte tank A. (b
), electrolysis occurs according to the movement of the can-dropper 6 in the longitudinal direction? It is designed to move back and forth within A3. Note that 7 is a moving device that drives the cathode locker 6 back and forth. Also, there is a w! outside of electrolyte tank A! sis is provided, the electroforming material 4 is applied to the anode, and the mandrel 5 is sprayed W! J8 are each electrically connected to the cathode.

次に、この金型本体1の製造方法について順に説明する
Next, a method for manufacturing the mold body 1 will be explained in order.

■ 金型本体1を多孔質に形成するために、マンドレル
5は電解液3に浸される前に表面処理工程及びラッキン
グ工程に付される。
(2) In order to make the mold body 1 porous, the mandrel 5 is subjected to a surface treatment process and a racking process before being immersed in the electrolytic solution 3.

まず、表面処理工程において、マンドレル5は溶剤、磨
き粉等の研磨剤にてその表面が磨かれて表面に付着した
不純物が除去されるとともに、表面が粗面化される。表
面の粗面化は電導物のなじみをよくし、電鋳被膜の密着
性を高めるためのものである。このあと、マンドレル5
は水で洗われて表面の研磨剤が除去され、さらにジェッ
トエアーにて乾燥されて表面処理工程が終了する。
First, in the surface treatment step, the surface of the mandrel 5 is polished with an abrasive such as a solvent or polishing powder to remove impurities attached to the surface and roughen the surface. The purpose of roughening the surface is to improve the compatibility of the conductive material and to improve the adhesion of the electroformed film. After this, mandrel 5
is washed with water to remove the abrasive on the surface, and then dried with jet air to complete the surface treatment process.

ラッキング工程において、マンドレル5にはその電鋳所
望面に対しスプレー液が@射されて導電性が与えられる
。このスプレー液はペースト状銀ラッカー(この実施例
においては福山金属粉(株)製のRC−10を使用して
いる。)と酢酸ブチル溶液とを1=1の比率で配合した
のら、この配合液の全体量に対し30%以下の割合にて
塩化ビニルラッカー液を混入することによって作られて
いる。
In the racking process, a spray liquid is applied to the desired surface of the mandrel 5 for electroforming to impart conductivity. This spray solution is made by mixing a paste silver lacquer (RC-10 manufactured by Fukuyama Metal Powder Co., Ltd. is used in this example) and a butyl acetate solution in a ratio of 1=1. It is made by mixing a vinyl chloride lacquer liquid in a proportion of 30% or less based on the total amount of the compounded liquid.

このスプレー液をマンドレル5の表面が完全な金属色を
呈するまで2度にわたり噴射して、第3図(a )に示
すようにマンドレル5の表面に約15μm以上のスプレ
一層8を形成したのら、マンドレル5を約24時間自然
乾燥させる。スプレー液には塩化ビニルラッカー液が混
入されているため、マンドレル5の表面上のスプレ一層
8は導電性が低くなり、マンドレル5の表面に多数の通
孔2が形成され易くなる。
This spray liquid was sprayed twice until the surface of the mandrel 5 exhibited a complete metallic color, forming a spray layer 8 of approximately 15 μm or more on the surface of the mandrel 5, as shown in FIG. 3(a). , air dry the mandrel 5 for about 24 hours. Since the spray liquid contains a vinyl chloride lacquer liquid, the spray layer 8 on the surface of the mandrel 5 has low conductivity, and a large number of holes 2 are likely to be formed on the surface of the mandrel 5.

よりミクロ的にみると、スプレー11218には銀粉に
よるsM部のみならず、同銀粉中に点在した塩化ビニル
ラッカーによって微小な非s?tt部が形成されるため
、全体としての導電性が低(なるのである。この塩化ビ
ニルラッカーによる微小な非導電部には、侵達する電鋳
の初期において電鋳材料が電着しに(いため、微小な非
電着部の発生に大きく寄与するのである。
Looking at it more microscopically, spray 11218 not only has sM parts made of silver powder, but also minute non-sM parts made of vinyl chloride lacquer dotted in the silver powder. Because the tt part is formed, the conductivity as a whole is low.The electroforming material is electrodeposited in the minute non-conductive part made of vinyl chloride lacquer at the initial stage of electroforming. , which greatly contributes to the generation of minute non-electrodeposited areas.

上記スプレー液中における塩化ビニルラッカー液の混入
度を加減することによって、マンドレル5の表面の導電
性を自由に設定でき、前記非導電部の大きさや分布を変
化させることができるため、通孔20寸法を変化させた
り、マンドレル5の単位面積あたりの通孔2の数や開口
率を自由に管理することができる。
By adjusting the degree of mixing of the vinyl chloride lacquer liquid in the spray liquid, the conductivity of the surface of the mandrel 5 can be freely set, and the size and distribution of the non-conductive parts can be changed. It is possible to change the dimensions and freely manage the number of through holes 2 per unit area of the mandrel 5 and the aperture ratio.

