JPS63305549A - Complementary type mis semiconductor integrated circuit - Google Patents

Complementary type mis semiconductor integrated circuit

Info

Publication number
JPS63305549A
JPS63305549A JP62140997A JP14099787A JPS63305549A JP S63305549 A JPS63305549 A JP S63305549A JP 62140997 A JP62140997 A JP 62140997A JP 14099787 A JP14099787 A JP 14099787A JP S63305549 A JPS63305549 A JP S63305549A
Authority
JP
Japan
Prior art keywords
region
type
shield plate
integrated circuit
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62140997A
Other languages
Japanese (ja)
Inventor
Kohei Ebara
江原 孝平
Kazuyuki Saito
斎藤 和之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62140997A priority Critical patent/JPS63305549A/en
Publication of JPS63305549A publication Critical patent/JPS63305549A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a complementary type MIS semiconductor integrated circuit having high resistance to the total dose of radiation and being proper to improvement in yield by forming a high-concentration impurity diffusion layer without using shield plate isolation in an unnecessary region in inter-element isolation. CONSTITUTION:A high-concentration impurity diffusion layer is used as a region requiring no shield plate isolation for increasing radiation resistance. An epitaxial P-type silicon layer 24 is shaped onto a P-type high concentration substrate 23, and an N well 32 is formed into the layer 24. A gate electrode 25 for an NMOS, a source or a drain 33 in the NMOS, a gate electrode 26 for a PMOS, source-drain 34 in the PMOS, and a shield plate electrode 27 in a P-type region are shaped. A thin oxide film 29 and an inter-layer insulating film 35 are also formed. Accordingly, resistance to the total dose of radiation is increased, and a complementary type MIS semiconductor integrated circuit proper to improvement in the degree of integration and in yield is acquired.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、放射線耐性の高い相補型MIS(M@tal
 −In5ulator −Sem1condueto
、r )半導体集積回路に関するものであゐ。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention is directed to a highly radiation-resistant complementary MIS (M@tal
-In5ulator -Sem1condueto
, r) Concerning semiconductor integrated circuits.

