JPS63306417A - Method for projecting stereoscopic image - Google Patents

Method for projecting stereoscopic image

Info

Publication number
JPS63306417A
JPS63306417A JP62142184A JP14218487A JPS63306417A JP S63306417 A JPS63306417 A JP S63306417A JP 62142184 A JP62142184 A JP 62142184A JP 14218487 A JP14218487 A JP 14218487A JP S63306417 A JPS63306417 A JP S63306417A
Authority
JP
Japan
Prior art keywords
viewing
eye
video
image
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62142184A
Other languages
Japanese (ja)
Inventor
Shiyuuji Minowa
輯二 箕輪
Tadashi Matsuo
正 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP62142184A priority Critical patent/JPS63306417A/en
Publication of JPS63306417A publication Critical patent/JPS63306417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

PURPOSE:To enable relative easy projection of large-sized stereoscopic videos by projecting a non-linearly polarizable light beam consisting of the video signal for one scanning line of the video for viewing with the left or the video for viewing with the right eye to the respective specular faces of a prescribed rotary polyhedral mirror. CONSTITUTION:Polarizing layers 11, 12 having the axes of polarization intersecting relatively orthogonally with the specular faces 5, 6 for reflecting the signals for the left eye and the right eye are mounted to the respective specular faces of the rotary polyhedral mirror 3 consisting of alternate repetitions of the same number of the specular face 5 for reflecting the video signal for viewing with the left eye and the specular faces 6 for reflecting the video signals for viewing with the right eye. The non-linearly polarizable light beam consisting of the video signal for one scanning line of the video for viewing with the left eye or the video for viewing with the right eye is projected to the respective corresponding specular faces. The reflected light thereof is projected to an image receiving body 7 having a polarization maintaining characteristic and the directions of the axes of polarization of the resulted video 8 for viewing with the left eye and the video 9 for viewing with the right eye are matched with the directions of the axes of polarization of polarizing spectacles 10 which are worn by an observer on both the right and left eyes and have the axes of polarization intersecting orthogonally with each other. The stereoscopically viewing videos of the large image plane size re thereby relatively easily projected.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は映像の投影方法に関するものであり。[Detailed description of the invention] Industrial applications The present invention relates to an image projection method.

特に立体視映倫の投影方法に関する。Especially regarding the projection method of stereoscopic vision.

従来の技術 2次元の受像体に立体視映像を投影しようとする試みは
従来から多数提案されている。
2. Description of the Related Art Many attempts have been made to project stereoscopic images onto a two-dimensional image receptor.

たとえば、左眼および右眼で見たそれぞれの映像を赤と
青の光学フィルターを通して同一スクリ−のほぼ同一位
置に投影し、観察者は左右の眼にそれぞれ赤七青の光学
フィルター眼鏡をかけて鑑賞する方法がある。同様に、
赤と背の光学フィルターの替わりに互いに直交する偏光
軸を有する偏光フィルターを用いる方法も知られている
For example, the images seen by the left and right eyes are projected onto almost the same position on the same screen through red and blue optical filters, and the viewer wears red, seven and blue optical filter glasses on each eye. There is a way to appreciate it. Similarly,
A method of using polarizing filters having polarization axes orthogonal to each other in place of the red and back optical filters is also known.

また別に、左眼および右眼視映像のそれぞれを交互に高
速で面受儂体に投影し、投影された左眼および右眼視、
映倫に同期して左右交互に開閉するシャッター眼鏡を介
して鑑賞する方法も゛知られている。
Separately, each of the left-eye and right-eye visual images is projected alternately at high speed onto a surface receptor body, and the projected left-eye and right-eye visual images,
It is also known to watch through shutter glasses that open and close alternately on the left and right in synchronization with the Eirin.

受像体を微小な区画に分割し、各区画に互いに直交する
偏光軸を有する偏光層を装着し、同一方向の偏光軸を有
する偏光層を施された各区画に立体視映像の片方の映像
を投影し、それぞれの映像と同一の偏光軸を有する偏光
眼鏡を通じて鑑賞する方法も提案されている。
The image receptor is divided into minute sections, each section is equipped with a polarizing layer with polarization axes orthogonal to each other, and one side of the stereoscopic image is displayed on each section coated with a polarization layer with polarization axes in the same direction. A method has also been proposed in which images are projected and viewed through polarized glasses having the same polarization axis as each image.

別に、ホログラフを用いる立体視映像の形成方法も知ら
れている。
Separately, a method of forming a stereoscopic image using a hologram is also known.

