JPS63306905A - Tire air pressure detector - Google Patents

Tire air pressure detector

Info

Publication number
JPS63306905A
JPS63306905A JP62145910A JP14591087A JPS63306905A JP S63306905 A JPS63306905 A JP S63306905A JP 62145910 A JP62145910 A JP 62145910A JP 14591087 A JP14591087 A JP 14591087A JP S63306905 A JPS63306905 A JP S63306905A
Authority
JP
Japan
Prior art keywords
tire
air pressure
conductor
loop
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62145910A
Other languages
Japanese (ja)
Inventor
Yoshinobu Kobayashi
祥延 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62145910A priority Critical patent/JPS63306905A/en
Publication of JPS63306905A publication Critical patent/JPS63306905A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0427Near field transmission with inductive or capacitive coupling means
    • B60C23/0428Near field transmission with inductive or capacitive coupling means using passive wheel mounted resonance circuits

Abstract

PURPOSE:To surely detect the air pressure of a tire with ease by providing, in the tire, a loop-like conductor, and a resonance circuit where resonance frequency changes in response to an air pressure, and using the detect current value and the inductive current frequency of a loop-like conductor. CONSTITUTION:In a tire 10, a loop-like conductor 11 is provided, and a closed circuit is also formed by forming the loop-like conductor 11 in a continuous circle, and further, there is provided a resonance circuit 12 where resonance frequency changes in response to the air pressure of the tire 10. Meanwhile, on the vehicle body side near the tire 10, an oscillation exciting coil 13 is disposed so as to supply inductive current to the loop-like conductor 11 through electromagnetic coupling. In addition, in order to supply current, frequency of which is controlled, to the oscillation exciting coil 13, a sweep oscillator 14 for sweeping oscillatory frequency is provided. Further, in order to detect the inductive current of the loop-like conductor 11, a pick-up coil 15 is disposed. The respective currents of the sweep oscillator 14, and the coil 15 arranged via an amplification circuit 16 and a wave detector 17 are fed to a processor 18, thereby judging the air pressure of the tire 10.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] この発明は車両のタイヤ空気圧を停車時、走行時にかか
わらず監視することのできるタイヤ空気圧検出装置の構
成に関する。
[Industrial Application Field] The present invention relates to the configuration of a tire air pressure detection device that can monitor tire air pressure of a vehicle regardless of whether the vehicle is stopped or traveling.

