JPS6330702A - Shape measuring apparatus - Google Patents

Shape measuring apparatus

Info

Publication number
JPS6330702A
JPS6330702A JP17420486A JP17420486A JPS6330702A JP S6330702 A JPS6330702 A JP S6330702A JP 17420486 A JP17420486 A JP 17420486A JP 17420486 A JP17420486 A JP 17420486A JP S6330702 A JPS6330702 A JP S6330702A
Authority
JP
Japan
Prior art keywords
measured
probe
shape measuring
reflected light
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17420486A
Other languages
Japanese (ja)
Inventor
Kazutoshi Iketani
池谷 和俊
Kunio Yoshida
邦夫 吉田
Takeyoshi Ochiai
勇悦 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17420486A priority Critical patent/JPS6330702A/en
Publication of JPS6330702A publication Critical patent/JPS6330702A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To obtain the title apparatus capable of performing efficient measurement, by absorbing emitted light or reflected light in either one of areas inside and outside of a measuring area by subtractive color mixture on the basis of the relation between the surface hue of an article to be measured and the emitted light of a light source. CONSTITUTION:A contact type probe 4 moves while contacts with the surfaces of an article 2 to be measured and a green sheet 1. The camera 8 having a red filter 9 mounted to the front surface thereof is fixed to the probe 4 and detects the reflected light from a measuring surface of a light source 3 through the filter 9 simultaneously with the movement of the probe 4. Said reflected light is sampled by a sampling circuit 10 and subsequently compared with the value of a threshold value setting circuit 11 by a comparator 12 to be converted to a binary signal. A probe control circuit 6 receives said signal to operate a moving direction (+ or -Y-axis direction) and sends a position in an X-axis direction by one pitch. At this time, the reflected light (green) from the sheet 1 is absorbed by the filter 9. Then, the measurement of the article 2 to be measured is continued by the circuit 6 and the shape of the article 2 to be measured is calculated from drive informations (X, Y-axis planes) and moving quantity informations (Z-axis) is A- and A'-directions.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は3次元形状を有する物体の表面形状を計測する
形状測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a shape measuring device for measuring the surface shape of an object having a three-dimensional shape.

従来の技術 近年、ロボット技術の進展や生産工程における自動検査
上の必要性から3次元形状を有する物体の認識技術の確
立な課題となっている。この3次元物体認識においては
、基礎的ステップとして、3次元形状を有する物体表面
各点の3次元座標を簡単かつ、速かに計測する手段が強
く望まれている。特に部分的に微少変化の伴う特徴線(
キャラクタライン)の3次元座標計測には高精度が要求
される。
BACKGROUND OF THE INVENTION In recent years, due to advances in robot technology and the need for automatic inspection in production processes, it has become an important issue to establish a technology for recognizing objects having three-dimensional shapes. In this three-dimensional object recognition, as a basic step, there is a strong desire for a means to simply and quickly measure the three-dimensional coordinates of each point on the surface of an object having a three-dimensional shape. Especially characteristic lines with slight changes in parts (
High precision is required for three-dimensional coordinate measurement of character lines.

さて従来、3次元座標測定は第5図に示す様に被測定物
51に直接プローブ52を接触させながら座標測定を行
なう方式や、第6図に示す様にプープのかわりに光学装
置61を使って非接触で座標測定を行なう方式がある。
Conventionally, three-dimensional coordinate measurement has been carried out using a method in which coordinates are measured while directly contacting a probe 52 to an object to be measured 51 as shown in FIG. 5, or an optical device 61 is used instead of a poop as shown in FIG. There is a method for non-contact coordinate measurement.

これらの両方式において、被測定物51上を移動するプ
ローブ51や光学装置61は、ソフトウェアを含む制御
・演算回路53により制御されていた。即ち、全体の測
定範囲や特に精密に測定したいキャラクタライン54近
傍の測定範囲指定は、プログラムにより、2次元の(x
、y)座標入力やプローブの2次元の移動量を指定する
ことにより行なっていた。
In both of these methods, the probe 51 and optical device 61 that move over the object to be measured 51 are controlled by a control/arithmetic circuit 53 that includes software. That is, the entire measurement range or the measurement range near the character line 54 to be measured particularly precisely can be specified by the program using the two-dimensional (x
, y) This was done by inputting coordinates or specifying the two-dimensional movement amount of the probe.