[従来の技術] 従来、耐放射線用の半導体集積回路においては、業子分
離領域のトータルドーズ耐量を高めるため、フィールド
酸化膜を薄くしたシールドプレート分離(特願昭60−
’87632号、特願昭60−131920号、特願昭
60−175797号参照)や、多層構造フィールド酸
化膜が提案されている。前者は構造的にはMOS)?ン
ジスタであるため、後者に比べて放射線照射による閾値
電圧変動量の設計がしやすく、かつ特殊な製造プロセス
を必要と(−ない利点がある。第3図に従来のシールド
グレート分離CMO13構造の例を示す。1は高濃度S
i基板、2は工ぜタキシャルシリコン層である。3は熱
酸化膜、4.5はダート電極、6,7はシールドプレー
ト電極、8,9はソースまたはドレイン、10はガート
バンド(ガードリングともいう)、1ノはnウェル、1
2および13はシールドグレート6およびシールドプレ
ート7の電源である。1,2がp型、11がn型の場合
、トランジスタ14はNHO2,)ランジスタ15はP
MO8である。1゜2がn型、11がp型の場合、トラ
ンジスタ14はPMO3,)ランジスタ15はNHO2
となる。シールドグレート電極6、および7の下の酸化
膜16、および17の膜厚が薄いため、放射線耐性の高
い素子間分離が実現されている。なお、酸化膜厚が厚い
と放射線照射によシ酸化腹中に生成蓄積される荷電子が
多くなり耐圧が劣化する。又、ガードパント10とaエ
ル11に同じ電源が接続されているため、ガードパント
10と高濃度81基板IVCよりてラッチアップが防止
される。との構造において高トータルドーズ耐量、高2
ツチア、76耐性が実現されているが、しかしこの構造
には以下の欠点がある。■および■で示す領域の面積は
、第3図の構成ではLSIのチップ内で非常に面積が大
きくなる。これらの領域は素子間分離に必要な領域の他
に、配線領域としても用いられる部分がある。このよう
に大面積の落込酸化膜はLSI製造プロセスのプラズマ
ドライエツチング工程等のチャージアップを発生させる
工程において絶縁破壊しやすくなる。例えば、第4図は
示す様Ic、MOSキャΔシタのダート面積Sが増加す
るに従い、製造プロセス中のチャージアップによってM
OSキャパシタの歩留シYは減少傾向をもつことが多い
、特KMOSキャパシタの?−)面積が数賜Xam以上
と大きくなると絶縁破壊によってMOSキャパシタは歩
留)が低下しやすい。第3図に示す構造ではシールドプ
レート電極6.1の面積が大きいためシールドプレート
電極6,7下の薄い酸化膜の絶縁破壊が起こシやすい、
電源12をエピタキシャルシリコン層2と同電位にした
としても上記の絶縁破壊がシールドプレート電極6.1
の端部で起こった場合、LSIの歩留まシが低下すると
いう問題点がある。
[Prior Art] Conventionally, in radiation-resistant semiconductor integrated circuits, in order to increase the total dose tolerance of the field isolation region, shield plate isolation (patent application 1986-1), in which the field oxide film is thinned, has been used.
'87632, Japanese Patent Application No. 60-131920, Japanese Patent Application No. 60-175797) and a multilayer field oxide film have been proposed. The former is structurally MOS)? Because it is a transistor, it is easier to design the amount of threshold voltage fluctuation due to radiation irradiation than the latter, and it has the advantage of not requiring a special manufacturing process. 1 indicates high concentration S
The i-substrate 2 is an engineered taxial silicon layer. 3 is a thermal oxide film, 4.5 is a dirt electrode, 6 and 7 are shield plate electrodes, 8 and 9 are source or drain, 10 is a guard band (also called guard ring), 1 is an n-well, 1
2 and 13 are power supplies for the shielding grating 6 and the shielding plate 7. When 1 and 2 are p-type and 11 is n-type, transistor 14 is NHO2,) transistor 15 is P-type.
It is MO8. When 1゜2 is n-type and 11 is p-type, transistor 14 is PMO3,) transistor 15 is NHO2
becomes. Since the oxide films 16 and 17 under the shield grate electrodes 6 and 7 are thin, isolation between elements with high radiation resistance is achieved. Note that when the oxide film is thick, more charged electrons are generated and accumulated in the oxidation layer due to radiation irradiation, and the breakdown voltage deteriorates. Furthermore, since the same power source is connected to the guard punt 10 and the a-el 11, latch-up is prevented by the guard punt 10 and the high concentration 81 substrate IVC. High total dose resistance, high 2
However, this structure has the following drawbacks. In the configuration of FIG. 3, the area of the regions indicated by (1) and (2) becomes extremely large within the LSI chip. In addition to areas necessary for isolation between elements, some of these areas are also used as wiring areas. A fallen oxide film having a large area as described above is susceptible to dielectric breakdown in a process that generates charge-up, such as a plasma dry etching process in an LSI manufacturing process. For example, as shown in FIG. 4, as the dirt area S of the MOS capacitor increases, M
The yield ratio of OS capacitors often tends to decrease, especially for KMOS capacitors? -) When the area becomes larger than Xam, the yield of MOS capacitors tends to decrease due to dielectric breakdown. In the structure shown in FIG. 3, since the area of the shield plate electrode 6.1 is large, dielectric breakdown of the thin oxide film under the shield plate electrodes 6, 7 is likely to occur.
Even if the power source 12 is set to the same potential as the epitaxial silicon layer 2, the above dielectric breakdown will occur on the shield plate electrode 6.1.
If this occurs at the end of the circuit, there is a problem in that the yield of LSI decreases.

第5図にシールドプレートを使用した他の従来例を示す
、18がp基板、19が素子分離用の厚い酸化膜、20
がr−)電極、21がシールドプレート電極、22がソ
ースまたはドレインである。
Fig. 5 shows another conventional example using a shield plate, where 18 is a p-substrate, 19 is a thick oxide film for element isolation, and 20
is an r-) electrode, 21 is a shield plate electrode, and 22 is a source or drain.

この場合シールドプレート電極21の面積が小さいため
、シールドグレート電極21下の薄い酸化膜の絶縁破壊
が起こシにくいという長所がある。
In this case, since the area of the shield plate electrode 21 is small, there is an advantage that dielectric breakdown of the thin oxide film under the shield plate electrode 21 is less likely to occur.

