JPS63305573A - Superconductive three-terminal element - Google Patents

Superconductive three-terminal element

Info

Publication number
JPS63305573A
JPS63305573A JP62141767A JP14176787A JPS63305573A JP S63305573 A JPS63305573 A JP S63305573A JP 62141767 A JP62141767 A JP 62141767A JP 14176787 A JP14176787 A JP 14176787A JP S63305573 A JPS63305573 A JP S63305573A
Authority
JP
Japan
Prior art keywords
superconductor
superconducting
base
superconductors
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62141767A
Other languages
Japanese (ja)
Inventor
Junichi Sone
曽根 純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62141767A priority Critical patent/JPS63305573A/en
Publication of JPS63305573A publication Critical patent/JPS63305573A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/128Junction-based devices having three or more electrodes, e.g. transistor-like structures

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To enable the enlarging of voltage gains, by making first to third superconductors have superconductive transition temperatures equal to or larger that a liquid helium temperature and making superconductive gap energy of the third superconductor larger than that of the first and second superconductors. CONSTITUTION:This element is composed of a superconductor 10, a tunnel barrier 11, a superconductor 12, a tunnel barrier 13, and a superconductor 14. The superconductors 10, 12, 14 have respective superconductive transition temperatures equal to or larger than a liquid helium temperature. Superconductive gap energy of the superconductor 1 4 is made larger than that of the superconductors 10, 11. Since this element can be hence operated by application of a base.collector voltage larger then an emitter.base voltage required for implanting quasi-particles into a base electrode, large voltage and power gains can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超伝導素子に係り、ヌ、に2つのトンネル接合
からなる超伝導三端子素子に1藺する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a superconducting device, and is particularly directed to a superconducting three-terminal device consisting of two tunnel junctions.