発明が解決しようとする問題点 しかし以上の様な従来の方式では、被測定物51の形状
が変わるごとに、全体の測定範囲の指定を座標入力やプ
ログラム変更により行なわなくてはならず、被測定物5
1によっては、キャラクタラインが数十1固以上に及ぶ
ものもあり、各キャラクタラインについてそれぞれ測定
範囲の指定を行なわなくてはならなかった。
Problems to be Solved by the Invention However, in the conventional method as described above, each time the shape of the object to be measured 51 changes, the entire measurement range must be specified by inputting coordinates or changing the program. Measurement object 5
In some models, the number of character lines is several dozen or more, and it is necessary to specify the measurement range for each character line.

この為、被測定物ごとの細かい座標入力作業による測定
範囲指定が非常に複雑になり作業量も多く、また簡略的
な四角形近似による測定範囲指定では、被測定物51以
外の所も測定範囲に含まれてしまいむだが多く、どちら
も効率的でなかった。
For this reason, specifying the measurement range by inputting detailed coordinates for each object to be measured becomes very complicated and requires a large amount of work, and specifying the measurement range by simple rectangular approximation also includes areas other than the object to be measured 51. Both were inefficient, as they included a lot of waste.

本発明は、これらの従来の問題点を解決するもので、効
率的な測定が行なえる形状測定装置を提供しようとする
ものである。
The present invention aims to solve these conventional problems and provide a shape measuring device that can perform efficient measurements.

問題点を解決するための手段 本発明は、被測定表面が第1の色彩をしている被測定物
と、前記被測定物の測定領域を指示する第2の色彩をし
ている領域指示部材と、前記被測定物の3次元形状を測
定する形状測定手段と、前記第1、第2の色彩のどちら
か一方を吸収、あるいは反射するフィルタを前方に有し
、現在測定中の前記形状測定手段における前記被測定物
あるいは領域指示部材の光源に対する反射光を光学的に
入力し、電気的信号に変換する光学手段と、前記光学手
段からの電気的信号の入力レベルに応じて、前記形状測
定手段の位置の駆動制御を行なう制御手段とを設けたも
のである。
Means for Solving the Problems The present invention provides an object to be measured whose surface has a first color, and an area indicating member having a second color for indicating a measurement area of the object to be measured. and a shape measuring means for measuring the three-dimensional shape of the object to be measured, and a filter that absorbs or reflects one of the first and second colors in front, and the shape measuring means that is currently being measured. an optical means for optically inputting reflected light from the light source of the object to be measured or the area indicating member in the means and converting it into an electrical signal; A control means for controlling the drive of the position of the means is provided.

作    用 本発明は上記構成により、前記被測定物表面の第1の色
彩と前記光源の照射光の関係、もしくは前記被測定物表
面の第1の色彩と前記照射光とフィルタの関係が、測定
領域内もしくは領域外のどちらかで前記照射光もしくは
前記反射光を減法混色により吸収する組み合わせである
ことを利用したもので、測定領域の効率的指示を行なう
ことができる。
Effect The present invention has the above-described configuration, so that the relationship between the first color of the surface of the object to be measured and the irradiation light of the light source, or the relationship between the first color of the surface of the object to be measured, the irradiation light, and the filter is determined by the measurement. By utilizing the combination of absorbing the irradiated light or the reflected light by subtractive color mixing either within the region or outside the region, the measurement region can be efficiently specified.

実施例 以下、図面を参照しながら本発明の一実施例について説
明する。
Embodiment Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図(a)は本発明の一実施例における形状測定装置
のブロック結線用、第1図(b)は同要部斜視図である
FIG. 1(a) is a block wiring diagram of a shape measuring device according to an embodiment of the present invention, and FIG. 1(b) is a perspective view of the same essential part.