又、素子間分離領域の端部にシールドグレート電極21
を使用し、素子間分離領域の大部分は厚い酸化膜を使用
するため、浮遊容量が小さくLSIの高速化に適してい
るという長所もある。しかしながら、この構造では、N
チャンネルトランジスタのソースまたはドレインの周囲
にシールドグレート電極21を設け、かつその外周に厚
いフィールド酸化膜を設けているため、シールドグレー
ト電極2ノと厚い酸化膜の端部の合わせ余裕を十分に含
めた構造にする必要が生じ、その結果■で示した領域が
大きくなシ、第3図に示した構造にくらべてLI9Iの
素子集積密度が大きく低下するという欠点がある。
In addition, a shield grate electrode 21 is provided at the end of the element isolation region.
Since a thick oxide film is used in most of the isolation regions between elements, stray capacitance is small and it is suitable for increasing the speed of LSI. However, in this structure, N
Since the shield grate electrode 21 is provided around the source or drain of the channel transistor, and a thick field oxide film is provided around its outer periphery, there is sufficient margin for alignment between the shield grate electrode 2 and the edge of the thick oxide film. As a result, the area indicated by (■) is large, and the element integration density of LI9I is greatly reduced compared to the structure shown in FIG. 3, which is a drawback.

[発明が解決しようとする問題点] 本発明は上記の事情に鑑みてなされたもので、対放射線
のトータルドーズ耐量向上および素子の高集積化に適し
たシールドプレート分離構造相補型MIS集積回路にお
いて、シールドプレート電極を極力縮小し、プロセス中
のチャージアップの問題を軽減した相補fiMr8半導
体集積回路を提供することを目的とする。
[Problems to be Solved by the Invention] The present invention has been made in view of the above circumstances, and provides a complementary MIS integrated circuit with a shield plate separation structure suitable for improving the total dose resistance against radiation and increasing the integration of elements. It is an object of the present invention to provide a complementary fiMr8 semiconductor integrated circuit in which the shield plate electrode is reduced as much as possible and the problem of charge-up during processing is reduced.

[問題点を解決するための手段と作用]本発明は、クー
ルドグレート分離の歩留)を向上させるため、素子間分
離のうち配線領域のみに用いられるような不必要な領域
にはシールドプレート分離を使用せず高濃度不純物拡散
層の領域な設けることによシ、放射線に対する高トータ
ルドーズ耐量を有し、歩留まり向上に適した相補型MI
S半導体集積回路を提供するものである。
[Means and effects for solving the problem] In order to improve the yield rate of cooled grating isolation, the present invention provides shield plate isolation in unnecessary areas such as those used only for wiring areas among element isolations. By providing a high-concentration impurity diffusion layer region without using the
The present invention provides an S semiconductor integrated circuit.

[実施例コ 以下図面を参照して本発明の実施例を詳細に説明する。[Example code] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図はp型基板Knウェルを形成した相補型MIS半
導体集積回路に対する本発明の第1の実施例を説明する
図である。放射線耐性を向上させるためのシールドグレ
ート分離を必要としない領域には、高濃度不純物拡散層
を使用する。p至高濃度基板23上にエピタキシャルp
型クリコン層24を有し、24の中にnウェル32を有
する。
FIG. 1 is a diagram illustrating a first embodiment of the present invention for a complementary MIS semiconductor integrated circuit in which a p-type substrate Kn well is formed. Highly doped impurity diffusion layers are used in areas that do not require shielding grating separation to improve radiation tolerance. Epitaxial p on the p highest concentration substrate 23
It has a type Cricon layer 24, and has an n-well 32 in 24.