また、このスプレー液中の混入液は塩化ビニルラッカー
液に替えて他の絶縁物−を使用してもよい。
Moreover, other insulating materials may be used instead of the vinyl chloride lacquer solution as the mixed liquid in the spray solution.

なお、ラッキング工程前にマンドレル5の表面に導電性
を付与するため銀鍍膜を設けておいてもよい。
Note that a silver plating film may be provided on the surface of the mandrel 5 to impart conductivity before the racking step.

ラッキング工程が終ったのち、マンドレル5には再噴水
洗いがなされて、表面の異物が取り除かれ、マンドレル
5の前処理は終了する。
After the racking process is finished, the mandrel 5 is washed again with water to remove foreign matter from the surface, and the pretreatment of the mandrel 5 is completed.

■ この実施例においては、従来技術における前処理液
によるマンドレル5の表面の活性化処理工程は省略され
ている。電鋳の初期に、マンドレル5の表面に微小な非
電着部を形成し易くするためである。
(2) In this embodiment, the step of activating the surface of the mandrel 5 using a pretreatment liquid in the prior art is omitted. This is to facilitate the formation of minute non-electrodeposited portions on the surface of the mandrel 5 at the initial stage of electroforming.

■ 続いて、マンドレル5は電鋳材料4とともに電解液
槽A内の電解液3中に浸される。このとき、電解液3は
@環することなく停止した状態にあり、またカソードロ
ッカー6の移動装置7はオフの状態にあるので、マンド
レル5も移動することはない。微小な非電着部を発生し
易くするためである。
(2) Subsequently, the mandrel 5 and the electroformed material 4 are immersed in the electrolytic solution 3 in the electrolytic solution tank A. At this time, the electrolytic solution 3 is in a stopped state without circulating, and the moving device 7 of the cathode rocker 6 is in an OFF state, so the mandrel 5 also does not move. This is to facilitate the generation of minute non-electrodeposited portions.

電源Sをオンにして、マンドレル5の面積100CNあ
たり3Aの電流を電鋳材料4とマンドレル5のスプレー
M8との間に流すと、電鋳材料4が電解されてマンドレ
ル5のスプレ一層8上に被覆され、TI鋳!!19が形
成される。
When the power supply S is turned on and a current of 3 A per area 100CN of the mandrel 5 is passed between the electroformed material 4 and the spray M8 of the mandrel 5, the electroformed material 4 is electrolyzed and sprayed onto the spray layer 8 of the mandrel 5. Coated and TI cast! ! 19 is formed.

この電鋳の初期において、前述したようにスプレー11
!8のうち銀粉による導電部には電鋳材料4がよ(電°
着するが、同銀粉中に点在した塩化ビニルラッカーによ
る微小な非導電部には電鋳材114がMHしにくいため
、この非s電部を起点として微小な非電着部が発生する
At the beginning of this electroforming, as mentioned above, the spray 11
! 8, electroforming material 4 is used for the conductive part made of silver powder (electroforming material 4).
However, since the electroformed material 114 is difficult to MH in minute non-electroconductive areas formed by vinyl chloride lacquer scattered in the silver powder, minute non-electrodeposited areas are generated starting from these non-electroconductive areas.

電鋳の進行とともに、この微小な非fl!精部は成長し
て貫通した通孔2となる。
As electroforming progresses, this minute non-fl! The seminal part grows and becomes a through hole 2.

特に本実施例ではこの非廊宿部の存在のみならず、前述
したように、電解液3の組成の調整、マンドレル5の表
面活性化処理の省略、カソードロッカー6の停止、電流
の調整等の技術が付加されているため、上記非C1i着
部の発生と成長がさらに容易になっている。
In particular, in this embodiment, in addition to the presence of this non-corridor part, as described above, there are various adjustments such as adjusting the composition of the electrolytic solution 3, omitting the surface activation treatment of the mandrel 5, stopping the cathode rocker 6, and adjusting the current. The addition of technology makes the generation and growth of the non-C1i deposits easier.

また、本実施例では通孔2がNvIの進行に伴って零M
IF!9の厚さ方向のみならず径方向にも成長し、金型
本体1の察面側はど拡径した通孔2となった。
In addition, in this embodiment, the through hole 2 becomes zero M as the NvI progresses.
IF! 9 grew not only in the thickness direction but also in the radial direction, and the diameter of the through hole 2 was enlarged on the viewing side of the mold body 1.