第1図において、1は灰色をした3次元の被測定物2が
載置されている緑色のシート、3は白色光を与える光源
、4は被測定物2に接触しながらその形状を測定するプ
ローブ、5はプローブ4の最大駆動領域などの基本的数
値をあらかじめ設定しておく領域設定回路である。6は
領域設定回路5及び後述する比較器12の情報によりプ
ローブ駆動回路7を介してプローブ4を制御するプロー
ブ制御回路で、プローブ駆動回路7のモータ(図示せず
)に対して設けたエンコーダ等により後述する座標演算
回路13にプローブ4の移動量、移動方向を通知する。
In Fig. 1, 1 is a green sheet on which a gray three-dimensional object 2 is placed, 3 is a light source that provides white light, and 4 is a device that measures the shape of the object 2 while in contact with it. The probe 5 is an area setting circuit in which basic values such as the maximum drive area of the probe 4 are set in advance. Reference numeral 6 denotes a probe control circuit that controls the probe 4 via the probe drive circuit 7 based on information from the area setting circuit 5 and a comparator 12, which will be described later. The amount and direction of movement of the probe 4 are notified to the coordinate calculation circuit 13, which will be described later.

8はプローグ4に近接してプローブ4とともにプローブ
駆動回路7により移動されるカメラで、緑色の画情報を
吸収するフィルタ9が前面に設けられて(・る。1oは
カメラ8がらの画情報、すなわちカメラ8で捕捉された
反射光を光電変換してサンプリングするサンプリング回
路である。11は被測定物2に応じてあらかじめスレッ
シュレベルを設定する閾値設定回路である。12はサン
プリング回路10と閾値設定回路11との出力を比較す
る比較回路で、比較値が反転した時点でプローブ4の駆
動方向を反転させる制御信号をブローチ制御回路6に送
出する。13はプローブ4 (Z軸方向)及びプローブ
制御回路6 (X、Y軸方向)から送出される情報(x
、y、Z軸方向の3次元情報)から被測定物2の形状(
座標)を求める座標演算回路である。
Reference numeral 8 denotes a camera that is moved by the probe driving circuit 7 together with the probe 4 in the vicinity of the probe 4, and a filter 9 that absorbs green image information is provided in the front. 1o is the image information from the camera 8; That is, it is a sampling circuit that photoelectrically converts and samples the reflected light captured by the camera 8. Reference numeral 11 is a threshold setting circuit that sets a threshold level in advance according to the object to be measured 2. Reference numeral 12 is a sampling circuit 10 and a threshold setting circuit. A comparison circuit that compares the output with the circuit 11, and sends a control signal to the broach control circuit 6 to reverse the drive direction of the probe 4 when the comparison value is reversed.13 is the probe 4 (Z-axis direction) and probe control circuit. Information (x
, y, and Z-axis directions) from the shape of the object 2 to be measured (
This is a coordinate calculation circuit that calculates coordinates).

上記構成において、以下その動作を説明する。The operation of the above configuration will be explained below.

まず、接触式のプローブ4が被測定物2及び緑色シート
1の表面を接触しながら移動し、表面形状(座標)を読
み取る。
First, the contact type probe 4 moves while touching the surfaces of the object to be measured 2 and the green sheet 1, and reads the surface shape (coordinates).

また、赤色フィルタ9が前面に取り付けであるカメラ8
は、プローブ4に隣接固定しであるので、プローブ4が
被測定物2及び緑色のシート1の表面を移動する際、同
時に計測表面からの反射光を赤色フィルタ1を通してカ
メラ9で検知する。検知された反射光はサンプリング回
路10でサンプリングされた後、比較器12で閾値設定
回路11の値と比較されろ。プローブ4の(X−Y平面
)移動を制御するプローブ制御回路6では、比較器12
により変換された2値信号を受けて、信号が1 (サン
プリング値が閾値よりも大きい値)の間は同じ移動方向
(+Y軸方向)を維持させ、信号がO(サンプリング値
が閾値よりも小さい値)になった世、移動方向を反転さ
せ(−Y軸方向)、かつX軸方向の位置を1ピツチ送る
というプローブ駆動制御を行なう。
In addition, the camera 8 has a red filter 9 attached to the front.
is fixed adjacent to the probe 4, so that when the probe 4 moves on the surface of the object to be measured 2 and the green sheet 1, the reflected light from the measurement surface is simultaneously detected by the camera 9 through the red filter 1. The detected reflected light is sampled by the sampling circuit 10 and then compared with the value of the threshold setting circuit 11 by the comparator 12. In the probe control circuit 6 that controls the movement of the probe 4 (in the X-Y plane), a comparator 12
In response to the binary signal converted by value), the probe drive control is performed to reverse the moving direction (-Y-axis direction) and move the position in the X-axis direction by one pitch.