【従来の技術] 従来、タイヤの空気圧を検出する方法としては、タイヤ
の空気注入バルブに圧力計を接続し、この圧力計を用い
てタイヤ空気圧を測定する方法が一般に行なわれている
。また、最近タイヤリムに圧力センサを組み込み、この
圧力センサ出力によりタイヤ空気圧を測定する方法が発
表されている。 第6図は従来の、圧力センサを用いたタイヤ空気圧を検
出、監視する装置の概略構成を示す図である。第6図に
おいて従来のタイヤ空気圧検出。 監視装置は、タイヤ1を保持しかつタイヤ1を車体回転
軸(図示せず)に取付けるためのリム2の所定位置にリ
ム2を貫通するように設けられ、空気バルブ3を介して
注入される空気圧を検出する圧力センサ4と、車体の所
定位it6にリム2に設けられた圧力センサ4と対向す
るように設けられ、圧力センサ4出力を受けてデコード
し、デコード結果を表示装置E?へ与える送受信装置5
と、車両運転席近傍に設けられ、送受信装置5からのデ
コード信号に応答してタイヤ空気圧を表示する表示装置
7とから構成される。 第7図は第6図に示される圧力センサと送受信装置の概
略構成を示す図である。第7図から示されるように、圧
力センサ4は、タイヤ1内の空気に接触するように設け
られ、タイヤ空気圧が所定値以下に降下すると急激に抵
抗値が変化するたとえばシリコンダイヤフラムからなる
感圧素子41と、感圧素子41の抵抗値変化を検出し、
その抵抗値に対応する信号をアンテナ(またはコイル)
43を介して送受信装置5へ伝達する信号処理回路42
とを備える。送受信装置5は、圧力センサ4から伝送さ
れた感圧素子41の抵抗値情報をアンテナ(またはコイ
ル)51を介して受け、この抵抗値情報をタイヤ空気圧
情報に変換する受信部52と、受信部52からの空気圧
情報を予め定められた値と比較し、その比較結果を表示
部7へ伝送する判定回路53とを備える。次に動作につ
いて説明する。 圧力センサ4はリム2に一体的に設けられ、常にタイヤ
l内の空気圧を監視するように設けられている。またそ
の検出したタイヤ空気圧に対応する感圧素子41の抵抗
値情報は信号処理回路42から誘導またはラジオ周波数
通信によりアンテナ(またはコイル)43.51を介し
て送受信装置5へ与えられている。今、タイヤ1の空気
圧が所定値以下に低下すると、感圧素子41の抵抗値が
急激に変化する。信号処理回路42はこの急激な感圧素
子41の抵抗値変化を検出し、その抵抗値情報を送受信
袋rIt5へ与える。送受信装置5は与えられた抵抗値
情報を受信部52でタイヤ空気圧情報に変換し、判定回
路53へ与える。判定回路53は与えられたタイヤ空気
圧情報を所定の基準値と比較し、そのタイヤ空気圧が所
定の基準値より高い場合には表示部1ヘタイヤ空気圧正
常の情報を与え、タイヤ空気圧が所定の基準値以下の場
合には、タイヤ空気圧不良情報を表示部7へ与える。表
示部7は与えられたタイヤ空気圧情報に応答して、タイ
ヤ空気圧が正常な場合にはたとえば青ランプを点灯し、
タイヤ空気圧異常情報が与えられた場合にたとえば赤ラ
ンプを点灯する。 [発明が解決しようとする問題点] 従来から一般的に行なわれている、タイヤの空気注入バ
ルブに圧力計を接続してタイヤ空気圧を測定する場合、
そのタイヤ空気圧を測定するときにしかタイヤ空気圧の
異常(特に圧力低下)を検出することができなかった。 また、タイヤ空気圧を圧力計を用いて測定する場合には
、車両を停止させ、圧力計を用いて測定するなどその測
定が面倒であるため、たとえば高速道路進入前にタイヤ
空気圧のチェックを行なわずに高速道路を走行すること
が考えられ、この場合タイヤ空気圧低下により事故につ
ながるという問題点もあった。 また上述の従来のタイヤ空気圧検出、監視装置において
は、圧力センサがリムの一部にのみ埋込まれており、タ
イヤの回転とともに回転し、一方送受信装置は車体一部
に固定的に取付けられているため、検出部となる圧力セ
ンサ4と送受信装置5との間の通信は、互いに相対する
位置にある場合にのみしか行なわれず、断続的にしかタ
イヤ空気圧の検出を行なうことができなかった。またそ
の検出されるタイヤ空気圧は所定の基準圧力よりも高い
か低いかの二値判断が行なわれており、連続的なタイヤ
空気圧の監視を行なうことができないという問題点があ
った。 それゆえ、この発明の目的は上述の従来のタイヤ空気圧
検出装置の有する問題点を除去し、車両の走行時および
停車時かかわらず常に容易に連続してタイヤ空気圧を監
視することのできるタイヤ空気圧検出装置を提供するこ
とである。 [問題点を解決するための手段] この発明に係るタイヤ空気圧検出装置は、タイヤ側壁に
タイヤ円周方向に沿ってループ状の導体を設けるととも
にこの導体の両端に導体ループと連続して閉回路を構成
しかつタイヤ空気圧に応じて共振周波数が変化する共振
回路を設け、このループ導体に周波数制御された電流ま
たは電圧信号を電磁結合を介して供給するとともに、ル
ープ導体を流れる信号を電磁結合を介して検出し、この
検出信号値と信号周波数とによりタイヤ空気圧を判定す
るようにしたものである。 【作用】 ループ導体に接続される共振回路はタイヤ空気圧に応じ
て共振周波数が変化する。一方、共振回路と導体ループ
とは1つの閉回路を構成しているため、この導体ループ
を流れる電流値(または電圧値)は共振回路が共振した
ときに最大となる。 したがって外部から周波数制御されている信号をループ
導体に供給し、そのときループ導体を流れる電流(また
は電圧値)を検出し、最大の電流(または電圧)値を与
える周波数を観察することにより共振周波数を通してタ
イヤ空気圧を検出することが可能となる。 [発明の実施例] 第2図はこの発明によるタイヤの具体的構成の一例を示
すための、一部所面がカットされたタイヤの概略斜視図
である。第2図において、タイヤ10の側壁部の円周方
向に沿ってループを描くように1ターンまたは複数ター
ンの導体11が設けられ、また、ループ状導体11の両
端部に導体ループと連続して閉回路を形成するように設
けられ、かつタイヤ空気圧に応じてその共振周波数が変
化する共振回路12が設けられる。この導体11および
共振回路12はタイヤ側壁部に埋込まれる構成となって
いる。共振回路12はタイヤ空気圧に応じて容量が変化
する可変容量素子Cとそのインダクタンス値が固定され
た固定インダクタンスLとが直列接続された電気的共振
回路(LC直列共振回路)から構成される。 第1図はこの発明の一実施例であるタイヤ空気圧検出装
置の全体の構成の一例を示す図である。 第1図において、この発明によるタイヤ空気圧検出装置
は、ループ導体11に電磁結合されるようにタイヤlO
に近接して車体側に設けられ、ループ導体11に電磁結
合を介して誘導電流(または電圧)を供給するための励
振用コイル13と、励振用コイル13に接続され、励振
コイル13にその周波数が制御された電流(または電圧
)を供給するための、発振周波数を掃引することのでき
る掃引発振器14と、ループ導体11を流れる誘導電流
(または電圧)を検出するためにタイヤ10に近接して
ループ導体11と電磁結合するように設けられたピック
アップコイル15と、ピックアップコイル15を流れる
電流を増幅する増幅回路16と、増幅回路16で増幅さ
れた高周波電流を検波し、誘導電流に比例した直流レベ
ルを出力する検波器17と、掃引発振器14の発振周波
数と検波器17出力とを受けてタイヤ10の空気圧を判
断する処理装置18とから構成される。次に動作につい
て説明する。 まずループ導体11にはループ導体と連続して設けられ
閉回路を構成するようにLC共振回路12か接続されて
いる。容量Cはタイヤ10の空気圧に応じてその容量値
が変化する可変容量素子である。共振回路12は容量C
とインダクタンスLとが直列接続された電気的直列共振
回路を構成している。このとき共振回路12の共振周波
数f。 は fo=1/2π、/Tで で与えられる。上式のうち容量Cの値はタイヤ空気圧に
応じて変化し、一方インダクタンスLの値は固定されて
いるため、共振回路12の共振周波数foもタイヤ空気
圧に応じて変化することになる。 一方、車体側には、ループ導体11に誘導電流を供給す
るための励振コイル13が設けられている。励振コイル
13には、上述の共振周波数f。 付近の周波数で連続的に発振周波数を変化させることの
できる掃引発振器14からの高周波信号が供給される。 これにより、励振コイル13は電磁結合を介してループ
導体11に高周波電圧(または電流)を誘起する。この
とき、ループ導体11を流れる電流は共振回路12にも
流れるため、この共振回路12を流れる電流は誘起電圧
を共振回路12およびループ導体11が構成する回路の
インピーダンスで割って値で与えられる。したがって、
ループ導体に誘起される誘起電圧周波数が共振回路12
の共振周波数foに等しいときループ導体11を流れる
誘導電流は最大となる。このループ導体11を流れる誘
導電流はピックアップコイル15により検出される。す
なわちピックアップコイル15はループ導体11に電磁
結合するようにタイヤ10近傍に設けられているため、
ループ導体11との電磁結合を介してループ導体に流れ
る電流に比例した電流または電圧がピックアップコイル
15に発生する。このピックアップコイル15が検出し
た電流(または電圧)は非常に小さいものであるため増
幅器16へ与えられそこで増幅される。検波器17は増
幅回路16で増幅されたピックアップコイル15の出力
を検波し、増幅器16出力に比例した直流レベルの信号
を出力する。処理装置18は、掃引発振器14の発振周
波数と検波器17出力とを受けてタイヤ空気圧を判定す
る。 ループ導体11を流れる電流値は共振回路12の共振周
波数foに一致した周波数の電流が流れるとき、ピック
アップコイル15出力も最大となる。したがって、掃引
発振器14の発振周波数と、検波器17の検波出力の最
大値とを受けて、最大の検波器17出力を与える発振周
波数を監視することにより、そのときの共振回路12の
共振周波数を測定することができ、一方、この共振周波
数foは上式に従って、タイヤ空気圧に応じて変化する
容量Cの値に結合されているため、タイヤ空気圧を検出
することが可能となる。今判定の具体的動作の一例につ
いて説明する。 第3図は掃引発振器の発振周波数と検波器出力との関係
を示す図であり、第3A図は掃引発振器の発振周波数と
時間との関係を示す図であり、第3B図は容量Cが小さ
くなった場合の発振検波出力を示し、第3C図は発振回
路共振回路の容量が大きくなったときの発振周波数と検
波出力との関係を示す図である。ここで第3A図、第3
B図および第3C図とはその発振周波数と検波器出力と
が対応するように時間軸が位置合わせして示されている
。今タイヤ空気圧が高くなるに応じて容量Cの容量値も
高くなる場合について説明する。 タイヤ空気圧が高くなり、容量Cの容量値も大きくなる
と、共振回路12の共振周波数は小さくなり、第3C図
に示すように比較的低い発振周波数で最大の検波出力を
与える。一方、タイヤ空気圧が減少すると応じて容量が
小さくなるため、その共振周波数は比較的高い周波数と
なり、第3B図に示すように、比較的高い発振周波数で
検波出力が最大となる。したがって、この検波出力と発
振周波数との相関関係によりタイヤの空気圧を直接検出
することが可能となる。 処理装置18に警報回路を接続しておけば、この処理装
置18でのタイヤ空気圧検出結果に応じてタイヤ空気圧
が異常となった場合に運転者に即座に知らせ警報を与え
