JPS63307276A - Mocvd device for preparing thin film of high-temperature superconductor - Google Patents

Mocvd device for preparing thin film of high-temperature superconductor

Info

Publication number
JPS63307276A
JPS63307276A JP62139967A JP13996787A JPS63307276A JP S63307276 A JPS63307276 A JP S63307276A JP 62139967 A JP62139967 A JP 62139967A JP 13996787 A JP13996787 A JP 13996787A JP S63307276 A JPS63307276 A JP S63307276A
Authority
JP
Japan
Prior art keywords
gas
oxygen
substrate
reaction tube
organometallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62139967A
Other languages
Japanese (ja)
Inventor
Makoto Takahashi
誠 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62139967A priority Critical patent/JPS63307276A/en
Publication of JPS63307276A publication Critical patent/JPS63307276A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45514Mixing in close vicinity to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/408Oxides of copper or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0436Processes for depositing or forming copper oxide superconductor layers by chemical vapour deposition [CVD]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To produce a large-area thin film of a superconductor having a uniform film compsn. and film thickness by disposing a gaseous org. metal compd. guiding pipe in the form of a multiple concentrical type around an oxygen-contg. gas guiding pipe and mixing both gases just before a substrate. CONSTITUTION:The oxygen-contg. gas guiding pipe 7 is inserted into the center of a reaction tube 2 and the gaseous org. metal compd. guiding pipe 3 is disposed in the form of the multiple concentrical type. A gas introducing pipe 1 is connected to the gaseous org. metal compd. guiding pipe 3 and the gaseous org. metal compd. [La(C5H5)3, Sr(C5H5)2, Cu(acac)2] is introduced into the reaction tube 2. The reaction tube 2 is heated by a heater 8 to prevent the condensation of the gas to the tube wall. Inert gases are introduced from a gas introducing pipe 4 and the oxygen-contg. gas is discharged in front (about 10-20cm) of the substrate 5 heated by a heater 9 through the guiding pipe 7. The gaseous org. metal compd. and the oxygen-contg. gas are thereby quickly and uniformly mixed and the thin superconductive film having the uniform film compsn. and film thickness is formed on the substrate 5.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、有機金属化合物を用いるMOCVD(有機金
属化学気相成長)法による金属酸化物の超伝導体薄膜を
作製するための装置に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an apparatus for producing a metal oxide superconductor thin film by MOCVD (organometallic chemical vapor deposition) using an organometallic compound. It is.

(従来の技術とその問題点) 超伝導体薄膜は高速コンピューター用各種デバイスおよ
びその配線、超伝導光検出素子等に利用されるものであ
る。
(Prior art and its problems) Superconductor thin films are used in various devices for high-speed computers, their wiring, superconducting photodetectors, and the like.

従来、超伝導体薄膜を作製する方法としてはスパッタリ
ング法がある。この方法で薄膜を作製するには、例えば
ランタノイド、アルカリ土類金属、銅から成る酸化物薄
膜の場合、Ln2O3(Ln:イツトリウムおよびスカ
ンジウムを含むランタノイド) 、S r C03(或
いはBaCC)+)、CuOを種々の混合比で混ぜ合わ
せた後、空気中で700〜1ooo℃の温度範囲で数時
間加熱後、さらに加圧成型したものを700〜1000
℃の温度範囲で数時間焼成してスパッタリング用のター
ゲットを作製しなければならない。
Conventionally, there is a sputtering method as a method for producing a superconductor thin film. To produce a thin film using this method, for example, in the case of an oxide thin film consisting of lanthanides, alkaline earth metals, and copper, Ln2O3 (Ln: lanthanoids containing yttrium and scandium), S r C03 (or BaCC) +), CuO were mixed at various mixing ratios, heated in air at a temperature range of 700 to 100°C for several hours, and then pressure-molded to a temperature range of 700 to 1000°C.
The target for sputtering must be prepared by baking at a temperature range of 10°C for several hours.