このようにプローブ4が座標計測を行ないつつ、被測定
物2の表面から緑色のシート1の表面上に移動した場合
、シートlからの反射光(緑色)はフィルタ9により吸
収され、カメラ8には反射光は捕捉されない。従って、
比較器12のプローブ制御回路6への制御信号はO(ゼ
ロ)となり、プローブ制御回路6によりプローブ4の移
動方向は反転され、再び被測定物20表面上を計測しは
じめる。そして座標演算回路13ではプローブ制御回路
6を介して送出されてくるプローブ4の駆動情報(X、
Y軸平面)と、プローブ4かもの矢印A、A′方向の移
動量情報(Z軸)から、被測定物2の形状(座標)を求
める。
When the probe 4 moves from the surface of the object to be measured 2 to the surface of the green sheet 1 while performing coordinate measurement in this way, the reflected light (green) from the sheet 1 is absorbed by the filter 9 and reflected by the camera 8. reflected light is not captured. Therefore,
The control signal from the comparator 12 to the probe control circuit 6 becomes O (zero), the probe control circuit 6 reverses the moving direction of the probe 4, and the measurement on the surface of the object to be measured 20 starts again. Then, in the coordinate calculation circuit 13, drive information (X,
The shape (coordinates) of the object to be measured 2 is determined from the information on the amount of movement of the probe 4 in the directions of arrows A and A' (Z-axis).

なお、ここで反射光色とフィルタ90組合せは減法混色
すると互いに吸収される関係であることを用いている。
Note that here, the relationship between the reflected light color and the filter 90 combination is such that they are absorbed by each other when subtractive color mixing is performed.

第2図にその減法混色の吸収の関係を説明する。FIG. 2 explains the absorption relationship of subtractive color mixture.

たとえば第2図(a)に示すように、緑色のシート1に
赤色光は緑色のシート1に吸収されてしまい反射せず、
カメラ8では反射光は捕捉されない。
For example, as shown in FIG. 2(a), red light is absorbed by the green sheet 1 and is not reflected.
The camera 8 does not capture the reflected light.

同様に第2図(b)に示す如く、緑と赤の吸収の関係か
ら白色光の光源3の下で緑色のシート1の反射光(緑色
)は、赤色のフィルタ9により吸収されてしまい、カメ
ラ8には反射光はとらえられない。
Similarly, as shown in FIG. 2(b), due to the absorption relationship between green and red, the reflected light (green) from the green sheet 1 under the white light source 3 is absorbed by the red filter 9. The camera 8 cannot capture the reflected light.

第3図に本実施例の装置による具体的測定例を示した。FIG. 3 shows a specific measurement example using the apparatus of this embodiment.

第3図(a)は上述の様に、測定する3次元物体31を
緑色シート32の上に設置した場合で、その測定範囲を
3次元物体31のみに制御することができた。また第3
図tb>では、3次元物体31上のキャラクタライン3
2近傍を限定して精密に測定する場合を示している。こ
の場合キャラクタライン32近傍を緑色粘着テープ33
で囲むと、囲まれた領域のみをプローブが移動・測定し
、非常に効率よく計測制御することができた。
FIG. 3(a) shows the case where the three-dimensional object 31 to be measured was placed on the green sheet 32 as described above, and the measurement range could be controlled to only the three-dimensional object 31. Also the third
In Figure tb>, character line 3 on three-dimensional object 31
This shows a case where precise measurement is performed by limiting two neighborhoods. In this case, the vicinity of the character line 32 is covered with green adhesive tape 33.
By enclosing the area, the probe moved and measured only the enclosed area, allowing very efficient measurement control.

以上の様に本実施例においては、測定範囲を細かく座標
入力により指定する必要もなく、また測定範囲を大まか
に四角形近似した場合のような無駄な測定も含まず、非
常に効率的に、高速に所存の測定を行なうことができる
。また、複雑な形状の物体であっても、実施例と同様に
シート上に置くだけで同様な効果が得られる。
As described above, in this embodiment, there is no need to specify the measurement range by inputting coordinates in detail, and there is no need for unnecessary measurements such as when the measurement range is roughly approximated as a rectangle, making it extremely efficient and fast. The desired measurements can be made. Further, even if the object has a complicated shape, the same effect can be obtained by simply placing it on the sheet as in the embodiment.