(従来の技術) 超伝導電極と2つのトンネル接合からなる超伝導三端子
素子は例えばアップライド・フイズイクス・レター誌3
2巻6号392頁〜395頁に述べられている。第3図
は従来例の超伝導三端子素子を説明するための図で、同
じ超伝導ギャップエネルギーΔを持つ3つの超伝導体1
.2.3及びそれらにはさまれたトンネル障壁4,5か
らなる。超伝導体1.2.3はそれぞれエミッタ、ベー
ス、コレクタ電極を形成する。第4図は該超伝導三端子
素子の動作を説明するためのエネルギー・ダイアダラム
である。(a)は該素子がオフ状態にあるときの動作を
示しており、ベース・コレクタ間に2Δ/e(eは電子
の電荷)よりも小さな電圧VBCが、またエミッタ・ベ
ース間には零電圧が印加されている。図中点線はフェル
ミ・エネルギーEFを示し斜線部で示されるエネルギー
状態は各々電子により占有されている。この状態では超
電導体2にいる電子は超電導体3中に、電子に占有され
ていないエネルギー状態を見出せないためトンネルする
ことができず、超電導体2と3の間にはトンネル電流は
流れない。第4図(b)は該素子がオン状態にあるとき
の動作を示しておりベース・コレクタ間に2Δ/eより
も小さなベース・コレクタ電圧VBCが、またエミッタ
・ベース間には2Δ/eよりも大きな電圧VBEが印加
されている。この状態では超電導体1にいる電子は超電
導体2中に電子に占有されていないエネルギー状態を見
いだすことができ、図中矢印で示される如く、超伝導体
1から超伝導体2ヘトンネルする。トンネルした電子は
超伝導体2中で準粒子となり、拡散してトンネル障壁5
に達する。前記準粒子は超伝導体3中にエネルギーを保
存して、電子に占有されていないエネルギー状態を見い
出すことができ、図中矢印で示される如く超伝導体2か
ら超伝導体3にトンネルする。このトンネル電流はコレ
クタ電流ICとなり、コレクタ電極を流れ、該素子の出
力電流となる。以上の説明かられかる様に該素子はスイ
ッチ素子として働く。エミッタ電極1から注入された電
子はベース中で準粒子として存在し、平均的に有限の生
存時間1をもって、クーパ一対(超伝導電子)へと再結
合する。再結合の結果、生じたクーパ一対はコレクタ電
極3に達することができず、ベース電極2からベース端
子へと流れ、損失電流IBとなる。従ってエミッタ電極
1からエミッタ電流IEとしてベース電極2に注入され
た電子の大部分がコレクタ電極3に達するには準粒子が
再結合によりクーパ一対になる割合r’R(=t−1)
がトンネル接合5をトンネルする割合FTに比べて十分
車さいことが必要である。これは動作温度を選ぶことあ
るいはトンネル接合5の膜厚を十分薄くし、トンネルす
る割合を大きくすること等によって可能である。同時に
該素子の動作においては、エミッタ、ベース間電圧を2
Δ/e以上に設定しなければベース電極に準粒子を注入
することができず、またベース・コレクタ間電圧は2Δ
/e以内にしないとオフ状態でベース・コレクタ間にリ
ーク電流が発生する。このため、該素子を能動素子とし
て動作させる場合には入力電圧となるVBEと、出力電
圧となるVBCの比VBE/VBCは1以上となり、該
素子は電圧利の電気抵抗を持つ正常導体を用いれば若干
の改良が可能である。第5図は正常導体のエミッタ電極
を有する超伝導三端子素子の動作状態を示すエネルギー
・ダイアグラムである。エミッタ電極1よりベース電極
2へ準粒子を注入するに必要なエミッタ・ベース間電圧
VBEはΔ/e以上あればよく、従ってこの場合の入力
端子と出力電圧の比VBEA’BCは1/2近くまで下
がり、該素子は2に近い電圧利得を持つことが可能であ
る。しかしながら、この様な小さな電圧利得、電力利得
しか持てない様な三端子素子は、実際の応用、例えばマ
イクロ波、ミリ波といった高周波帯における能動素子と
して動作させることが困難である。
(Prior art) A superconducting three-terminal device consisting of a superconducting electrode and two tunnel junctions is described in, for example, Uploaded Physics Letters 3.
2, No. 6, pp. 392-395. Figure 3 is a diagram for explaining a conventional superconducting three-terminal device, in which three superconductors 1 and 1 have the same superconducting gap energy Δ.
.. 2.3 and tunnel barriers 4 and 5 sandwiched between them. The superconductors 1.2.3 form emitter, base and collector electrodes, respectively. FIG. 4 is an energy diagram for explaining the operation of the superconducting three-terminal element. (a) shows the operation when the element is in the off state, with a voltage VBC smaller than 2Δ/e (e is the electron charge) between the base and collector, and zero voltage between the emitter and base. is applied. The dotted line in the figure indicates the Fermi energy EF, and the energy states indicated by diagonal lines are each occupied by an electron. In this state, the electrons in superconductor 2 cannot tunnel because they cannot find an energy state that is not occupied by electrons in superconductor 3, and no tunnel current flows between superconductors 2 and 3. Figure 4(b) shows the operation when the element is in the on state, with a base-collector voltage VBC smaller than 2Δ/e between the base and collector, and a voltage VBC smaller than 2Δ/e between the emitter and base. A large voltage VBE is also applied. In this state, the electrons in the superconductor 1 can find an energy state in the superconductor 2 that is not occupied by electrons, and tunnel from the superconductor 1 to the superconductor 2 as shown by the arrow in the figure. The tunneled electrons become quasiparticles in the superconductor 2, and diffuse into the tunnel barrier 5.
reach. The quasiparticles can store energy in the superconductor 3 and find an energy state not occupied by electrons, and tunnel from the superconductor 2 to the superconductor 3 as shown by the arrow in the figure. This tunnel current becomes a collector current IC, flows through the collector electrode, and becomes an output current of the element. As can be seen from the above description, this element functions as a switching element. Electrons injected from the emitter electrode 1 exist as quasiparticles in the base, and recombine into a pair of Coopers (superconducting electrons) with a finite survival time 1 on average. As a result of recombination, the resulting pair of coopers cannot reach the collector electrode 3, but instead flows from the base electrode 2 to the base terminal, resulting in a loss current IB. Therefore, in order for most of the electrons injected from the emitter electrode 1 to the base electrode 2 as the emitter current IE to reach the collector electrode 3, the rate at which quasiparticles form a Cooper pair due to recombination r'R (=t-1)
It is necessary that the ratio of tunneling through the tunnel junction 5 is sufficiently smaller than that of FT. This can be done by selecting the operating temperature or by making the thickness of the tunnel junction 5 sufficiently thin to increase the proportion of tunneling. At the same time, in the operation of the device, the emitter-base voltage is
Quasiparticles cannot be injected into the base electrode unless it is set to Δ/e or more, and the base-collector voltage is 2Δ
If it is not within /e, leakage current will occur between the base and collector in the off state. Therefore, when the element is operated as an active element, the ratio VBE/VBC of VBE, which is the input voltage, and VBC, which is the output voltage, is 1 or more, and the element uses a normal conductor with an electrical resistance of voltage gain. Some improvement is possible. FIG. 5 is an energy diagram showing the operating state of a superconducting three-terminal device having an emitter electrode of a normal conductor. The emitter-base voltage VBE required to inject quasi-particles from the emitter electrode 1 to the base electrode 2 needs to be Δ/e or more, so the ratio of input terminal to output voltage VBEA'BC in this case is close to 1/2. The device can have a voltage gain close to 2. However, it is difficult for a three-terminal element having such a small voltage gain or power gain to operate as an active element in a high frequency band such as microwave or millimeter wave in actual applications.