従って、この方法ではターゲットを作製するのに長時間
かかり、且つ、ここで作製したターゲットを用いて薄膜
を作製しても各元素のスパッタリングイールドが異なる
為、薄膜の組成とターゲットの組成が一致することが殆
どない。また、各種の組成の薄膜酸化物を試作、作製す
るためには、組成の異なる多くのターゲットを作らねば
ならず、労力、時間および費用が必要となる。さらにス
パッタリング法では超伝導体の膜特性(Tcの向上、膜
質安定性等)を向上させる為に良いとされている種々の
不純物(F、Ag等)の添加が非常に困難である。また
、薄膜を作製する為に系の真空度を10−’Torr以
下にしなければならなく、薄膜作製の効率が悪く装置の
保守が大変である。
Therefore, with this method, it takes a long time to prepare the target, and even if a thin film is made using the target prepared here, the sputtering yield of each element is different, so the composition of the thin film and the composition of the target do not match. There are very few things. Furthermore, in order to prototype and produce thin film oxides with various compositions, many targets with different compositions must be made, which requires labor, time, and cost. Furthermore, in the sputtering method, it is very difficult to add various impurities (F, Ag, etc.) that are considered to be good for improving the film properties (improvement of Tc, film quality stability, etc.) of superconductors. In addition, in order to produce a thin film, the degree of vacuum in the system must be set to 10-' Torr or less, which makes thin film production inefficient and requires maintenance of the apparatus.

一方、MOCVD成膜装置は、半導体薄膜作製に用いら
れ、反応ガス中の反応物質の濃度比および生成物の結晶
性等を反応ガス流量、ガスの流し方、および基板温度と
いった成膜条件を変化させることによって容易に制御で
きるものである。従って、MOCVD法を用いることに
よって、スパッタリング法の持つ種々の問題点を解決す
ることが可能である。しかし、現在市販され、或いは報
告されているMOCVDシステムを用いて、金属酸化物
の高温超伝導体薄膜を作製するには、次の様な問題点が
種々存在する。
On the other hand, MOCVD film-forming equipment is used to fabricate semiconductor thin films by changing the film-forming conditions such as reaction gas flow rate, gas flow method, and substrate temperature to control the concentration ratio of reactants in the reaction gas and the crystallinity of the product. It can be easily controlled by Therefore, by using the MOCVD method, various problems of the sputtering method can be solved. However, there are various problems in producing a high-temperature superconductor thin film of metal oxide using currently commercially available or reported MOCVD systems, as described below.

■ 一般に有機金属化合物ガスは酸素中で非常に不安定
であるので(発火し易い、分解し易い等)、反応系内に
酸素を導入すると爆発や基板上外での早期反応が起こり
易い。
■ Organometallic compound gases are generally very unstable in oxygen (easily ignited, easily decomposed, etc.), so if oxygen is introduced into the reaction system, explosions or early reactions on and off the substrate are likely to occur.

■ ランタノイド系元素の有機金属化合物は、大部分室
温程度では固体で存在する為、通常の恒温槽(液体型、
温風加熱型)では充分な蒸気圧を得ることができない。
■ Organometallic compounds of lanthanoid elements are mostly solid at room temperature, so
(hot air heating type) cannot obtain sufficient steam pressure.

■ ランタノイド系の有機金属化合物は、蒸気圧が半導
体用の有機金属に比べ非常に低いので、反応管の内壁で
凝縮し易い。
■ Lanthanoid-based organometallic compounds have a much lower vapor pressure than organometallic compounds for semiconductors, so they tend to condense on the inner walls of reaction tubes.

従って、本発明では上記の様な欠点を解決し、MOCV
D法を用いた金属酸化物の高温超伝導体薄膜の作製装置
を提供することを目的とする。
Therefore, the present invention solves the above-mentioned drawbacks and
The purpose of the present invention is to provide an apparatus for producing a high-temperature superconductor thin film of a metal oxide using the D method.