以下、本発明の第2の実施例について説明する。A second embodiment of the present invention will be described below.

第4図は、本発明の第2の実施例における形状測定装置
の斜視図を示すものである。第4図にお−・て、第1図
の構成と異なる点は第1図で示した座標測定用接触式の
プローブ4をフィルタ42を設けた非接触式座標測定用
の光学装#41にかえた点である。即ち、この非接触式
の光学装置41は、Z方向の座標を光学的にオートフォ
ーカス機構等を用いて測定するもので、カメラに相当す
る部分には、第1の実施例と同様な赤色のフィルタ42
が取り付けられている。従って第1図で示した様な反射
光検知用のカメラ8は不用で、この光学装置41ひとつ
で兼用できる。なお、光学装置41のオ・−トフォーカ
ス機構によるZ軸へのピント調整量は第1図に示す座標
演算装#13に入力され、光学装置41の駆動(X、Y
軸)は第1図のプローブ制御回路6、プローブ駆動回路
7に対応する光学装置制御回路、光学装置駆動回路が設
けられる。またサンプリング回路10〜比較器12の構
成は同様であり、説明は省略する。
FIG. 4 shows a perspective view of a shape measuring device according to a second embodiment of the present invention. In FIG. 4, the difference from the configuration in FIG. 1 is that the contact probe 4 for coordinate measurement shown in FIG. This is a change. That is, this non-contact optical device 41 optically measures coordinates in the Z direction using an autofocus mechanism, etc., and the part corresponding to the camera has a red color similar to that in the first embodiment. filter 42
is installed. Therefore, the camera 8 for detecting reflected light as shown in FIG. 1 is unnecessary, and this single optical device 41 can be used for both purposes. The amount of focus adjustment on the Z axis by the autofocus mechanism of the optical device 41 is input to the coordinate calculation unit #13 shown in FIG.
axis) is provided with an optical device control circuit and an optical device drive circuit corresponding to the probe control circuit 6 and probe drive circuit 7 shown in FIG. Furthermore, the configurations of the sampling circuit 10 to the comparator 12 are the same, and the description thereof will be omitted.

この光学装置41を用いた場合、第1の実施例に示した
第3図の様な測定を非常に効率よく行なうことができた
。特に、光学装置41を用いることにより、本発明に不
可欠な反射光検知部分及び座標測定部分が一体化でき、
形状測定機構を複雑にすることなくコンパクト化できた
When this optical device 41 was used, measurements as shown in FIG. 3 shown in the first embodiment could be carried out very efficiently. In particular, by using the optical device 41, the reflected light detection part and the coordinate measurement part, which are essential to the present invention, can be integrated.
We were able to make the shape measurement mechanism more compact without complicating it.

なお、本発明の第1及び第2の実施例で示した測定領域
を示すためのシート1.32及び粘着テープ33の色及
び形状、材質等は、本発明を限定するものではなく、被
測定物20表面に直接着色したものでもよく、また色に
関しては、被測定物2への照射光及び反射光制御用フィ
ルタの組合せとの兼ね合いで、本発明の詳細な説明した
減法混色による吸収の関係が成り立つものであればよい
Note that the color, shape, material, etc. of the sheet 1.32 and the adhesive tape 33 for indicating the measurement area shown in the first and second embodiments of the present invention do not limit the present invention, and are not intended to limit the present invention. The surface of the object 20 may be directly colored, and the color may be determined by the absorption relationship by subtractive color mixture described in detail of the present invention, in consideration of the combination of the irradiation light to the object 2 and the filter for controlling reflected light. It is sufficient if it holds true.