ることができる。 第4図はタイヤ空気圧に応じてその容量値が変化する容
量の具体的構成の一例を示す図である。 第4図において可変容量Cは、空隙64を有するように
互いに対向して設けられかつスプリング63a、63b
を介して互いに保持される絶縁体62a、62bと、絶
縁体62a、62b表面に密着して設けられる導体電極
61a、61bとから構成される。電極61a、61b
には導体配線65a、65bが接続される。この構成に
おいては容量値が図の太矢印方向に与えられる圧力によ
って変化するため、タイヤ側壁部に埋込んだ場合タイヤ
空気圧に応じてこの絶縁体62a、62b間の距離が変
化し、応じて容量の容量値も変化する。 なお上記実施例において固定インダクタンスLを設けて
共振回路を構成しているが、この固定インダクタンスは
必ずしも設ける必要はなく、タイヤ部に設けられた1タ
ーンまたは複数ターンのループ状導体を用いてインダク
タンスを構成してもよい。 また、上記実施例においてはタイヤ空気圧に応答して容
量値が変化する可変容量素子を用いて共振回路を構成し
たが、これに代えて、固定容量素子を用い、インダクタ
ンスLとしてタイヤ空気圧に応じてインダクタンス値が
変化する可変インダクタンスを用いてもよい。 第5図はタイヤ空気圧に応じてインダクタンス値が変化
する可変インダクタンス素子の構成を示す図である。第
5図において可変インダクタンス素子は、タイヤ空気圧
を受けるダイヤフラム71と、ダイヤフラム71にリン
ク機構72を介して接続される磁性体73と、磁性体7
3の位置によりそのインダクタンス値か変化するコイル
74とから構成される。この構成においては、太矢印方
向に与えられるタイヤ空気圧に応じてダイヤフラム71
の位置が壺化し、これにより磁性体73の位置もリンク
機構72を介して変化する。コイル74はそこに挿入さ
れる磁性体の位置に応じてそのインダクタンス値も変化
するため、タイヤ空気圧に応じてインダクタンス値が変
化する可変インダクタンス素子を実現することができる
。 また、上記実施例においては共振回路としてLCの直列
共振回路を用いたが、LC並列共振回路を用いても上記
実施例と同様の効果を得ることができる。 〔発明の効果〕 以上のように、この発明によれば、タイヤ側壁部の円周
方向に沿ってループ導体を設けるとともにループ導体両
端にループ導体と連続して閉回路を形成するように、タ
イヤ空気圧に応じて共振周波数が変化する共振回路を設
け、このループ導体に電磁結合を介して周波数制御され
た電流を供給するともにこのループ導体を流れる電流を
検出し、検出電流値とそのときの誘導電流周波数とを用
いてタイヤ空気圧を検出するように構成したので、タイ
ヤの空気注入バルブに圧力計を接続する必要もなく車両
の走行時、停車時にかかわらず常にタイヤ空気圧を監視
することが可能となり、タイヤ空気圧の低下等に伴う事
故発生を未然に防止することが可能となる。また、電磁
結合を介してループ導体に電流を供給し、かつループ導
体を流れる電流を検出しているので、タイヤ側には電池
などの電源を受ける必要が全くなく、消費電力の小さな
タイヤ空気圧検出装置を実現することができる。
[Prior Art] Conventionally, a common method for detecting tire air pressure is to connect a pressure gauge to an air injection valve of a tire, and use this pressure gauge to measure tire air pressure. Recently, a method has been announced in which a pressure sensor is built into a tire rim and the tire air pressure is measured based on the output of the pressure sensor. FIG. 6 is a diagram showing a schematic configuration of a conventional device for detecting and monitoring tire air pressure using a pressure sensor. Figure 6 shows conventional tire pressure detection. The monitoring device is installed at a predetermined position on a rim 2 for holding the tire 1 and attaching the tire 1 to a vehicle body rotation shaft (not shown) so as to penetrate through the rim 2, and is injected with air through an air valve 3. A pressure sensor 4 that detects air pressure is provided at a predetermined position IT6 on the vehicle body so as to face the pressure sensor 4 provided on the rim 2, receives and decodes the output of the pressure sensor 4, and displays the decoded result on a display device E? Transmitting/receiving device 5
and a display device 7, which is provided near the driver's seat of the vehicle and displays the tire air pressure in response to a decoded signal from the transmitting/receiving device 5. FIG. 7 is a diagram showing a schematic configuration of the pressure sensor and the transmitting/receiving device shown in FIG. 6. As shown in FIG. 7, the pressure sensor 4 is a pressure sensor made of, for example, a silicon diaphragm, which is provided so as to be in contact with the air inside the tire 1, and whose resistance value rapidly changes when the tire air pressure drops below a predetermined value. Detecting changes in resistance values of the element 41 and the pressure sensitive element 41,
Antenna (or coil) transmits a signal corresponding to its resistance value
A signal processing circuit 42 that transmits to the transmitting/receiving device 5 via 43
Equipped with. The transmitting/receiving device 5 includes a receiving section 52 that receives resistance value information of the pressure sensing element 41 transmitted from the pressure sensor 4 via an antenna (or coil) 51, and converts this resistance value information into tire pressure information, and a receiving section. A determination circuit 53 is provided that compares the air pressure information from 52 with a predetermined value and transmits the comparison result to the display section 7. Next, the operation will be explained. The pressure sensor 4 is provided integrally with the rim 2 and is provided so as to constantly monitor the air pressure within the tire 1. Further, resistance value information of the pressure sensing element 41 corresponding to the detected tire air pressure is provided from the signal processing circuit 42 to the transmitting/receiving device 5 via the antenna (or coil) 43, 51 by induction or radio frequency communication. Now, when the air pressure of the tire 1 drops below a predetermined value, the resistance value of the pressure sensing element 41 changes rapidly. The signal processing circuit 42 detects this sudden change in the resistance value of the pressure sensitive element 41 and provides the resistance value information to the transmitting/receiving bag rIt5. The transmitting/receiving device 5 converts the given resistance value information into tire pressure information at the receiving section 52 and provides it to the determination circuit 53 . The determination circuit 53 compares the given tire pressure information with a predetermined reference value, and if the tire pressure is higher than the predetermined reference value, it provides information that the tire pressure is normal to the display section 1, and indicates that the tire pressure is at the predetermined reference value. In the following cases, tire air pressure defect information is provided to the display section 7. In response to the given tire pressure information, the display unit 7 lights up a blue lamp, for example, if the tire pressure is normal;