(発明が解決しようとする問題点) 従来の超伝導三端子素子においてはベース電極となる超
伝導体2とコレクタ電極となる超伝導体3とに同等の超
伝導ギャップを持つ様な材料を用いていたため電圧利得
が取れなかった。本発明の目的は上述の従来の超伝導三
端子素子の持っている欠点を除去し、電圧利得の大きな
超伝導三端子素子を提供することにある。
(Problems to be Solved by the Invention) In conventional superconducting three-terminal devices, materials having the same superconducting gap are used for the superconductor 2 serving as the base electrode and the superconductor 3 serving as the collector electrode. Because of this, voltage gain could not be obtained. An object of the present invention is to eliminate the drawbacks of the conventional superconducting three-terminal elements described above and to provide a superconducting three-terminal element with a large voltage gain.

(問題点を解決するための手段) 本発明によれば第1の超伝導体または正常導体、第2の
超伝導体、前記第1の超伝導体または正常導体と前記第
2の超伝導体との間にはさまれた第1のトンネル障壁、
第3の超伝導体、および前記第2および第3の超伝導体
ではさまれた第2のトンネル障壁からなる超伝導三端子
素子において、前記各々の超伝導体は液体ヘリウム温度
以上の超伝導転移温度を持ち、前記第3の超伝導体の持
つ超伝導ギャップエネルギーは前記第1.第2の超伝導
体の持つ超伝導ギャップエネルギーよりも大きいことを
特徴とする超伝導三端子素子が得られる。
(Means for Solving the Problems) According to the present invention, a first superconductor or normal conductor, a second superconductor, the first superconductor or normal conductor, and the second superconductor The first tunnel barrier sandwiched between
In a superconducting three-terminal device consisting of a third superconductor and a second tunnel barrier sandwiched between the second and third superconductors, each superconductor has superconductivity at a temperature higher than liquid helium temperature. The third superconductor has a transition temperature, and the superconducting gap energy of the third superconductor is equal to that of the first superconductor. A superconducting three-terminal element characterized by having a superconducting gap energy larger than that of the second superconductor is obtained.