また、本実施例では、測定領域外の色を減法混色による
吸収の関係にして反射光をなくし制御したが、逆に測定
領域内の色を減法混色による吸収の関係にして反射光を
なくし、反射光があった時座標測定部分の測定方向を反
転させる制御でも同様の効果が得られ、また、キャラク
タラインの場合用に、反射光がない領域を特に細かいピ
ッチで精密に、jt!I定するように制御することもで
きる。また本実施例で示した比較器12の2値信号の表
現(1,0)やプローブ制御回路6のX軸、Y軸方向の
動作制御及び反射光制御用フィルタの数は本発明を限定
するものではない。また反射光検知用のカメラ8は光を
伝達する媒体であればよく、例えば光ファイバーでも良
く、第2の実施例で示した光学装置は、座標測定方式と
してオートフォーカス機構に限るものではなく三角測量
の方式等でも良い。
In addition, in this example, the colors outside the measurement area are controlled by making them in an absorption relationship by subtractive color mixture to eliminate reflected light, but conversely, the colors inside the measurement area are made in an absorption relationship by subtractive color mixture to eliminate reflected light. A similar effect can be obtained by controlling the measurement direction of the coordinate measurement part when there is reflected light.Also, for character lines, areas where there is no reflected light can be precisely measured at particularly fine pitches using jt! It is also possible to control so as to set the I value. Furthermore, the expression (1, 0) of the binary signal of the comparator 12, the operation control in the X-axis and Y-axis directions of the probe control circuit 6, and the number of filters for controlling reflected light shown in this embodiment limit the present invention. It's not a thing. Further, the camera 8 for detecting reflected light may be any medium that transmits light, such as an optical fiber. It is also possible to use the following method.

発明の効果 以上の発明から明らかな様に、形状測定の測定範囲の指
定において、従来の非常に煩雑な座標入力作業や近ω指
定による無駄な、効率の悪かった測定を、照射光と被測
定物表面の色分は及び反射光制御用フィルターにおける
減法混色による吸収の組合せを選ぶことにより、非常に
簡単にかつ効率よく高速に行なえるようにできる。
As is clear from the invention, which goes beyond the effects of the invention, when specifying the measurement range for shape measurement, the conventional extremely complicated coordinate input work and wasteful and inefficient measurement due to near ω specification can be replaced with the irradiation light and the measured object. By selecting a combination of color components on the surface of an object and absorption by subtractive color mixing in a filter for controlling reflected light, this can be done very simply, efficiently, and at high speed.

また、被測定物の形状が変わっても、測定範囲の再指定
を行なう必要もなく、特にキャラクタラインの様な部分
的な測定についても非常に効率よく行なうことができる
Further, even if the shape of the object to be measured changes, there is no need to respecify the measurement range, and partial measurements such as character lines can be carried out very efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の第1の実施例における形状にお
ける形状測定の具体的方法を示す斜視図、第4図は本発
明の第2の実施例における形状測定装置の要部斜使図、
第5図、第6図は従来の形状測定の制御方式を示す斜視
図である。 1・・・シート、2・・・被測定物、3・・・光源、4
・・・プローブ、5・・・領域設定回路、6・・・プロ
ーブ制御回路、7゛・プローブ駆動回路、8・・・カメ
ラ、9・・・フィルタ、10・・・サンプリング回路、
11・・・閾値設定回路、12・・・比較器、13・・
・座標演算回路、41・・・光学装置。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 (し) 第2図 (a) (b) 第3図 、?! <a> (ト) 第4図 第5図 第6図
FIG. 1(a) is a perspective view showing a specific method of shape measurement in the first embodiment of the present invention, and FIG. figure,
FIGS. 5 and 6 are perspective views showing a conventional shape measurement control system. DESCRIPTION OF SYMBOLS 1... Sheet, 2... Measured object, 3... Light source, 4
... Probe, 5... Area setting circuit, 6... Probe control circuit, 7'-Probe drive circuit, 8... Camera, 9... Filter, 10... Sampling circuit,
11...Threshold value setting circuit, 12...Comparator, 13...
- Coordinate calculation circuit, 41... optical device. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure (shi) Figure 2 (a) (b) Figure 3, ? ! <a> (g) Figure 4 Figure 5 Figure 6

Claims (6)