(問題点を解決するための手段) 即ち本発明のMOCVD装置は、反応管内に複数種の有
機金属化合物のガスを導入し、該反応管内に加熱状態に
保持された基板上に、気相反応で生成した金属化合物を
堆積するMOCVD装置において、有機金属化合物のガ
ス供給系の壁面を加熱する加熱装置と、反応管の加熱装
置と、酸素含有ガスの供給装置と、該供給装置からの酸
素含有ガスを反応管内に誘導し基板に接近して酸素含有
ガスを吐出する酸素含有ガス誘導管と、有機金属化合物
のガス供給系からのガスを反応管内に誘導する、酸素含
有ガス誘導管を取り巻く多重同心構造に設けた複数の有
機金属化合物ガス誘導管を設けたことを特徴とする。
(Means for Solving the Problems) That is, the MOCVD apparatus of the present invention introduces gases of a plurality of types of organometallic compounds into a reaction tube, and performs a gas phase reaction on a substrate kept in a heated state in the reaction tube. In an MOCVD apparatus for depositing metal compounds produced in An oxygen-containing gas guide tube that guides the gas into the reaction tube and discharges the oxygen-containing gas close to the substrate, and a multiplex that surrounds the oxygen-containing gas guide tube that guides the gas from the organometallic compound gas supply system into the reaction tube. It is characterized by having a plurality of organometallic compound gas guide tubes arranged in a concentric structure.

前記有機金属化合物ガス誘導管は、有機金属化合物ガス
と酸素ガスとの急速な均一混合化を図り、且つ、基板に
対して組成均一なガスを基板の半径方向に均一に供給で
きる作用を有する。
The organometallic compound gas guide tube has the function of rapidly and uniformly mixing the organometallic compound gas and oxygen gas, and uniformly supplying a gas having a uniform composition to the substrate in the radial direction of the substrate.

有機金属化合物のキャリヤガスとして、通常の半導体用
MOCVD装置ではN2またはH,+Ar(またはNZ
)を用いているが、本発明ではHe、ArおよびN2等
の不活性ガスを使用する。
In ordinary semiconductor MOCVD equipment, N2 or H, +Ar (or NZ
), but in the present invention, inert gases such as He, Ar, and N2 are used.

有機金属化合物ガスの供給系では、該ガスの発生のため
の加熱装置には、有機金属化合物ガスの蒸気圧を上げる
為、通常の恒温槽ではなく、電気炉等の高温まで昇温可
能な加熱炉を使用し、有機金属化合物を加熱すると共に
、ガス供給系と反応管の内壁等に有機金属化合物ガスが
凝縮しない様にする為、反応管に到るまでのガス導入管
と反応管全体を電気炉またはリボンヒーター等で加熱す
る。
In the supply system for organometallic compound gas, the heating device used to generate the gas is not a normal thermostat, but a heating device that can raise the temperature to high temperatures, such as an electric furnace, in order to increase the vapor pressure of the organometallic compound gas. A furnace is used to heat the organometallic compound, and in order to prevent the organometallic compound gas from condensing on the gas supply system and the inner walls of the reaction tube, the gas introduction tube and the entire reaction tube up to the reaction tube are heated. Heat with an electric furnace or ribbon heater.

酸素含有ガスと有機金属化合物ガスを基板直前で混合す
る様に酸素含有ガス誘導管開口端を基板に接近して設け
る。
The open end of the oxygen-containing gas guide tube is provided close to the substrate so that the oxygen-containing gas and the organometallic compound gas are mixed just before the substrate.

以下、本発明の装置を実施例により説明する。Hereinafter, the apparatus of the present invention will be explained using examples.

(実施例) 本装置は、第1図に示すように、有機金属化合物ガス供
給源をガス導入管1を介して反応管2にガスを誘導する
ガス誘導管3に連結し、不活性ガス供給源をガス導入管
4を介して反応管2に連結する。反応管内に基板5を設
け、基板保持部6でこれを保持する。基板5に接近して
酸素含有ガスを吐出する酸素含有ガス誘導管7を反応管
2の中心に挿入し、有機金属化合物ガス誘導管3を多重
同心円型に配置する。8は反応管2の加熱装置、9は基
板加熱装置および10は排気装置である。
(Example) As shown in FIG. 1, this apparatus connects an organometallic compound gas supply source to a gas guide tube 3 that guides gas to a reaction tube 2 via a gas introduction tube 1, and supplies an inert gas. The source is connected to the reaction tube 2 via a gas introduction tube 4. A substrate 5 is provided inside the reaction tube, and is held by a substrate holding section 6. An oxygen-containing gas guide tube 7 for discharging oxygen-containing gas close to the substrate 5 is inserted into the center of the reaction tube 2, and the organometallic compound gas guide tubes 3 are arranged in multiple concentric circles. 8 is a heating device for the reaction tube 2, 9 is a substrate heating device, and 10 is an exhaust device.