(作用) 超伝導三端子素子を実用に供するには、その動作温度は
高い程有利であるが、温度の安定性、温度制御性の面か
らは液体ヘリウムに該素子を浸して使用することが最も
実用的である。即ち、従来の技術の発明が解決しようと
する問題点の欄に記載した通り該素子の動作において超
伝導ギャップエネルギーは重要な役割を果たしているが
、超伝導ギャップエネルギーは動作温度によって変化す
る。従って動作温度の変動により該素子が著しい動作マ
ージンの劣化、あるいは電圧利得等の特性の変化を起こ
してしまう。液体ヘリウムに浸した素子においては動作
温度は4.2°kに固定されるばかりか、該素子が動作
のため発熱を生じても、この発熱量は液体ヘリウムが蒸
発する際の気化熱によって変換され、該素子の動作温度
はほとんど変動しない。従って以下の該素子の動作にお
いては液体ヘリウムに浸された状態での動作を想定する
。さらにこのことから該素子を構成する超伝導体の超伝
導転移温度は4.2°に以上であることとする。液体ヘ
リウム温度以上の超伝導転移温度をもつ超伝導体は大別
するとニオブ、鉛等に代表される金属超伝導体と、イツ
トリウム・バリウム・銅・酸素の混合物(以下YBCO
と略記する)に代表される酸化物超伝導体が存在する。
(Function) In order to put a superconducting three-terminal element into practical use, the higher its operating temperature is, the more advantageous it is, but in terms of temperature stability and temperature controllability, it is preferable to use the element by immersing it in liquid helium. The most practical. That is, as described in the section of Problems to be Solved by the Prior Art Invention, superconducting gap energy plays an important role in the operation of the device, but superconducting gap energy changes depending on the operating temperature. Therefore, fluctuations in operating temperature cause significant deterioration of the operating margin of the element or changes in characteristics such as voltage gain. In an element immersed in liquid helium, the operating temperature is not only fixed at 4.2°K, but even if the element generates heat due to operation, this amount of heat is converted by the heat of vaporization when the liquid helium evaporates. and the operating temperature of the device hardly changes. Therefore, in the following operation of the device, it is assumed that the device operates while being immersed in liquid helium. Further, from this, it is assumed that the superconductor transition temperature of the superconductor constituting the element is 4.2° or higher. Superconductors with a superconducting transition temperature higher than the temperature of liquid helium can be roughly divided into metal superconductors such as niobium and lead, and mixtures of yttrium, barium, copper, and oxygen (YBCO).
There are oxide superconductors represented by (abbreviated as ).

前記金属超伝導体の超伝導転移温度は低くニオブで9°
に程度である。一方、前記酸化物超伝導体の転移温度は
高< YBCOで90°に程度である。転移温度は超伝
導ギャップに比例するので、ベース電極に金属超伝導体
、コレクタ電極に酸化物超伝導体を用いれば、ベース電
極に準粒子を注入するに必要なエミッタ・ベース間電圧
VBEに比べ、はぼ10倍近く大きなベース・コレクタ
間電圧VBCを印加して該超伝導三端子素子を動作せる
ことか可能で大きな電圧利得、電力利得を得ることがで
きる。
The superconducting transition temperature of the metal superconductor is as low as 9° for niobium.
It is about a degree. On the other hand, the transition temperature of the oxide superconductor is about 90° at high<YBCO. The transition temperature is proportional to the superconducting gap, so if a metal superconductor is used for the base electrode and an oxide superconductor is used for the collector electrode, the emitter-base voltage VBE required to inject quasiparticles into the base electrode will be reduced. It is possible to operate the superconducting three-terminal element by applying a base-collector voltage VBC that is nearly 10 times larger, and a large voltage gain and power gain can be obtained.