しかしこれらの方法は大形の立体視映像の形成が困難で
あったり、映像の鮮鋭度が充分でなかつたり、カラー映
像の形成が困難であったり、高価なシャッター眼鏡を必
要とする等の難点があった。
However, these methods have drawbacks such as difficulty in forming large stereoscopic images, insufficient image sharpness, difficulty in forming color images, and the need for expensive shutter glasses. was there.

発明が解決しようとする問題点 比較的簡易な方法で大形の立体視映像を投影する方法が
求められている。
Problems to be Solved by the Invention There is a need for a method for projecting large stereoscopic images using a relatively simple method.

問題点を解決するための手段 本発明は、同数の右眼視映像信号反射用鏡面と右眼視映
像信号反射用鏡面との交互の繰り返しから成る回転多面
鏡の各鏡面に、右眼視映像信号反射用鏡面と右眼視映像
信号反射用鏡面とでは相対的に直交する偏光軸を有する
偏光層を装着し、それぞれ対応する鏡面に左眼視映像ま
たは右眼視映像の1走査線分の映像信号から成る非直線
偏光性の光ビームを照射し、その反射光を偏光保持性の
受像体に投影して得られた左眼視映像および右眼視映像
の偏光軸の方向を、観察者が左右両眼に装着した互いに
直交する偏光軸を有する偏光眼鏡の偏光軸の方向と整合
させることを特徴とする立体視映像投影方法を提供する
Means for Solving the Problems The present invention provides a rotating polygon mirror consisting of the same number of right-eye video signal reflecting mirror surfaces and right-eye video signal reflecting mirror surfaces that are alternately repeated. Polarizing layers having relatively orthogonal polarization axes are attached to the mirror surface for reflecting the signal and the mirror surface for reflecting the right-eye video signal, and one scanning line of the left-eye video or the right-eye video is attached to the corresponding mirror surface. An observer can determine the direction of the polarization axis of a left-eye image and a right-eye image obtained by irradiating a non-linearly polarized light beam consisting of an image signal and projecting the reflected light onto a polarization-maintaining image receptor. Provided is a stereoscopic image projection method characterized in that the direction of the polarization axis is aligned with the direction of the polarization axis of polarized glasses having mutually orthogonal polarization axes worn on the left and right eyes.

レーザー光線のような強い平行光線を映像信号で変調し
、スキャニングミラー等の反射型変角装置を用いて横方
向および縦方向に走査してスクリーンやその他の受像体
に映像を投影する方法は知られている。
There is no known method of modulating a strong parallel beam of light, such as a laser beam, with a video signal, scanning it horizontally and vertically using a reflective angle-changing device such as a scanning mirror, and projecting the image onto a screen or other image receptor. ing.

また、正多角柱状に平面鏡を配列した回転多面鏡(ポリ
ゴンミラー)をその回転軸で回転し、その鏡面に映像信
号で変調した光ビームを照射すると、その反射光は1鏡
面当たり1本の映像信号から成る走査像を受像体上に与
えることも知られている。この場合1回転多面鏡に入射
する光ビームの入射角を回転多面鏡の回転軸に沿って変
角すれば、受像体上には2次元の映像が得られる。
In addition, when a rotating polygon mirror (polygon mirror) in which plane mirrors are arranged in the shape of a regular polygonal column is rotated around its rotation axis and a light beam modulated by a video signal is irradiated onto the mirror surface, the reflected light will produce one image per mirror surface. It is also known to provide a scanned image of signals on an image receptor. In this case, by changing the angle of incidence of the light beam incident on the single-rotation polygon mirror along the rotation axis of the polygon mirror, a two-dimensional image can be obtained on the image receptor.

本発明はこれらの事実に着目し、立体視映像を得る方法
について研究した結果完成したものである。以下1本発
明の1具体例を図面を用いて説明する。
The present invention was completed as a result of paying attention to these facts and researching methods for obtaining stereoscopic images. A specific example of the present invention will be described below with reference to the drawings.