25はNMO8Or−)電極、33はNMO8のソース
またはドレイン、26はPMO8のr−)電極、3Iは
PMO8のソース・ドレイン、j7はpm領斌のシール
ドプレート電極で、電極下の領域■に反転層が形成され
ることを防止する。28はNウェル領域のシールドグレ
ート電極で電極下の領域■に反転層が形成されることを
防止する。36は、ラッチアッグ防止用のガートバンド
である。第1図の構造の特徴は、第3図の領域■、■の
シールドプレート電極の面積を減らすため、シールドグ
レート電極を必要としない領域に、高濃度不純物拡散層
領域30や31を設けたことである。高濃度不純物拡散
層領域30はエピタキシャルシリコン層24と同じ型の
不純物で、ウェル32と重なる高濃度不純物拡散層領域
31はウェル32と同じ型の不純物である。この構造に
よって素子分離を必要とする領域にのみシールドグレー
トの設置を限定することができるため、第3図の構成に
比べて、LSIチ、グにおいて著しくシールドプレート
面積を減らすことができる。従って第1図は第3図よシ
もLlの歩留)向上に適した0MO8構造を与える。
25 is the NMO8Or-) electrode, 33 is the source or drain of NMO8, 26 is the r-) electrode of PMO8, 3I is the source/drain of PMO8, j7 is the shield plate electrode of the pm region, which is reversed to the region below the electrode Prevent layers from forming. Reference numeral 28 denotes a shielding grate electrode in the N-well region, which prevents the formation of an inversion layer in the region (2) below the electrode. 36 is a guard band for preventing latch-ag. The feature of the structure shown in FIG. 1 is that in order to reduce the area of the shield plate electrodes in regions ① and ② in FIG. It is. The high concentration impurity diffusion layer region 30 has the same type of impurity as the epitaxial silicon layer 24, and the high concentration impurity diffusion layer region 31 overlapping the well 32 has the same type of impurity as the well 32. With this structure, the shield plate can be installed only in areas where element isolation is required, so the area of the shield plate in the LSI chip can be significantly reduced compared to the configuration shown in FIG. Therefore, FIG. 1 provides an 0MO8 structure suitable for improving the yield of L1 as well as FIG. 3.

第1図中、29は薄い酸化膜、35は層間絶縁膜、Jl
、3gは電源である。なお、第1の実施例ではpm基板
、hウェルの構造を示したがn型基板にpウェルを用い
た場合にも本発明を適用できることは明らかである。
In Figure 1, 29 is a thin oxide film, 35 is an interlayer insulating film, and Jl
, 3g is a power supply. Although the first embodiment shows the structure of a pm substrate and an h-well, it is clear that the present invention can also be applied to a case where a p-well is used as an n-type substrate.

又、素子間分離領域に含まれる第1の領域にMIS構造
から成るシールドプレート分離を有し、素子間分離領域
から該第1の領域とウェルの端部領域とを除く第2の領
域の半導体基板表面に半導体基板と同一の導電型を有す
る高濃度不純物拡散層領域を設けた相補型MIS半導体
集積回路において、n型りエルが使用されている場合は
n凰つェルとp型領域の境界にn凰不純物の高濃度拡散
層領域を、p聾つェルが使用されている場合はpmウェ
ルとni領領域境界にp型不純物の高濃度拡散層領域を
設け、該高濃度拡散層領域がウェルと重なゐ領域をもた
せることができる。
Further, the first region included in the element isolation region has a shield plate isolation made of an MIS structure, and the semiconductor in the second region excluding the first region and the end region of the well from the element isolation region. In a complementary MIS semiconductor integrated circuit in which a high-concentration impurity diffusion layer region having the same conductivity type as the semiconductor substrate is provided on the substrate surface, when an n-type well is used, the difference between the n-well and the p-type region is A high concentration diffusion layer region of n-type impurity is provided at the boundary, and when a p-deaf well is used, a high concentration diffusion layer region of p-type impurity is provided at the boundary between the pm well and the ni region. It is possible to have a region where the region overlaps the well.