(実施例) 以下、本発明を実施例に基づいて説明する。第1図は本
発明の詳細な説明するための構成図である。この実施例
はアルミニウムからなる第1の正常導体10、ニオブ酸
化物からなる第1のトンネル障壁11、ニオブからなる
第2の超伝導体12、ゲルマニウムからなる第2のトン
ネル障壁13、YBCOからなる第3の超伝導体14か
らなる。前記超伝導体10.12゜14はそれぞれエミ
ッタ電極、ベース電極、コレクタ電極を形成する。第2
図は該伝導三端子素子の動作を説明するためのエネルギ
ーダイアグラムで(a)がオフ状態、(b)がオン状態
を示す。動作温度としては液体ヘリウム温度(4,2°
k)を想定する。ニオブとYBCOの超伝導転移温度は
ほぼ10倍の差があり、ニオブの超伝導ギャップΔ1と
YBCOの超伝導ギャップΔ2との比Δ21Δ1はほぼ
10と見積もることができる。(a)の状態ではベース
・コレクタ間にほぼ(Δ2+Δ1)/eに近い電圧が印
加されている。ベース電極中の電子はコレクタ電極中に
エネルギーを保存し、電子に占有されていないエネルギ
ー状態を見い出すことができず、コレクタ電極にコレク
タ電;tIcは流れない。(b)の状態ではΔ1/e以
上の電圧VBEがエミッタ・ベース間に印加され、エミ
ッタ電極10から電子がベース電極12中に注入される
。注入された電子は準粒子となりベース電極12中を拡
散し、トンネル障壁13をトンネルし、コレクタ電極1
4中に現われる。ベース電極12中の再結合がトンネル
障壁13をトンネルする割合に比べ十分車さいとすると
、エミッタ電流IEはコレクタ電流ICにほぼ等しい。
(Examples) Hereinafter, the present invention will be described based on Examples. FIG. 1 is a block diagram for explaining the present invention in detail. This embodiment consists of a first normal conductor 10 made of aluminum, a first tunnel barrier 11 made of niobium oxide, a second superconductor 12 made of niobium, a second tunnel barrier 13 made of germanium, and YBCO. It consists of a third superconductor 14. The superconductors 10, 12 and 14 form an emitter electrode, a base electrode and a collector electrode, respectively. Second
The figure is an energy diagram for explaining the operation of the conductive three-terminal element, with (a) showing the off state and (b) showing the on state. The operating temperature is liquid helium temperature (4.2°
Assume k). The superconducting transition temperatures of niobium and YBCO are approximately 10 times different, and the ratio Δ21Δ1 between the superconducting gap Δ1 of niobium and the superconducting gap Δ2 of YBCO can be estimated to be approximately 10. In the state of (a), a voltage approximately close to (Δ2+Δ1)/e is applied between the base and collector. Electrons in the base electrode store energy in the collector electrode, and no energy state not occupied by electrons can be found, and no collector current; tIc flows to the collector electrode. In the state of (b), a voltage VBE of Δ1/e or more is applied between the emitter and the base, and electrons are injected from the emitter electrode 10 into the base electrode 12. The injected electrons become quasiparticles, diffuse in the base electrode 12, tunnel through the tunnel barrier 13, and reach the collector electrode 1.
Appears during the 4th. Assuming that the recombination in the base electrode 12 is sufficiently smaller than the rate at which it tunnels through the tunnel barrier 13, the emitter current IE is approximately equal to the collector current IC.

エミッタ・ベース間、ベース・コレクタ間に印加した電
圧の比VBC/VBEはほぼΔダム1(〜10)に等し
く、従って該超電導三端子素子においては、はぼ10に
近い電圧利得、また電力利得が得られることがわかる。
The ratio VBC/VBE of the voltage applied between the emitter and the base and between the base and the collector is approximately equal to Δdam 1 (~10). Therefore, in the superconducting three-terminal element, the voltage gain and power gain are approximately 10. It can be seen that the following can be obtained.

第1図の実施例に示す超伝導三端子素子は第3図(a)
〜(d)に示す製造工程に従って作製することができる
。マグネシウム酸化物(MgO)の基板15上に厚さ5
000人のYBCO薄膜14をスパッタリング法で形成
し、続いて厚さ100Aのゲルマニウム薄膜13、厚さ
1oooAのニオブ薄膜12を積層蒸着する(第3図(
a))。
The superconducting three-terminal device shown in the example of FIG. 1 is shown in FIG. 3(a).
It can be produced according to the manufacturing steps shown in ~(d). on a substrate 15 of magnesium oxide (MgO) with a thickness of 5
A YBCO thin film 14 with a thickness of 100 A is formed by sputtering, and then a germanium thin film 13 with a thickness of 100 A and a niobium thin film 12 with a thickness of 100 A are deposited (see Fig. 3).
a)).

続いて酸素雰囲気で前記ニオブ薄膜12の一部を熱酸化
してニオブの酸化膜11を形成し、その後厚さ2000
人のアルミニウム薄膜10を蒸着する(第3図(b))
Next, a part of the niobium thin film 12 is thermally oxidized in an oxygen atmosphere to form a niobium oxide film 11, and then a niobium oxide film 11 with a thickness of 2000 mm is formed.
Depositing a thin aluminum film 10 (FIG. 3(b))
.