有機金属化合物ガス供給源は、有機金属化合物の蒸気圧
を高める為、電気炉または高温用リボンヒーター等の発
熱体で加熱される。尚、通常の半導体作製用MOCVD
成膜装置で用いられている恒温槽では、使用する温度が
低い為、L n系およびCu等の有機金属化合物ガスを
気化蒸発させることはできない。その理由は、高温超伝
導体薄膜作製に使用する有機金属化合物物質の大部分は
、その融点が100℃以」二であるからである。
The organometallic compound gas supply source is heated with a heating element such as an electric furnace or a high-temperature ribbon heater in order to increase the vapor pressure of the organometallic compound. In addition, ordinary MOCVD for semiconductor manufacturing
Since the temperature used in the constant temperature bath used in the film forming apparatus is low, organic metal compound gases such as Ln-based and Cu cannot be vaporized. The reason for this is that most of the organometallic compound substances used for producing high-temperature superconductor thin films have melting points of 100° C. or higher.

反応管2の加熱装置8およびガス導入管lの加熱装置(
図には示していない)は、有機金属化合物ガスが反応管
内壁等に凝縮することを防止する為に用いられ、加熱方
法としては反応管や導入管全体を電気炉中に入れるか、
または高温用リボンヒーター等を周囲に巻きつける。
The heating device 8 for the reaction tube 2 and the heating device for the gas introduction tube 1 (
(not shown in the figure) is used to prevent organometallic compound gas from condensing on the inner walls of reaction tubes, etc., and heating methods include placing the entire reaction tube and introduction tube in an electric furnace,
Or wrap a high temperature ribbon heater etc. around it.

不活性ガスは有機金属化合物ガスのキャリヤガスとして
用い、He、ArおよびN2等の有機金属化合物との反
応性の低い不活性ガスを用いるが、図に示すようにガス
導入管4を介して直接反応管2に導くほかに、不活性ガ
ス供給源を有機金属化合物ガス供給源と連結してガスの
混合を行ったのち、反応管2に導く構成にしてもよい。
The inert gas is used as a carrier gas for the organometallic compound gas, and is an inert gas with low reactivity with the organometallic compound such as He, Ar, N2, etc., but as shown in the figure, it can be directly passed through the gas introduction pipe 4. Instead of introducing the gas into the reaction tube 2, a configuration may be adopted in which the inert gas supply source is connected to the organometallic compound gas supply source to mix the gases and then the gases are introduced into the reaction tube 2.

酸素含有ガスとしては、純酸素、酸素を不活性ガスで希
釈したもの等を用いることができる。
As the oxygen-containing gas, pure oxygen, oxygen diluted with an inert gas, etc. can be used.

酸素含有ガス誘導管7は、酸素含有ガスと有機金属化合
物ガスが混合することによって、基板外での反応を防止
する為、反応基板5の直前で始めて有機金属化合物ガス
と混合する様に第1図に示す形式にすることが好ましい
。この様な酸素含有ガス誘導管7を設けることによって
、気相中での早期反応の発生を防止できる。
The oxygen-containing gas guide tube 7 is provided with a first pipe so that the oxygen-containing gas and the organometallic compound gas are mixed together and the organometallic compound gas is mixed with the organometallic compound gas immediately before the reaction substrate 5, in order to prevent a reaction outside the substrate. It is preferable to use the format shown in the figure. By providing such an oxygen-containing gas guide pipe 7, it is possible to prevent early reactions from occurring in the gas phase.