For example, a red lamp is turned on when tire pressure abnormality information is given. [Problems to be Solved by the Invention] When measuring tire air pressure by connecting a pressure gauge to a tire's inflation valve, which has been commonly done in the past,
Abnormalities in tire air pressure (particularly pressure drops) could only be detected when the tire air pressure was measured. In addition, when measuring tire pressure with a pressure gauge, it is cumbersome to stop the vehicle and use the pressure gauge to measure it, so for example, it is not necessary to check the tire pressure before entering the expressway. It is conceivable that the vehicle will be driven on a highway during this period, and in this case there is also the problem that a drop in tire air pressure could lead to an accident. Furthermore, in the conventional tire pressure detection and monitoring device described above, the pressure sensor is embedded only in a part of the rim and rotates with the rotation of the tire, while the transmitting and receiving device is fixedly attached to a part of the vehicle body. Therefore, communication between the pressure sensor 4 serving as a detection unit and the transmitting/receiving device 5 is performed only when they are located opposite each other, and tire air pressure can only be detected intermittently. Furthermore, a binary judgment is made as to whether the detected tire air pressure is higher or lower than a predetermined reference pressure, and there is a problem in that the tire air pressure cannot be continuously monitored. Therefore, an object of the present invention is to eliminate the problems of the conventional tire pressure detection device described above, and to detect a tire pressure that can easily and continuously monitor tire pressure regardless of whether the vehicle is running or stopped. The purpose is to provide equipment. [Means for Solving the Problems] The tire air pressure detection device according to the present invention includes a loop-shaped conductor provided on the tire side wall along the circumferential direction of the tire, and a closed circuit connected to the conductor loop at both ends of the conductor. A resonant circuit is provided in which the resonant frequency changes according to the tire air pressure, and a frequency-controlled current or voltage signal is supplied to this loop conductor via electromagnetic coupling, and the signal flowing through the loop conductor is electromagnetically coupled. The tire air pressure is determined based on the detected signal value and the signal frequency. [Operation] The resonant frequency of the resonant circuit connected to the loop conductor changes depending on the tire air pressure. On the other hand, since the resonant circuit and the conductor loop constitute one closed circuit, the current value (or voltage value) flowing through the conductor loop becomes maximum when the resonant circuit resonates. Therefore, by supplying an external frequency-controlled signal to the loop conductor, detecting the current (or voltage value) flowing through the loop conductor, and observing the frequency that gives the maximum current (or voltage) value, the resonant frequency can be determined. It becomes possible to detect tire air pressure through the [Embodiments of the Invention] FIG. 2 is a schematic perspective view of a tire with some parts cut away to show an example of a specific structure of the tire according to the invention. In FIG. 2, one or more turns of the conductor 11 are provided so as to draw a loop along the circumferential direction of the side wall of the tire 10, and the conductor 11 is provided at both ends of the loop-shaped conductor 11 in a continuous manner with the conductor loop. A resonant circuit 12 is provided to form a closed circuit and whose resonant frequency changes depending on the tire air pressure. The conductor 11 and the resonant circuit 12 are embedded in the tire sidewall. The resonant circuit 12 is composed of an electrical resonant circuit (LC series resonant circuit) in which a variable capacitance element C whose capacitance changes depending on the tire air pressure and a fixed inductance L whose inductance value is fixed are connected in series. FIG. 1 is a diagram showing an example of the overall configuration of a tire air pressure detection device that is an embodiment of the present invention. In FIG. 1, the tire air pressure detection device according to the present invention is configured such that the tire lO is electromagnetically coupled to a loop conductor 11.