フォトリソグラフィ技術により塗布されたレジスト膜を
パターニングし、塩素系ガスCCl4によりアルミニウ
ム薄膜10を、アルゴンガスによりニオブ酸化膜11を
エツチングする。続いて前記レジスト膜を除去後、新た
に塗布されたレジスト膜をバターニングし、フン素系ガ
スCF4によりニオブ薄膜12、ゲルマニウム薄膜13
をエツチングする(第3図(C))。
The resist film applied by photolithography is patterned, and the aluminum thin film 10 is etched using chlorine-based gas CCl4, and the niobium oxide film 11 is etched using argon gas. Subsequently, after removing the resist film, the newly applied resist film is buttered, and a niobium thin film 12 and a germanium thin film 13 are formed using a fluorine-based gas CF4.
(Fig. 3(C)).

続いてシリコン酸化膜5i0216をスパッタリング法
で形成し、エツチングにより開口部を設け、バターニン
グされたニオブ薄膜17.18.19によりそれぞれエ
ミッタ電極、ベース電極、コレクタ電極用配線を形成す
る(第3図(d))。以上により該超伝導三端子素子の
製作が可能である。
Next, a silicon oxide film 5i0216 is formed by sputtering, an opening is formed by etching, and wiring for an emitter electrode, a base electrode, and a collector electrode are formed using patterned niobium thin films 17, 18, and 19, respectively (Fig. 3). (d)). Through the above steps, the superconducting three-terminal element can be manufactured.

以上、述べてきた実施例においては第3の超伝導体とし
てYBCOを用いたが、これに限る必要はなく、他の希
土類金属とバリウム・銅・酸化物の複合体、たとえばラ
ンタン・バリウム・銅・酸化物あるいはバリウムをスト
ロチウムで置きかえたランタン・ストロチウム・銅・酸
化物でも良い。
In the embodiments described above, YBCO was used as the third superconductor, but it is not limited to this, and composites of other rare earth metals and barium/copper/oxides, such as lanthanum, barium, copper, etc. - Oxide or lanthanum, strotium, copper, or oxide in which barium is replaced with strotium may be used.

(発明の効果) 以上に詳しく説明した様に本発明によれば電圧利得、電
力利得の大きい超伝導三端子素子が提供でき、マイクロ
波、ミリ波等超高周波数帯における能動素子として応用
′が可能である。
(Effects of the Invention) As explained in detail above, according to the present invention, a superconducting three-terminal element with large voltage gain and power gain can be provided, and can be applied as an active element in ultra-high frequency bands such as microwaves and millimeter waves. It is possible.

器18騒τ品 第1図は本発明の超伝導三端子素子の一実施例を示すた
めの図、第2図は該素子の動作を説明するためのエネル
ギーダイアグラムで(a)はオフ状態、(b)はオン状
態を示す。第3図(a)〜(d)は該超伝導三端子素子
の製作工程図、第4図は従来例の超伝導三端子素子を示
すための図、第5図は従来例の超伝導三端子素子の動作
を説明するためのエネルギーダイアグラムで(a)はオ
フ状態、(b)はオン状態を示す。
Fig. 1 is a diagram showing an embodiment of the superconducting three-terminal element of the present invention, and Fig. 2 is an energy diagram for explaining the operation of the element. (b) shows the on state. 3(a) to 3(d) are manufacturing process diagrams of the superconducting three-terminal device, FIG. 4 is a diagram showing a conventional superconducting three-terminal device, and FIG. 5 is a diagram showing a conventional superconducting three-terminal device. In the energy diagram for explaining the operation of the terminal element, (a) shows the off state and (b) shows the on state.

第6図は前記従来例の超伝導三端子素子においてエミッ
タ電極を構成する超伝導体を正常動体でおきかえた素子
の動作を説明するためのエネルギーダイアグラムである
FIG. 6 is an energy diagram for explaining the operation of the conventional superconducting three-terminal device in which the superconductor constituting the emitter electrode is replaced with a normal moving body.