そして、マンドレル5の所望面全体にfft’*層9が
被覆され、さらに同電鋳W!J9に多数の通孔2が形成
さねたことを確認したのちに、電流をマンドレル5の面
積100csλあたり1〜2A程度に落とす。このあと
、電解液3を循環させ、さらにカソードロッカー6を作
動させることによって、カソード電流密度が均一化され
るので、電鋳IF19の厚みが均一になる。
Then, the entire desired surface of the mandrel 5 is coated with the fft'* layer 9, and the electroformed W! After confirming that many through holes 2 have not been formed in J9, the current is reduced to about 1 to 2 A per 100 csλ of area of mandrel 5. Thereafter, by circulating the electrolytic solution 3 and further operating the cathode rocker 6, the cathode current density is made uniform, so that the thickness of the electroformed IF 19 becomes uniform.

■ 上記のように、マンドレル5の表面に電鋳が終了し
たら、電解液3からマンドレル5を取り出してこれを乾
燥させる。このあと、マンドレル5から電鋳層9を剥離
する。なお、電鋳m9とマンドレル5の表面にはスプレ
ーIF18が介在しているため、電鋳層9は簡単に剥離
できる。マンドレル5から取り外された電鋳1Pj9は
金型の金型本体1として使用される。
(2) When the surface of the mandrel 5 is electroformed as described above, the mandrel 5 is taken out from the electrolytic solution 3 and dried. After this, the electroformed layer 9 is peeled off from the mandrel 5. Note that since the spray IF 18 is interposed between the electroformed m9 and the surface of the mandrel 5, the electroformed layer 9 can be easily peeled off. The electroformed material 1Pj9 removed from the mandrel 5 is used as the mold body 1 of the mold.

(第二実施例) 次に、この発明の第二実施例を説明する。(Second example) Next, a second embodiment of the invention will be described.

この実施例において電解液3中には第一実施例と同様に
ラウリル硫酸ナトリウム等の界面活性添加剤が添加され
ていないが、他の工程は第一実施例と異なり通常の電鋳
と同様に行われるものである。
In this example, surfactant additives such as sodium lauryl sulfate are not added to the electrolyte 3 as in the first example, but the other steps are different from the first example and are similar to normal electroforming. It is something that is done.

この場合、マンドレル5の表面におけるピンホールの発
生は電解液3の工夫のみによって促進されるため、第一
実施例の場合と比較して通孔2の発生率は非常に低いも
のとなる。
In this case, since the generation of pinholes on the surface of the mandrel 5 is promoted only by the modification of the electrolytic solution 3, the rate of occurrence of the through holes 2 is extremely low compared to the case of the first embodiment.

この電鋳方法に対して、さらにマンドレル5の前処理で
スプレー液に塩化ビニルラッカーを混入してスプレー!
1118を形成すれば、通孔2の発生率をやや高めるこ
とができる。
In addition to this electroforming method, we mixed vinyl chloride lacquer into the spray liquid and sprayed it in the pretreatment of mandrel 5!
If 1118 is formed, the incidence of through holes 2 can be slightly increased.

さらに、 (1)マンドレル5の前処理において、前処理液を使用
しない。
Furthermore, (1) In the pretreatment of the mandrel 5, no pretreatment liquid is used.

(2)電鋳時において、電解液3を循環させず、ざらに
カソードロッカー6も停止状態にしておく。
(2) During electroforming, the electrolytic solution 3 is not circulated, and the cathode rocker 6 is generally kept in a stopped state.

(3)電鋳時に通常より強い電流を流す。(3) Applying a stronger current than usual during electroforming.

等の工程を適宜組み合わせることによって、金型本体1
の通孔2の個数を管理することができる。
By appropriately combining the following steps, the mold body 1
The number of through holes 2 can be managed.

なお、この発明は上記の実施例に拘束されるものではな
く、例えば電鋳材料4として、ニッケルに代え、プラス
イオンにて電解する伯の金属を使用する等、発明の趣旨
から逸脱しない限りにおいて任意の変更は可能である。
Note that this invention is not limited to the above-described embodiments; for example, as the electroforming material 4, a metal that is electrolyzed with positive ions may be used instead of nickel, as long as it does not depart from the spirit of the invention. Any changes are possible.

発明の効果 以上詳述したように、この発明は電鋳の初期に発生させ
た微小な非MIt部を同電鋳時に成長させることにより
貫通させた多数の通孔を設けた金型本体をリム成形に利
用したことによって、ガス抜きが行い易く、かつ通孔が
詰ることが少なくて通孔内の掃除を簡申に行うことがで
きるという優れた効果を秦する。
Effects of the Invention As detailed above, the present invention has a mold body with a large number of through holes formed by growing the minute non-MIT portions generated at the initial stage of electroforming during the same electroforming process. By using it for molding, it has excellent effects such as easy degassing, less clogging of the through holes, and easy cleaning of the insides of the through holes.