An excitation coil 13 is provided on the vehicle body side in close proximity to the loop conductor 11 for supplying an induced current (or voltage) to the loop conductor 11 via electromagnetic coupling. a sweep oscillator 14 capable of sweeping the oscillation frequency for supplying a controlled current (or voltage), and a sweep oscillator 14 in close proximity to the tire 10 for detecting the induced current (or voltage) flowing through the loop conductor 11. A pickup coil 15 provided to be electromagnetically coupled to the loop conductor 11, an amplifier circuit 16 that amplifies the current flowing through the pickup coil 15, and a direct current proportional to the induced current that detects the high frequency current amplified by the amplifier circuit 16. It is composed of a detector 17 that outputs a level, and a processing device 18 that receives the oscillation frequency of the sweep oscillator 14 and the output of the detector 17 and determines the air pressure of the tire 10. Next, the operation will be explained. First, an LC resonant circuit 12 is connected to the loop conductor 11 so as to be continuous with the loop conductor and form a closed circuit. The capacitance C is a variable capacitance element whose capacitance value changes depending on the air pressure of the tire 10. The resonant circuit 12 has a capacitance C
and an inductance L are connected in series to form an electrical series resonant circuit. At this time, the resonant frequency f of the resonant circuit 12. is given by fo=1/2π,/T. In the above equation, the value of the capacitance C changes depending on the tire air pressure, while the value of the inductance L is fixed, so the resonant frequency fo of the resonant circuit 12 also changes depending on the tire air pressure. On the other hand, an excitation coil 13 for supplying an induced current to the loop conductor 11 is provided on the vehicle body side. The excitation coil 13 has the above-mentioned resonance frequency f. A high frequency signal is supplied from a sweep oscillator 14 whose oscillation frequency can be varied continuously at nearby frequencies. Thereby, the excitation coil 13 induces a high frequency voltage (or current) in the loop conductor 11 via electromagnetic coupling. At this time, since the current flowing through the loop conductor 11 also flows through the resonant circuit 12, the current flowing through the resonant circuit 12 is given by dividing the induced voltage by the impedance of the circuit constituted by the resonant circuit 12 and the loop conductor 11. therefore,
The frequency of the induced voltage induced in the loop conductor is the resonance circuit 12.
The induced current flowing through the loop conductor 11 becomes maximum when the resonant frequency fo is equal to the resonance frequency fo. The induced current flowing through the loop conductor 11 is detected by the pickup coil 15. That is, since the pickup coil 15 is provided near the tire 10 so as to be electromagnetically coupled to the loop conductor 11,
Through electromagnetic coupling with the loop conductor 11, a current or voltage proportional to the current flowing through the loop conductor is generated in the pickup coil 15. Since the current (or voltage) detected by this pickup coil 15 is very small, it is supplied to an amplifier 16 and amplified there. The detector 17 detects the output of the pickup coil 15 amplified by the amplifier circuit 16 and outputs a signal at a DC level proportional to the output of the amplifier 16. The processing device 18 receives the oscillation frequency of the sweep oscillator 14 and the output of the wave detector 17 and determines the tire air pressure. When the current value flowing through the loop conductor 11 has a frequency that matches the resonance frequency fo of the resonant circuit 12, the output of the pickup coil 15 also becomes maximum. Therefore, by receiving the oscillation frequency of the sweep oscillator 14 and the maximum value of the detection output of the wave detector 17, and monitoring the oscillation frequency that gives the maximum output of the wave detector 17, the resonance frequency of the resonance circuit 12 at that time can be determined. On the other hand, this resonant frequency fo is coupled to the value of the capacitance C, which varies depending on the tire pressure, according to the above equation, making it possible to detect the tire pressure. An example of a specific operation of the now judgment will be explained. Figure 3 is a diagram showing the relationship between the oscillation frequency of the sweep oscillator and the detector output, Figure 3A is a diagram showing the relationship between the oscillation frequency of the sweep oscillator and time, and Figure 3B is a diagram showing the relationship between the oscillation frequency of the sweep oscillator and time. FIG. 3C is a diagram showing the relationship between the oscillation frequency and the detection output when the capacitance of the oscillation circuit resonant circuit becomes large. Here, Fig. 3A, 3