第1図において、1は投影用の光源である。この光源は
受像体上で充分な明るさを確保できる光ビームを発生す
ることができれば何でもよい。例えばサーチライトのよ
うなビーム性のハロゲン灯やキセノン灯であってもよい
が、可視光レーザも好ましい光源である。可視光レーザ
の例としてはヘリウム−ネオンレーザ、アルゴンレーザ
、クリプトンレーザ、ヘリクムーカドミウムレーザ、鋼
蒸気レーザ、ルビーレーザ、色素レーザ、可視光半導体
レーザをあげることができる。ただし、光源が直線偏光
性ビームを発生するレーザ等の場合は光源1と回転多面
鏡3の間の光路B1tたはB2に偏光解消素子または位
相板(特に1/4波長板)等を挿入して回転多面鏡3に
入射する光ビームを非直線偏光性にしておく必要がある
。このような装置は当業界でよく知られている。
In FIG. 1, 1 is a light source for projection. This light source may be of any type as long as it can generate a light beam that can ensure sufficient brightness on the image receptor. For example, a beam-type halogen lamp or xenon lamp such as a searchlight may be used, but a visible light laser is also a preferable light source. Examples of visible light lasers include helium-neon lasers, argon lasers, krypton lasers, helium cadmium lasers, steel vapor lasers, ruby lasers, dye lasers, and visible light semiconductor lasers. However, if the light source is a laser that generates a linearly polarized beam, insert a depolarizing element or a phase plate (especially a quarter-wave plate) in the optical path B1t or B2 between the light source 1 and the rotating polygon mirror 3. It is necessary to make the light beam incident on the rotating polygon mirror 3 non-linearly polarized. Such devices are well known in the art.

ビームの映像信号による変調は光源自体の点滅または増
減光によって行うこともできるがたとえば電気光学的変
調装置、超音波光変調装置、光スィッチ、光シヤツター
等通常この目的に使用されている装置を光路中に挿入し
て行ってもよい。
Modulation of the beam by a video signal can be performed by blinking or increasing or decreasing the light of the light source itself, but for example, devices normally used for this purpose, such as electro-optical modulators, ultrasonic light modulators, optical switches, and optical shutters, can be used in the optical path. You can also insert it inside.

第1図の2はスキャニングミラーであって1回転多面鏡
5の走査方向と直角な方向にビームを走査することによ
って受像体に2次元映像を与えるのに好ましい装置であ
る。スキャニングミラー2はビーム光路中1回転多面鏡
3の前にあっても後ろにあってもさしつかえない。また
、スキャニングミラーの替わりに普通の回転多面鏡を回
転多面鏡3と回転軸を互いに直交させて用いてもよい。
Reference numeral 2 in FIG. 1 is a scanning mirror, which is a preferred device for providing a two-dimensional image to an image receptor by scanning a beam in a direction perpendicular to the scanning direction of the single-rotation polygon mirror 5. The scanning mirror 2 may be placed in front of or behind the one-rotation polygon mirror 3 in the beam optical path. Further, instead of the scanning mirror, an ordinary rotating polygon mirror may be used with the rotation axes of the rotating polygon mirror 3 orthogonal to each other.

回転多面鏡3は回転軸4の周囲に回転する回転軸に平行
な平面鏡群から成る。
The rotating polygon mirror 3 consists of a group of plane mirrors that rotate around a rotation axis 4 and are parallel to the rotation axis.

第1図では例示のため6個の鏡面から成るように示した
がこれに限定されるものではない。
In FIG. 1, the mirror surface is shown to be composed of six mirror surfaces for illustrative purposes, but the invention is not limited to this.

その数は主として走葺速度、走査幅、回転多面鏡3の回
転速度1回転多面鏡から受像体までの距離、および映像
密度によって選択する。
The number is selected mainly depending on the scanning speed, the scanning width, the rotation speed of the rotating polygon mirror 3, the distance from the one-rotation polygon mirror to the image receptor, and the image density.

回転多面鏡3はその全ての鏡面に偏光層が装着されてい
る。ただしその偏光層の偏光軸の方向が。
The rotating polygon mirror 3 has polarizing layers attached to all its mirror surfaces. However, the direction of the polarization axis of the polarizing layer.

右眼視映像信号反射用鏡面と右眼視映像信号反射用鏡面
とでは相対的に直交するように装着される。
The mirror surface for reflecting a right-eye visual video signal and the mirror surface for reflecting a right-eye visual video signal are mounted so as to be relatively perpendicular to each other.