1.10・・・エミッタ電極、2.12・・・ベース電
極、3.14・・・コレクタ電極、 4.11・・・第1のトンネル障壁、 5.13・・・第2のトンネル障壁、15・・・MgO
基板、16・・・シリコン酸化膜、 17・・・エミッタ電極、18・・ベース電極、19・
・・コレクタ電極             2ご]−
味            廉 −の 第2図 (b) 第3図 (C) 、)、)     L Q −へ 脈   脈 マ   膿 第5図 (a) (b) 第6図
1.10...Emitter electrode, 2.12...Base electrode, 3.14...Collector electrode, 4.11...First tunnel barrier, 5.13...Second tunnel barrier , 15...MgO
Substrate, 16... Silicon oxide film, 17... Emitter electrode, 18... Base electrode, 19...
...Collector electrode 2] -
Fig. 2 (b) Fig. 3 (C) ,),) L Q - Pulse Pulse Pus Fig. 5 (a) (b) Fig. 6

Claims (1)

【特許請求の範囲】[Claims] 第1の超伝導体、または正常導体、第2の超伝導体、前
記第1の超伝導体または正常導体と前記第2の超伝導体
との間にはさまれた第1のトンネル障壁、第3の超伝導
体、および前記第2および第3の超伝導体ではさまれた
第2のトンネル障壁からなる超伝導三端子素子において
、前記の各々の超伝導体は液体ヘリウム温度以上の超伝
導転移温度を持ち、前記第3の超伝導体の持つ超伝導ギ
ャップエネルギーは前記第1、第2の超伝導体の持つ超
伝導ギャップエネルギーよりも大きいことを特徴とする
超伝導三端子素子。
a first superconductor or normal conductor, a second superconductor, a first tunnel barrier sandwiched between the first superconductor or normal conductor and the second superconductor; In a superconducting three-terminal device consisting of a third superconductor and a second tunnel barrier sandwiched between the second and third superconductors, each of the superconductors has A superconducting three-terminal device having a conduction transition temperature, wherein the superconducting gap energy of the third superconductor is larger than the superconducting gap energy of the first and second superconductors.
JP62141767A 1987-06-05 1987-06-05 Superconductive three-terminal element Pending JPS63305573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62141767A JPS63305573A (en) 1987-06-05 1987-06-05 Superconductive three-terminal element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62141767A JPS63305573A (en) 1987-06-05 1987-06-05 Superconductive three-terminal element

Publications (1)

Publication Number Publication Date
JPS63305573A true JPS63305573A (en) 1988-12-13

Family

ID=15299701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62141767A Pending JPS63305573A (en) 1987-06-05 1987-06-05 Superconductive three-terminal element

Country Status (1)

Country Link
JP (1) JPS63305573A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192777A (en) * 1989-01-20 1990-07-30 Sanyo Electric Co Ltd Superconductor transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02192777A (en) * 1989-01-20 1990-07-30 Sanyo Electric Co Ltd Superconductor transistor

Similar Documents

Publication Publication Date Title
JP2907830B2 (en) Superconducting device and manufacturing method thereof
JPS63305573A (en) Superconductive three-terminal element
US5721197A (en) Controllable superconductor component
Gijs et al. Submicron YBa2Cu3O7− δ‐Ag‐YBa2Cu3O7− δ superconducting proximity junctions
US5468723A (en) Method for forming a superconducting weak link device
JP2644284B2 (en) Superconducting element
Anacker Josephson tunneling devices: A new technology with potential for high-performance computers
KR910003836B1 (en) Super conductive device
JPH0577350B2 (en)
JPH02391A (en) Superconductive field-effect transistor
JP2583922B2 (en) Superconducting switching element
JP3282748B2 (en) Superconducting base transistor
JPS63276284A (en) Superconducting junction
JPH02194665A (en) Field effect superconducting device and manufacture thereof
JPH02186682A (en) Josephson junction device
JPS63234574A (en) Superconducting element
JP2654567B2 (en) Operation method of superconducting element
JP2583923B2 (en) Superconducting switching element
JP2647251B2 (en) Superconducting element and fabrication method
JP3329401B2 (en) Superconducting transistor
JPH0249481A (en) Oxide josephson junction device
JP2003243735A (en) Tunnel junction device
JP2641975B2 (en) Superconducting element and fabrication method
JP3212088B2 (en) Superconducting device
JP2691065B2 (en) Superconducting element and fabrication method