In FIG. B and FIG. 3C, the time axes are aligned so that the oscillation frequency and the detector output correspond to each other. Now, a case will be explained in which the capacity value of the capacity C increases as the tire air pressure increases. As the tire air pressure increases and the capacitance value of the capacitor C also increases, the resonant frequency of the resonant circuit 12 decreases, giving the maximum detection output at a relatively low oscillation frequency, as shown in FIG. 3C. On the other hand, as the tire air pressure decreases, the capacitance decreases, so the resonance frequency becomes a relatively high frequency, and as shown in FIG. 3B, the detection output becomes maximum at a relatively high oscillation frequency. Therefore, the tire air pressure can be directly detected based on the correlation between the detection output and the oscillation frequency. If an alarm circuit is connected to the processing device 18, it is possible to immediately notify the driver and give a warning if the tire pressure becomes abnormal based on the result of tire pressure detection by the processing device 18. FIG. 4 is a diagram showing an example of a specific configuration of a capacitance whose capacitance value changes depending on tire air pressure. In FIG. 4, variable capacitances C are provided facing each other with a gap 64 and springs 63a and 63b.
It consists of insulators 62a and 62b that are held together via the insulators 62a and 62b, and conductor electrodes 61a and 61b that are provided in close contact with the surfaces of the insulators 62a and 62b. Electrodes 61a, 61b
Conductor wirings 65a and 65b are connected to. In this configuration, the capacitance value changes depending on the pressure applied in the direction of the thick arrow in the figure, so when embedded in the tire side wall, the distance between the insulators 62a and 62b changes depending on the tire air pressure, and the capacitance changes accordingly. The capacitance value also changes. Note that in the above embodiment, a fixed inductance L is provided to configure the resonant circuit, but this fixed inductance is not necessarily provided, and it is possible to create an inductance by using a loop-shaped conductor with one turn or multiple turns provided in the tire part. may be configured. In addition, in the above embodiment, the resonant circuit was constructed using a variable capacitance element whose capacitance value changes in response to the tire air pressure, but instead of this, a fixed capacitance element is used and the inductance L is changed depending on the tire air pressure. A variable inductance whose inductance value changes may also be used. FIG. 5 is a diagram showing the configuration of a variable inductance element whose inductance value changes depending on tire air pressure. In FIG. 5, the variable inductance element includes a diaphragm 71 receiving tire air pressure, a magnetic body 73 connected to the diaphragm 71 via a link mechanism 72, and a magnetic body 73 connected to the diaphragm 71 via a link mechanism 72.
3, and a coil 74 whose inductance value changes depending on the position. In this configuration, the diaphragm 71
The position of the magnetic body 73 changes via the link mechanism 72. Since the inductance value of the coil 74 changes depending on the position of the magnetic body inserted therein, it is possible to realize a variable inductance element whose inductance value changes depending on the tire air pressure. Further, in the above embodiment, an LC series resonant circuit is used as the resonant circuit, but the same effects as in the above embodiment can be obtained even if an LC parallel resonant circuit is used. [Effects of the Invention] As described above, according to the present invention, a loop conductor is provided along the circumferential direction of the tire side wall portion, and a closed circuit is formed continuously with the loop conductor at both ends of the tire. A resonant circuit whose resonant frequency changes according to air pressure is provided, and a frequency-controlled current is supplied to this loop conductor via electromagnetic coupling, and the current flowing through this loop conductor is detected, and the detected current value and the induction at that time are calculated. Since the system is configured to detect tire pressure using current frequency, there is no need to connect a pressure gauge to the tire's inflation valve, making it possible to constantly monitor tire pressure regardless of whether the vehicle is running or stopped. This makes it possible to prevent accidents caused by a drop in tire air pressure. In addition, since current is supplied to the loop conductor via electromagnetic coupling and the current flowing through the loop conductor is detected, there is no need for the tire to receive a power source such as a battery, and tire air pressure detection has low power consumption. The device can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例であるタイヤ空気圧検出装