第1図では例示のため左眼視映像信号反射用鏡面5と右
眼視映像信号反射用鏡面6が1枚毎に交互に繰り返して
いるが、この回転多面鏡は複数の連続した左眼視映像信
号反射用鏡面群と同数の右眼視映像信号反射用鏡面群の
交互の繰り返しから成っていてもよい。このように鏡面
上圧偏光層を装着すると、入射した非直線偏光性の光ビ
ームが偏光層の偏光軸に沿った直線偏光ビームとして反
射されることがわかった。
In FIG. 1, for illustrative purposes, the mirror surface 5 for reflecting a left-eye video signal and the mirror surface 6 for reflecting a right-eye video signal are alternately repeated one by one. It may consist of alternating repetitions of mirror groups for reflecting video signals and the same number of mirror surfaces for reflecting right-eye viewing video signals. It has been found that when a specular upper pressure polarizing layer is attached in this manner, an incident non-linearly polarized light beam is reflected as a linearly polarized beam along the polarization axis of the polarizing layer.

偏光層はよう素側光膜、有機色素系偏光膜または無機複
屈折偏光板のいずれでもよい。
The polarizing layer may be an iodine-side polarizing film, an organic dye-based polarizing film, or an inorganic birefringent polarizing plate.

これらの偏光層を回転多面鏡の各鏡面に接着剤またはビ
ス等を用いて装着すればよい。
These polarizing layers may be attached to each mirror surface of the rotating polygon mirror using an adhesive, screws, or the like.

回転多面鏡3に光源からの映像信号で変調された非直線
偏光性の光ビームB2を照射する。この場合1回転多面
鏡Sの1鏡面に照射する映像信号ビームは受像体に映写
される映像の1走査線分とする。セして左眼視映倫信号
反射用鏡面には左眼視映像の映像信号ビームを照射し、
右眼視映像の場合も同様とする。第1図の例では左眼視
映像信号反射用鏡面5に左眼視映像信号の1走査線分の
光ビームを照射したら次の右眼視映像信号反射用鏡面6
には右眼視映像信号の1走査線分を照射するよう忙して
順次、スキャニングミラー2で調節された照射角で映像
信号ビームを照射すると1回転多面鏡5からの反射ビー
ムは、左眼視映像の映像信号ビームと右眼視映像の映像
信号ビームとでは互い忙直交する偏光軸を有する直線偏
光ビームとなって受像体7に投影される。受像体7に投
影された左眼視映像の走査線像8と右眼視映像の走査線
像9を第1図では2段に分けて示したが、この場合、受
像体7に投影した左眼視映像の走査線像8と右眼視映像
の走査線像9は受像体上で重なり合っていてもよい。
The rotating polygon mirror 3 is irradiated with a non-linearly polarized light beam B2 modulated by a video signal from a light source. In this case, the video signal beam irradiated onto one mirror surface of the one-rotation polygon mirror S corresponds to one scanning line of the image projected on the receiver. Then, a video signal beam of the left eye image is irradiated on the mirror surface for reflecting the left eye image signal.
The same applies to right-eye images. In the example shown in FIG. 1, after a light beam for one scanning line of the left-eye visual video signal is irradiated onto the mirror surface 5 for reflecting the left-eye visual video signal, the next mirror surface 6 for reflecting the right-eye visual video signal is irradiated.
When the video signal beam is sequentially irradiated at the irradiation angle adjusted by the scanning mirror 2 so as to irradiate one scanning line of the right eye image signal, the reflected beam from the one-rotation polygon mirror 5 is reflected from the left eye image signal. The image signal beam of the image and the image signal beam of the right-eye image are projected onto the image receptor 7 as linearly polarized beams having polarization axes orthogonal to each other. The scanning line image 8 of the left-eye image projected onto the image receptor 7 and the scanning line image 9 of the right-eye image projected onto the image receptor 7 are shown in two stages in FIG. The scanning line image 8 of the visual image and the scanning line image 9 of the right visual image may overlap on the image receptor.

光源1から受像体7までの光路には必要に応じて光束を
収束し、拡散し、ひずみ修正しまたは屈折するための光
学系たとえばレンズ、プリズムなどが挿入されていても
よい。
In the optical path from the light source 1 to the image receptor 7, an optical system such as a lens, a prism, etc., for converging, diffusing, correcting distortion, or refracting the light beam may be inserted as necessary.

受像体7は投影された映像の反射光(tたは透過光)が
引含続き直線側光を維持するように偏光保持性の表面を
持っていることが必要である。
It is necessary that the image receptor 7 has a polarization-maintaining surface so that the reflected light (or transmitted light) of the projected image remains in the straight direction.

このような受像体はたとえばガラスピーズ塗布スクリー
ン、金属フォイル塗布面またはマイクロプリズム板など
である。
Such image receptors are, for example, glass bead coated screens, metal foil coated surfaces or microprism plates.