【図面の簡単な説明】[Brief explanation of the drawing]

第11Mは本実施例に係る金型の使用状態を示す断面図
、第2図(a)は金型を製造するための電鋳方法を示す
略体図、第2図(b)は第2図(a)の平面図、第3図
(a)はマンドレルに電鋳をした状態を示す断面図、第
3図(b)は金型の一部破断拡大断面図である。 金型本体1、通孔2、被成形物W1リム成形装諏D0 特許出願人   江南特殊産業株式会社代  理  人
     弁理士   恩  1)  博  宣図面そ
めI D ] 図面その2
11M is a cross-sectional view showing the usage state of the mold according to this example, FIG. 2(a) is a schematic diagram showing the electroforming method for manufacturing the mold, and FIG. FIG. 3(a) is a plan view, FIG. 3(a) is a sectional view showing a state in which the mandrel is electroformed, and FIG. 3(b) is a partially broken enlarged sectional view of the mold. Mold body 1, through hole 2, object to be molded W1 rim molding device D0 Patent applicant Konan Tokushu Sangyo Co., Ltd. Agent Patent attorney On 1) Hiroshi Nobuo drawing collection ID] Drawing 2

Claims (1)

【特許請求の範囲】 1、電鋳により形成した金型本体(1)であって、同電
鋳の初期に発生させた微小な非電着部を同電鋳時に成長
させることにより表裏両面間に貫通させた多数の通孔(
2)を有した金型本体(1)内に、 反応材料(W)を注入してリム成形を行うことを特徴と
する合成樹脂成形品のリム成形方法。
[Claims] 1. A mold body (1) formed by electroforming, in which a minute non-electrodeposited part generated at the initial stage of electroforming is grown during the same electroforming process to form a mold body (1) between the front and back surfaces. Numerous through holes (
2) A method for forming a rim of a synthetic resin molded product, characterized in that rim forming is performed by injecting a reactive material (W) into a mold body (1) having:
JP2941888A 1988-02-09 1988-02-09 Rim molding method for synthetic resin molded product Pending JPS63307916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2941888A JPS63307916A (en) 1988-02-09 1988-02-09 Rim molding method for synthetic resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2941888A JPS63307916A (en) 1988-02-09 1988-02-09 Rim molding method for synthetic resin molded product

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP913684A Division JPS60152692A (en) 1984-01-20 1984-01-20 Metallic mold for forming

Publications (1)

Publication Number Publication Date
JPS63307916A true JPS63307916A (en) 1988-12-15

Family

ID=12275580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2941888A Pending JPS63307916A (en) 1988-02-09 1988-02-09 Rim molding method for synthetic resin molded product

Country Status (1)

Country Link
JP (1) JPS63307916A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849229A (en) * 1981-09-18 1983-03-23 Kasai Kogyo Co Ltd Injection molding method of adhered molded item

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849229A (en) * 1981-09-18 1983-03-23 Kasai Kogyo Co Ltd Injection molding method of adhered molded item

Similar Documents

Publication Publication Date Title
JP3100337B2 (en) Porous electroformed shell and manufacturing method thereof
US5042560A (en) Method of producing open-celled metal structures
JPH0214434B2 (en)
CN109023462A (en) A kind of method of magnesium and Mg alloy surface electropolymerization preparation poly-dopamine film layer
CN112048749B (en) Method for preparing bioactive coating on surface of 3D printed titanium or titanium alloy
JPS6114922A (en) Manufacture of mollded parts with skin and molding die thereof
JPS63307916A (en) Rim molding method for synthetic resin molded product
JPS63218331A (en) Method for blow molding synthetic resin molded item
GB2167444A (en) Electroforming
JP3298287B2 (en) Manufacturing method of electroforming mold
JPS63213690A (en) Forming die
JPS63213692A (en) Production of forming die
JPS63212529A (en) Vacuum molding method for synthetic resin molded product
JPS63218327A (en) Method for injection molding synthetic resin molded item
JPS63213689A (en) Forming die
JPS63213691A (en) Production of forming die
JP3012387B2 (en) Method of manufacturing air-permeable electroformed shell
JPH0633291A (en) Production of porous forming die by electroforming
US3574075A (en) Method of producing an electrode for use in electro machining
JPH09300361A (en) Mold for manufacturing golf ball and manufacture of golf ball employing this mold
JP2000355789A (en) High porosity cellular three-dimensional metallic structure made of refractory alloy and its production
JPS6114912A (en) Manufacturing method of molded part
JP2962662B2 (en) Method for producing electroformed body having micro holes
CN105483703B (en) The preparation method that a kind of double-colored pattern crystal of inserted gold and silver is set a table
KR950007171B1 (en) Electro-forming process of porosity dies