置の全体の構成の一例を示す図である。 第2図はこの発明によるタイヤ検出装置に用いられるル
ープ導体と共振回路をタイヤ側壁に設けた場合の具体的
構成の一例を示す図である。第3図は、ループ導体を流
れる電流周波数とそのときの検出電流値との関係を示す
図であり、第3A図は、掃引発振器の発振周波数の時間
変化の一例を示す図であり、第3B図は、共振回路の共
振周波数が高くなりた場合の検波器出力の一例を示す図
であり、第3C図は、共振回路の共振周波数が比較的低
い場合の検出器出力の一例を示す図である。第4図は可
変容量素子の具体的構成の一例を示す図である。第5図
は可変インダクタンス素子の具体的構成の一例を示す図
である。第6図は従来のタイヤ空気圧検出装置の構成の
一例を示す図である。 第7図は第6図に示されるタイヤ空気圧検出装置の圧力
センサと送受信装置の構成を示す図である。 図において、10はタイヤ、11はループ状導体、12
は共振回路、13は励振コイル、14は掃引発振器、1
5はピックアップコイル、16は増幅器、17は検波器
、18は信号処理装置、Cは共振回路を構成する容量、
Lは共振回路を構成するインダクタンスである。 なお、図中、同一符号は同一または相当部分を示す。 萬1図 R 第2図 第3A■ 第4図 第5図
FIG. 1 is a diagram showing an example of the overall configuration of a tire air pressure detection device that is an embodiment of the present invention. FIG. 2 is a diagram showing an example of a specific configuration in which a loop conductor and a resonant circuit used in the tire detection device according to the present invention are provided on a tire sidewall. FIG. 3 is a diagram showing the relationship between the frequency of the current flowing through the loop conductor and the detected current value at that time, FIG. The figure is a diagram showing an example of the detector output when the resonant frequency of the resonant circuit becomes high, and Figure 3C is a diagram showing an example of the detector output when the resonant frequency of the resonant circuit is relatively low. be. FIG. 4 is a diagram showing an example of a specific configuration of a variable capacitance element. FIG. 5 is a diagram showing an example of a specific configuration of a variable inductance element. FIG. 6 is a diagram showing an example of the configuration of a conventional tire air pressure detection device. FIG. 7 is a diagram showing the configuration of a pressure sensor and a transmitting/receiving device of the tire air pressure detection device shown in FIG. 6. In the figure, 10 is a tire, 11 is a loop-shaped conductor, and 12
is a resonant circuit, 13 is an excitation coil, 14 is a sweep oscillator, 1
5 is a pickup coil, 16 is an amplifier, 17 is a detector, 18 is a signal processing device, C is a capacitor that constitutes a resonance circuit,
L is an inductance that constitutes a resonant circuit. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Figure 1R Figure 2 Figure 3A ■ Figure 4 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)車両のタイヤの空気圧を検出するための装置であ
って、 前記タイヤの円周方向に沿って前記タイヤの側壁部に設
けられループを形成する導体と、 前記導体の両端部に前記導体のループと連続して閉回路
を構成するように設けられ、前記タイヤの空気圧に応じ
て共振周波数が変化する共振回路と、 周波数可変の信号を発生する周波数可変発振手段と、 前記導体と電磁結合するように前記タイヤ近傍に設けら
れ、前記周波数可変発振手段からの信号を受け、前記導
体に電磁結合を介して誘導信号を発生させる誘導信号供
給手段と、 前記導体と電磁結合するように前記タイヤ近傍に設けら
れ、前記導体を流れる誘導信号を検出する信号検出手段
と、 前記信号検出手段からの検出信号と前記周波数可変発振
手段の発振周波数とにより前記タイヤの空気圧を判定す
る判定手段とを備える、タイヤ空気圧検出装置。
(1) A device for detecting air pressure in a vehicle tire, comprising: a conductor provided on a side wall of the tire along the circumferential direction of the tire to form a loop; and the conductor at both ends of the conductor. a resonant circuit that is provided so as to form a closed circuit continuously with the loop, and whose resonant frequency changes depending on the air pressure of the tire; a variable frequency oscillation means that generates a variable frequency signal; and electromagnetic coupling with the conductor. a guide signal supply means provided near the tire to receive a signal from the variable frequency oscillation means and generate a guide signal to the conductor through electromagnetic coupling; A signal detecting means that is provided nearby and detects an induced signal flowing through the conductor; and a determining means that determines the air pressure of the tire based on the detection signal from the signal detecting means and the oscillation frequency of the variable frequency oscillating means. , tire pressure detection device.
(2)前記共振回路は、 予め定められたインダクタンス値を有するインダクタン
スと、 前記タイヤ空気圧に応じてキャパシタンス値が変化する
容量とから構成される、特許請求の範囲第1項記載のタ
イヤ空気圧検出装置。
(2) The tire air pressure detection device according to claim 1, wherein the resonant circuit includes an inductance having a predetermined inductance value and a capacitor whose capacitance value changes depending on the tire air pressure. .
(3)前記共振回路は 予め定められた容量値を有する容量と、 前記タイヤ空気圧に応じてインダクタンス値が変化する
インダクタンスとを備える、特許請求の範囲第1項記載
のタイヤ空気圧検出装置。
(3) The tire air pressure detection device according to claim 1, wherein the resonant circuit includes a capacitor having a predetermined capacitance value, and an inductance whose inductance value changes depending on the tire air pressure.
JP62145910A 1987-06-10 1987-06-10 Tire air pressure detector Pending JPS63306905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62145910A JPS63306905A (en) 1987-06-10 1987-06-10 Tire air pressure detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62145910A JPS63306905A (en) 1987-06-10 1987-06-10 Tire air pressure detector