本発明の立体視映像投影方法によって得られた映像は裸
眼で見ると左眼視映像と右眼視映像の重なり合った像と
して観察される。この儂を立体視するためには観察者が
左右眼に、左右で互いに直交する偏光軸を有する偏光層
それぞれ11および12を有する偏光眼鏡10をかける
。その各偏光軸の方向は受像体7からの反射(透過)映
像の内。
When viewed with the naked eye, the image obtained by the stereoscopic image projection method of the present invention is observed as an overlapping image of a left-eye image and a right-eye image. In order to view oneself stereoscopically, an observer wears polarized glasses 10 on the left and right eyes, each having polarizing layers 11 and 12 having polarization axes orthogonal to each other. The direction of each polarization axis is within the reflected (transmitted) image from the image receptor 7.

左眼像および右眼像のそれにそれぞれ一致させなければ
ならない。これは映写に先立って回転多面鏡3に照射す
る左(右)眼視映像信号を互いに直交する偏光軸を有す
る偏光鏡面5または6のどちらに照射するかによって決
定される。実際には偏光眼鏡をかけて観察した映倫が正
常に立体視できない場合には左右偉電気信号の位相をず
らせばよいので容易に修正できる。
It must match those of the left eye image and right eye image, respectively. This is determined by which of the polarizing mirror surfaces 5 and 6, which have polarization axes orthogonal to each other, is to be irradiated with the left (right) visual image signal that is irradiated onto the rotating polygon mirror 3 prior to projection. In fact, if the stereo image cannot be viewed normally when viewed with polarized glasses, it can be easily corrected by shifting the phase of the left and right electric signals.

カラー映像を投影するには赤、緑および前糸の光ビーム
を同時に回転多面鏡3の同一偏光鏡面に照射し、受像体
7上の実質的な同一点に投影するように光路を調節すれ
ば可能である。
To project a color image, the red, green, and front light beams are simultaneously irradiated onto the same polarizing mirror surface of the rotating polygon mirror 3, and the optical paths are adjusted so that they are projected onto substantially the same point on the image receptor 7. It is possible.

発明の効果 本発明によって、比較的容易に大画面の立体視映像を投
影することができた。
Effects of the Invention According to the present invention, a large-screen stereoscopic image can be projected relatively easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の投影方法を説明するための1実施態様
を示している。第1図において、1は光源、2はスキャ
ニングミラー、3は回転多面鏡。 4はその回転軸、5は左眼視映像信号反射用鏡面、6は
右眼視映像信号反射用鏡面、7は受像体、8は1走査線
分の左眼視映像信号像、9は1走査線分の右眼視映像信
号像、10は観察者用偏光眼鏡。 11はその左眼視用偏光層、12は右眼視用偏光層、そ
してB1.B2およびB3は光ビームの光路で示してい
る。 特許出願人  日本化薬株式会社 第1図
FIG. 1 shows one embodiment for explaining the projection method of the present invention. In FIG. 1, 1 is a light source, 2 is a scanning mirror, and 3 is a rotating polygon mirror. 4 is its rotation axis, 5 is a mirror surface for reflecting left-eye visual video signals, 6 is a mirror surface for reflecting right-eye visual video signals, 7 is an image receptor, 8 is a left-eye visual video signal image for one scanning line, and 9 is 1 A right-eye visual signal image of a scanning line segment, 10 denotes polarized glasses for an observer. 11 is a polarizing layer for viewing with the left eye, 12 is a polarizing layer for viewing with the right eye, and B1. B2 and B3 are shown as optical paths of the light beams. Patent applicant Nippon Kayaku Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1、同数の左眼視映像信号反射用鏡面と右眼視映像信号
反射用鏡面との交互の繰り返しから成る回転多面鏡の各
鏡面に、左眼視映像信号反射用鏡面と右眼視映像信号反
射用鏡面とでは相対的に直交する偏光軸を有する偏光層
を装着し、それぞれ対応する鏡面に左眼視映像または右
眼視映像の1走査線分の映像信号から成る非直線偏光性
の光ビームを照射し、その反射光を偏光保持性の受像体
に投影して得られた左眼視映像および右眼視映像の偏光
軸の方向を、観察者が左右両眼に装着した互いに直交す
る偏光軸を有する偏光眼鏡の偏光軸の方向と整合させる
ことを特徴とする立体視映像投影方法。
1. Each mirror surface of a rotating polygon mirror is made up of alternating repetitions of the same number of mirror surfaces for reflecting left-eye visual video signals and mirror surfaces for reflecting right-eye visual video signals. A polarizing layer having a polarization axis relatively orthogonal to the reflecting mirror surface is attached, and non-linearly polarized light consisting of a video signal for one scanning line of a left-eye image or a right-eye image is applied to each corresponding mirror surface. The directions of the polarization axes of the left-eye image and the right-eye image obtained by irradiating a beam and projecting the reflected light onto a polarization-maintaining image receptor are set perpendicular to each other by an observer wearing the left and right images. A stereoscopic image projection method characterized by aligning the direction of a polarization axis of polarized glasses having a polarization axis.
JP62142184A 1987-06-09 1987-06-09 Method for projecting stereoscopic image Pending JPS63306417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62142184A JPS63306417A (en) 1987-06-09 1987-06-09 Method for projecting stereoscopic image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62142184A JPS63306417A (en) 1987-06-09 1987-06-09 Method for projecting stereoscopic image