酸素含有ガス誘導管7の吐出口の位置は、基板5の面積
、酸素の供給速度により異なり、基板5から例えば旬〜
20■であり、吐出口は自由にスライド可能にするのが
望ましい。
The position of the discharge port of the oxygen-containing gas guide tube 7 varies depending on the area of the substrate 5 and the oxygen supply rate.
20■, and it is desirable that the discharge port be freely slidable.

この場合、酸素含有ガスと有機金属化合物ガスの混合に
よって基板上外で生成物が析出することを防ぐため、酸
素含有ガスのみの誘導管を基板直前まで延長し、酸素含
有ガスと有機金属化合物ガスを混合する方法が考えられ
るが、この方法では基板に当たるガス組成が基板位置に
よって異なる為、組成の不均一な薄膜が出来やすい。本
発明では、このために、有機金属化合物ガスと酸素含有
ガスを急速に均一に混合できるように、且つ、基板前面
に対して組成の均一なガスを供給できるように、有機金
属化合物ガスの誘導管3を、酸素含有ガス誘導管7を取
り巻く多重層型にした。この誘導管の長さは、使用する
有機金属化合物の種類、反応条件等により、任意に調節
できるようにするのが望ましい。
In this case, in order to prevent products from precipitating on and off the substrate due to the mixture of oxygen-containing gas and organometallic compound gas, the guide tube for only oxygen-containing gas is extended to just before the substrate, and the oxygen-containing gas and organometallic compound gas are One possible method is to mix the two, but this method tends to result in a thin film with non-uniform composition because the gas composition that hits the substrate differs depending on the position of the substrate. In the present invention, for this purpose, the organometallic compound gas is guided so that the organometallic compound gas and the oxygen-containing gas can be rapidly and uniformly mixed, and a gas having a uniform composition can be supplied to the front surface of the substrate. The tube 3 was of the multilayer type surrounding the oxygen-containing gas guide tube 7. It is desirable that the length of this guide tube can be arbitrarily adjusted depending on the type of organometallic compound used, reaction conditions, etc.

この実施例では、有機金属化合物としてLa(−Cs 
HS) 3、S r (C5H5)!、Cu (aca
c) 2、また、キャリヤガスとしてArガスを、さら
に基板として、S r T i 03を用いた。
In this example, La(-Cs
HS) 3, S r (C5H5)! , Cu (aca
c) 2. Furthermore, Ar gas was used as a carrier gas, and S r T i 03 was used as a substrate.

第2図に本実施例による生成物のX線回折パターンを示
す。この図から明らかなよう番ご、この薄膜は、L a
 、−xS rXc u O4から成る酸化物であり、
膜組成が均一で且つ膜厚も均一である。
FIG. 2 shows the X-ray diffraction pattern of the product according to this example. As is clear from this figure, this thin film is
, -xS rXc u O4,
The film composition is uniform and the film thickness is also uniform.

(発明の効果) 本発明によれば、 ■ 酸素含有ガス誘導管を多重同心型にしたので、有機
金属化合物ガスと酸素含有ガスとの均一混合が急速に行
え、且つ、大きい面積の基板に対しても組成の均一なガ
スを供給できる為、膜組成が均一で、且つ、膜厚も均一
な大面積の試料を作製することが可能になった。
(Effects of the Invention) According to the present invention, (1) Since the oxygen-containing gas guide tube is of a multiple concentric type, the organometallic compound gas and the oxygen-containing gas can be uniformly mixed rapidly, and can be applied to a large area of the substrate. Since a gas with a uniform composition can be supplied even when the film is heated, it has become possible to produce a large-area sample with a uniform film composition and film thickness.

■ 一般に空気中(特に酸素)で非常に不安定な有機金
属化合物ガスを、酸素含有ガスと基板直前で混合する為
の酸素含有ガス誘導管を備えることによって、爆発や基
板上外での早期反応が防止できる。
■ Equipped with an oxygen-containing gas guide tube to mix organometallic compound gas, which is generally very unstable in air (particularly oxygen), with oxygen-containing gas just before the substrate, preventing explosions and early reactions on and off the substrate. can be prevented.