Publications (1)

Publication Number Publication Date
JPS63306905A true JPS63306905A (en) 1988-12-14

Family

ID=15395898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62145910A Pending JPS63306905A (en) 1987-06-10 1987-06-10 Tire air pressure detector

Country Status (1)

Country Link
JP (1) JPS63306905A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147706U (en) * 1988-03-23 1989-10-12
EP0417267A1 (en) * 1989-03-31 1991-03-20 Destron Idi Inc Vehicle tire identification system.
US5181975A (en) * 1991-03-27 1993-01-26 The Goodyear Tire & Rubber Company Integrated circuit transponder with coil antenna in a pneumatic tire for use in tire identification
US5218861A (en) * 1991-03-27 1993-06-15 The Goodyear Tire & Rubber Company Pneumatic tire having an integrated circuit transponder and pressure transducer
US5260683A (en) * 1990-04-05 1993-11-09 Nippondenso Co., Ltd. Tire pressure detecting apparatus for vehicle
EP1384603A1 (en) * 2002-07-24 2004-01-28 The Goodyear Tire & Rubber Company Annular antenna and transponder apparatus and method of disposition in pneumatic tires
WO2005043264A3 (en) * 2003-08-25 2006-03-02 Rosemount Aerospace Inc A wireless tire pressure and/or wheel speed sensing system for aircraft
US7019711B2 (en) 2002-12-16 2006-03-28 The Goodyear Tire & Rubber Company Coupled transponder and antenna system and method
DE102010034175A1 (en) * 2010-08-12 2012-02-16 Sew-Eurodrive Gmbh & Co. Kg Apparatus for contactless transmission of energy to a vehicle, vehicle and use of a rim of a vehicle

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694499A (en) * 1979-12-19 1981-07-30 Bosch Gmbh Robert Continuous monitor device for automobile tire pressure
JPS57178596A (en) * 1981-04-28 1982-11-02 Aguguria Jiyanruiji Remote tire pressure indicator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694499A (en) * 1979-12-19 1981-07-30 Bosch Gmbh Robert Continuous monitor device for automobile tire pressure
JPS57178596A (en) * 1981-04-28 1982-11-02 Aguguria Jiyanruiji Remote tire pressure indicator

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01147706U (en) * 1988-03-23 1989-10-12
EP0417267A1 (en) * 1989-03-31 1991-03-20 Destron Idi Inc Vehicle tire identification system.
US5260683A (en) * 1990-04-05 1993-11-09 Nippondenso Co., Ltd. Tire pressure detecting apparatus for vehicle
US5181975A (en) * 1991-03-27 1993-01-26 The Goodyear Tire & Rubber Company Integrated circuit transponder with coil antenna in a pneumatic tire for use in tire identification
US5218861A (en) * 1991-03-27 1993-06-15 The Goodyear Tire & Rubber Company Pneumatic tire having an integrated circuit transponder and pressure transducer
JP2004058997A (en) * 2002-07-24 2004-02-26 Goodyear Tire & Rubber Co:The Annular antenna and transponder device, and method for disposing them in pneumatic tire
EP1384603A1 (en) * 2002-07-24 2004-01-28 The Goodyear Tire & Rubber Company Annular antenna and transponder apparatus and method of disposition in pneumatic tires
JP4585183B2 (en) * 2002-07-24 2010-11-24 ザ・グッドイヤー・タイヤ・アンド・ラバー・カンパニー Annular antenna and transponder device and method for placing them in a pneumatic tire
US7019711B2 (en) 2002-12-16 2006-03-28 The Goodyear Tire & Rubber Company Coupled transponder and antenna system and method
WO2005043264A3 (en) * 2003-08-25 2006-03-02 Rosemount Aerospace Inc A wireless tire pressure and/or wheel speed sensing system for aircraft
US7202778B2 (en) 2003-08-25 2007-04-10 Rosemount Aerospace Inc. Wireless tire pressure sensing system
US7397353B2 (en) 2003-08-25 2008-07-08 Rosemount Aerospace Inc. Wireless tire pressure and/or wheel speed sensing system for aircraft
DE102010034175A1 (en) * 2010-08-12 2012-02-16 Sew-Eurodrive Gmbh & Co. Kg Apparatus for contactless transmission of energy to a vehicle, vehicle and use of a rim of a vehicle

Similar Documents

Publication Publication Date Title
US6362732B1 (en) Tire pressure sensing system
US4588978A (en) Remote switch-sensing system
US7254994B2 (en) Device for detecting and signaling a physical value when connected to a rim, and rim comprising such a device
US6124787A (en) Tire pressure sensing system
EP2368724B1 (en) Tire wear detection device
US20060290516A1 (en) Distress signaling system, a body area network for anabling a distress signaling, method for signaling a condition of a distress and a vehicle arranged witha distress signaling system
JPS61177826A (en) Wireless measured value transmitter
CA2227083A1 (en) Tire pressure sensing system
CA2506586C (en) Improvements in tyre data monitoring systems
JP2001525284A (en) Wireless transponder antenna
US7750797B2 (en) Method and device for the detection of the separation of an electronic module from a vehicle to which it is mounted
JP2003507231A (en) Method for monitoring the dynamic state of rolling elements, especially pneumatic tires
US20030102966A1 (en) Tire pressure sensing system
JPS63306905A (en) Tire air pressure detector
GB2065896A (en) Apparatus for Continuously Monitoring the Air Pressure in Vehicle Tyres
EP1071569B1 (en) Rf transponder and method of measuring parameters associated with a monitored object
EP1071570B1 (en) Pneumatic tire having a transponder and method of measuring pressure within a pneumatic tire
JP6018973B2 (en) Tire wear detection device
US4006449A (en) Information detector for a tire wheel
US20070279204A1 (en) Method and system for tire inflation monitoring
EP0108176A1 (en) Detection of a low pressure condition of a pneumatic vehicle tyre
JPH0560160B2 (en)
WO2013157979A1 (en) System for remote measurement and monitoring of physical magnitudes and method for remote measurement and monitoring of physical magnitudes
JP4252768B2 (en) Non-contact physical quantity measuring method, physical quantity measuring apparatus, and semiconductor element.
JP3458210B2 (en) Ground probe with self-diagnosis function