【特許請求の範囲】[Claims] (1)被測定表面が第1の色彩をしている被測定物と、
前記被測定物の測定領域を指示する第2の色彩をしてい
る領域指示部材と、前記被測定物の3次元形状を測定す
る形状測定手段と、前記第1、第2の色彩のどちらか一
方を吸収、あるいは反射するフィルタを前方に有し、現
在測定中の前記形状測定手段における前記被測定物ある
いは領域指示部材の光源に対する反射光を光学的に入力
し、電気的信号に変換する光学手段と、前記光学手段か
らの電気的信号の入力レベルに応じて、前記形状測定手
段の位置の駆動制御を行なう制御手段とを具備する形状
測定装置。
(1) An object to be measured whose surface has a first color;
an area indicating member having a second color that indicates a measurement area of the object to be measured; a shape measuring means that measures a three-dimensional shape of the object; and one of the first and second colors. An optical system that has a filter in front that absorbs or reflects one side, and optically inputs reflected light from the light source of the object to be measured or the area indicating member in the shape measuring means currently being measured, and converts it into an electrical signal. and a control means for driving and controlling the position of the shape measuring means in accordance with the input level of an electrical signal from the optical means.
(2)形状測定手段は接触式プローブであることを特徴
とする特許請求の範囲第1項記載の形状測定装置。
(2) The shape measuring device according to claim 1, wherein the shape measuring means is a contact probe.
(3)形状測定手段は非接触式光学装置であることを特
徴とする特許請求の範囲第1項記載の形状測定装置。
(3) The shape measuring device according to claim 1, wherein the shape measuring means is a non-contact optical device.
(4)形状測定手段と光学手段は同一の非接触式光学装
置であることを特徴とする特許請求の範囲第1項記載の
形状測定装置。
(4) The shape measuring device according to claim 1, wherein the shape measuring means and the optical means are the same non-contact optical device.
(5)光学装置はオートフォーカス機構によりZ軸方向
の被測定物の形状を測定する特許請求の範囲第2項、第
3項、第4項いずれか記載の形状測定装置。
(5) A shape measuring device according to any one of claims 2, 3, and 4, wherein the optical device measures the shape of the object to be measured in the Z-axis direction using an autofocus mechanism.
(6)領域指示部材の被測定物を載置したシート部材、
あるいは前記被測定物に貼付されるテープ部材であるこ
とを特徴とする特許請求の範囲第1項記載の形状測定装
置。
(6) A sheet member on which the object to be measured of the area indicating member is placed;
Alternatively, the shape measuring device according to claim 1 is a tape member attached to the object to be measured.
JP17420486A 1986-07-24 1986-07-24 Shape measuring apparatus Pending JPS6330702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17420486A JPS6330702A (en) 1986-07-24 1986-07-24 Shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17420486A JPS6330702A (en) 1986-07-24 1986-07-24 Shape measuring apparatus

Publications (1)

Publication Number Publication Date
JPS6330702A true JPS6330702A (en) 1988-02-09

Family

ID=15974540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17420486A Pending JPS6330702A (en) 1986-07-24 1986-07-24 Shape measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6330702A (en)

Similar Documents

Publication Publication Date Title
CN106493468B (en) Integrated femtosecond laser micro/nano processing system and processing method based on LabVIEW
WO2018113565A1 (en) Laser processing system and method based on machine vision
US3706877A (en) Densitometer having an analog computer for calculating a fraction of the total area under a curve
CN101458072A (en) Three-dimensional contour outline measuring set based on multi sensors and measuring method thereof
JP2000346638A (en) Method for generating measuring procedure file, measuring apparatus and storage medium
US4390278A (en) Method of and apparatus for inspecting the accuracy of a machined contour in a workpiece
CN100462672C (en) Image measuring system and method
JPH06161533A (en) Control system for three-dimensional measuring device
CN209969856U (en) Novel laser unsealing machine
JPS6330702A (en) Shape measuring apparatus
JP2001150171A (en) Focus adjustment method and apparatus for laser beam machine
US4054824A (en) Wire bonding unit using infra-red ray detector
US3436556A (en) Optical inspection system
JPH04157344A (en) Apparatus for automatically measuring glass distortion
JPH08262327A (en) Movement controller of x-y table
JP2669695B2 (en) Laser processing equipment
JPS56118604A (en) Weld groove center position detector
JPS6273716A (en) Inspecting apparatus
KR100399146B1 (en) Inspection apparatus and offset determining method thereof
JP2678668B2 (en) Dimension measurement method
JPH0131124B2 (en)
JP2855704B2 (en) Throughhole inspection equipment
JPH01176970A (en) Three-dimensional measuring instrument
JPH05309590A (en) Robot control device and method for positioning robot working part
JPS59169793A (en) Industrial robot