Publications (1)

Publication Number Publication Date
JPS63306417A true JPS63306417A (en) 1988-12-14

Family

ID=15309331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62142184A Pending JPS63306417A (en) 1987-06-09 1987-06-09 Method for projecting stereoscopic image

Country Status (1)

Country Link
JP (1) JPS63306417A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997014074A1 (en) * 1995-10-06 1997-04-17 Ldt Gmbh & Co. Laser-Display-Technologie Kg Process and device for producing a stereoscopic video image
KR19980078721A (en) * 1997-04-29 1998-11-25 윤종용 Polarizer structure
DE19860017A1 (en) * 1998-12-23 2000-06-29 Ldt Gmbh & Co Device for projecting a video image
EP1090280A2 (en) * 1998-04-03 2001-04-11 PSC Inc. Method for generating multiple scan lines in a thin scanner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997014074A1 (en) * 1995-10-06 1997-04-17 Ldt Gmbh & Co. Laser-Display-Technologie Kg Process and device for producing a stereoscopic video image
KR19980078721A (en) * 1997-04-29 1998-11-25 윤종용 Polarizer structure
EP1090280A2 (en) * 1998-04-03 2001-04-11 PSC Inc. Method for generating multiple scan lines in a thin scanner
EP1090280A4 (en) * 1998-04-03 2001-08-16 Psc Inc Method for generating multiple scan lines in a thin scanner
DE19860017A1 (en) * 1998-12-23 2000-06-29 Ldt Gmbh & Co Device for projecting a video image

Similar Documents

Publication Publication Date Title
JP4027898B2 (en) Polarized transmission screen and stereoscopic image display apparatus using the polarized transmission screen
US5726800A (en) Autostereoscopic directional display apparatus
US5764411A (en) Apparatus for displaying an image
JP4470355B2 (en) Display system without glasses
US6002518A (en) Phase-retardation based system for stereoscopic viewing micropolarized spatially-multiplexed images substantially free of visual-channel cross-talk and asymmetric image distortion
KR100618911B1 (en) Stereoscopic Images Display Apparatus
JP3978515B2 (en) 3D image display method and apparatus
US7690794B2 (en) Image-combining device and projection display apparatus having image-combining devices incorporated therein
JP3570104B2 (en) Liquid crystal display
US20050237487A1 (en) Color wheel assembly for stereoscopic imaging
JP2001066547A (en) Stereoscopic display device
JPH09113911A (en) Display device
CN107889552B (en) High brightness image display apparatus using modulator asymmetric driver and method of operating the same
US5225861A (en) Apparatus for projection of three-dimensional images
TW202229974A (en) Symmetry optical path 3D head-up display capable of still maintaining the same image optical paths of the first eye and the second eye at a longer virtual image projecting distance or a higher magnification
KR0176520B1 (en) 3-dimension projection apparatus
US5146246A (en) Apparatus for presentation of three-dimensional images
EP0818934A1 (en) Electronic stereoscopic system
US4967267A (en) Apparatus for formatting and viewing a stereoscopic video frame
JPH09138371A (en) Polarizing spectacle type stereoscopic video display device
JPS63306417A (en) Method for projecting stereoscopic image
JP3462796B2 (en) Three-dimensional display method and device
JP7444983B2 (en) 3D display device
US4509835A (en) Three dimensional cinema and novel projector system therefore
JP2001174751A (en) Stereoscopic picture display device and projector used for it