■ 一般にランタノイド系の有機金属化合物は、蒸気圧
が低く、且つ、室温で通常固体であるが、加熱炉の使用
により400℃前後まで昇温でき、充分に気化させるこ
とができる。
(2) Generally, lanthanide-based organometallic compounds have low vapor pressure and are usually solid at room temperature, but can be heated to around 400°C by using a heating furnace and can be sufficiently vaporized.

■ 有機金属化合物ガスがガス導入管および反応管内壁
に凝縮する事を防止する為、反応管およびガス導入管を
高温に加熱保温できる効果があり、ランタノイド系、ア
ルカリ土類金属、遷移金属等の有機金属化合物の混合物
から高温超伝導金属酸化物、例えば、Lnl−XS r
XcuoaおよびLnBa2C1l+Otの薄膜を作製
するのに特に適した装置である。また、このような酸化
物をエピタキシャル成長させることを容易に行なえるも
のである。
■ In order to prevent organometallic compound gases from condensing on the inner walls of the gas inlet tube and reaction tube, the reaction tube and gas inlet tube can be heated to a high temperature and kept warm. From mixtures of organometallic compounds to high temperature superconducting metal oxides, e.g.
The apparatus is particularly suitable for producing thin films of Xcuoa and LnBa2C11+Ot. Further, such an oxide can be easily epitaxially grown.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明実施例によるMOCVD装置の概略断
面図、 第2図は、本発明実施例による生成物La、、。 Sro、、CuO4の半径方向の2点におけるX線回折
パターンを示す線図である。(a)は基板中心部、(b
)は基板よりV2r(但し、rは基板半径)離れた点の
図である。 1・・・ガス導入管      2・・・反応管3・・
・ガス誘導管      4・・・ガス導入管5・・・
基板         6・・・基板保持部7・・・酸
素含有ガス誘導管  8・・・加熱装置9・・・基板加
熱装置     10・・・排気装置。
FIG. 1 is a schematic sectional view of an MOCVD apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram showing a product La according to an embodiment of the present invention. FIG. 2 is a diagram showing the X-ray diffraction pattern at two points in the radial direction of Sro, CuO4. (a) is the center of the board, (b)
) is a diagram at a point V2r (where r is the radius of the substrate) away from the substrate. 1...Gas introduction tube 2...Reaction tube 3...
・Gas guide pipe 4...Gas introduction pipe 5...
Substrate 6... Substrate holder 7... Oxygen-containing gas guide tube 8... Heating device 9... Substrate heating device 10... Exhaust device.

Claims (1)

【特許請求の範囲】[Claims] (1)反応管内に複数種の有機金属化合物のガスを導入
し、該反応管内に加熱状態に保持された基板上に、気相
反応で生成した金属化合物を堆積するMOCVD装置に
おいて、有機金属化合物のガス供給系の壁面を加熱する
加熱装置と、反応管の加熱装置と、酸素含有ガスの供給
装置と、該供給装置からの酸素含有ガスを反応管内に誘
導し基板に接近して酸素含有ガスを吐出する酸素含有ガ
ス誘導管と、有機金属化合物のガス供給系からのガスを
反応管内に誘導する、酸素含有ガス誘導管を取り巻く多
重同心構造に設けた複数の有機金属化合物ガス誘導管を
設けたことを特徴とする超伝導体薄膜作製用のMOCV
D装置。
(1) In an MOCVD apparatus in which gases of multiple types of organometallic compounds are introduced into a reaction tube and metal compounds produced by a gas phase reaction are deposited on a substrate kept in a heated state within the reaction tube, the organometallic compound is a heating device for heating the wall surface of the gas supply system, a heating device for the reaction tube, a supply device for the oxygen-containing gas, and a device for guiding the oxygen-containing gas from the supply device into the reaction tube to approach the substrate and supplying the oxygen-containing gas. An oxygen-containing gas guide tube for discharging gas, and a plurality of organometallic compound gas guide tubes arranged in a multiple concentric structure surrounding the oxygen-containing gas guide tube for guiding gas from the organometallic compound gas supply system into the reaction tube. MOCV for producing superconductor thin films characterized by
D device.
JP62139967A 1987-06-05 1987-06-05 Mocvd device for preparing thin film of high-temperature superconductor Pending JPS63307276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62139967A JPS63307276A (en) 1987-06-05 1987-06-05 Mocvd device for preparing thin film of high-temperature superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62139967A JPS63307276A (en) 1987-06-05 1987-06-05 Mocvd device for preparing thin film of high-temperature superconductor

Publications (1)

Publication Number Publication Date
JPS63307276A true JPS63307276A (en) 1988-12-14

Family

ID=15257835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62139967A Pending JPS63307276A (en) 1987-06-05 1987-06-05 Mocvd device for preparing thin film of high-temperature superconductor

Country Status (1)

Country Link
JP (1) JPS63307276A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935337A (en) * 1995-04-20 1999-08-10 Ebara Corporation Thin-film vapor deposition apparatus
CN114351117A (en) * 2020-10-13 2022-04-15 东部超导科技(苏州)有限公司 Spray plate, MOCVD reaction system with spray plate and use method of MOCVD reaction system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5935337A (en) * 1995-04-20 1999-08-10 Ebara Corporation Thin-film vapor deposition apparatus
CN114351117A (en) * 2020-10-13 2022-04-15 东部超导科技(苏州)有限公司 Spray plate, MOCVD reaction system with spray plate and use method of MOCVD reaction system
CN114351117B (en) * 2020-10-13 2022-12-20 东部超导科技(苏州)有限公司 Spray plate, MOCVD reaction system with spray plate and use method of MOCVD reaction system

Similar Documents

Publication Publication Date Title
US7387811B2 (en) Method for manufacturing high temperature superconducting conductors using chemical vapor deposition (CVD)
JPH04503087A (en) Method and apparatus for rapid chemical vapor deposition using low vapor pressure reactants
US5350453A (en) Device for producing thin films of mixed metal oxides from organic metal compounds on a substrate
JP2004536218A (en) Method for producing high current coated high temperature superconducting tape
JPH10509939A (en) Metal oxide growth equipment using metalorganic vapor phase epitaxy
JP2818751B2 (en) Method of forming oxide superconductor thin film
JP2007521392A (en) Metal organic chemical vapor deposition (MOCVD) process and apparatus for producing multilayer high temperature superconducting (HTS) coated tapes
JPS63307276A (en) Mocvd device for preparing thin film of high-temperature superconductor
JPH02225317A (en) Production of oxide superconductor by chemical gas phase deposition method
JPS63307277A (en) Photo-mocvd device for preparing thin film of metal oxide
JPS63307275A (en) Mocvd device for preparing thin film of high-temperature superconductor
JPH11329117A (en) Cvd reactor
JP3808250B2 (en) CVD reactor and oxide superconductor manufacturing method
JP3913314B2 (en) Liquid material supply device for CVD
JP3939486B2 (en) Liquid material supply device for CVD
JPH0610138A (en) Production of oxide superconductor by mocvd method
JPH01188677A (en) Production of superconducting thin film
JP4112314B2 (en) Oxide superconducting conductor manufacturing liquid material supply device for CVD reactor and oxide superconducting conductor manufacturing method
KR950008862B1 (en) MANUFACTURING METHOD OF YBA2 CU3O7-x (X=0-0.5) SUPER CONDUCTOR
JP4263546B2 (en) Liquid material supply device for CVD, CVD device, and manufacturing method of oxide superconductor
JP2551983B2 (en) Preparation method of oxide superconducting film using chemical vapor deposition
JP4180235B2 (en) Liquid material supply device for CVD
JPH03243779A (en) Device for producing oxide superconducting thin film
JP3285897B2 (en) Method and apparatus for vaporizing CVD raw material for producing oxide superconductor
JP2005256160A (en) Film deposition system, discharging means and method for producing oxide superconductor