第2図はpJ1図で用いたラッテアッグ防止用のガート
バンド36を2.チアラグ防止用の溝分離に変えた構造
で6D、p型領域とnfi領域の境界に溝分離を設けた
ものである。52は溝分離の溝内に埋め込んだCVDの
5i02膜、/1JslあるいはPSG膜等の溝内埋込
み膜で、53はエピタキシャルシリコン層40、高濃度
基板39と直接に接す′る薄い酸化膜である。第2図中
、4ノはnウェル、42は薄い酸化膜、43.44はf
f−)電極、45.46はソースまたはドレイン、41
.48はシールドグレート電極、49,50.51は高
濃度不純物拡散層領域、54は眉間絶縁膜、55゜56
は電源でおる。
Figure 2 shows the ratteag prevention guard band 36 used in Figure pJ1. 6D is a structure in which trench isolation is used to prevent chiar lag, and trench isolation is provided at the boundary between the p-type region and the nfi region. Reference numeral 52 denotes a buried film such as a CVD 5i02 film, /1Jsl or PSG film buried in the groove of trench isolation, and 53 is a thin oxide film in direct contact with the epitaxial silicon layer 40 and the high concentration substrate 39. be. In Figure 2, 4 is an n-well, 42 is a thin oxide film, and 43 and 44 are f
f-) electrode, 45.46 is source or drain, 41
.. 48 is a shield grating electrode, 49, 50.51 is a high concentration impurity diffusion layer region, 54 is an insulating film between the eyebrows, 55° 56
is powered on.

[発明の効果] 以上説明した様に9本発明は、放射線のトータルドーズ
耐量を向上させるためのシールドグレート分離をシール
ドプレートによる素子分離が必要な領域にのみ設け、他
の領域は高濃度不純物拡散層分離を設けた構成であるこ
とから、シールドグレート電極の面積が減少しシールド
グレー)MOSキャAシタの絶縁性歩留まシが向上する
ため、高集積化、高歩留まり化に適した相補型MIS半
導体集積回路を与える。又、LSIチッグ内には素子が
配置されていない配線形成領域やチップ周辺等の領域が
面積的にかなシの部分を占めることが多いため、本発明
の構造をL8IK適用した場合、L81の歩留tb内向
上おいて大きな効果が得られる。
[Effects of the Invention] As explained above, in the present invention, shielding grade separation for improving the total dose resistance of radiation is provided only in regions where element isolation by shield plates is required, and high concentration impurity diffusion is provided in other regions. Since the layer separation structure reduces the area of the shield grate electrode and improves the insulation yield of the shield grate (shield grate) MOS capacitor, it is a complementary type suitable for high integration and high yield. A MIS semiconductor integrated circuit is provided. In addition, in LSI chips, the wiring formation area and areas around the chip where no elements are placed often occupy a small area in terms of area, so when the structure of the present invention is applied to L8IK, the step of L81 is A great effect can be obtained in improving the inside of the tb.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のシールドプレート分離、高濃度不純物
拡散層分離、ガートバンドを併用した第1の実施例を示
す構成図、 第2図は本発明のシールドプレート分離、高濃度不純物
拡散層分離、溝分離を併用した第2の実施例を示す構成
図、 第3図は従来のシールドプレート分離を用いた0MO8
構造を示す構成図、 第4図はMO8キャΔシタのダート面8tSと歩留シY
の関係を示す特性図、 第5図は従来のシールドプレート分離と厚い素子分離用
酸化膜を併用したMOS)ランジスタを示す構成図であ
る。 1−Efi濃度Sl基板、2・・・エピタキシャルシリ
コン層、3・・・熱酸化膜、4,5・・・ダート電極、
6゜7・−・シールドグレート電極、8,9・・・ソー
スまたはドレイン、10・・・ガートバンド、11・・
・ウェル、12.13・・・電源、14・・・トランジ
スタ、15・・・トランジスタ、16.17・・・熱酸
化膜、18・−p基板、19・・・厚い酸化膜、20・
−4”−)電極、21・・・シールドプレート電極、2
2・・・ソースまたはドレイン、23・−高濃度基板、
 j 4−・・上ピタキシャルシリコン層、25.26
・・・ダート電極、27.28・−シールドグレート電
極、29・・・薄い酸化膜、30.31・・・高濃度不
純物拡散層領域、32・−nウェル、3:9,34・・
・ソースまたはドレイン、35・・・眉間絶縁膜、36
・・・ガートバンド、J 7 、38−・・電源、39
・−高濃度基板、40・・・エピタキシャルシリコン層
、41・・−rs ’:)エル、42・・・薄い酸化膜
、43.44・・・ダート電極、45゜46・・・ソー
スまたはドレイン、47.48・・・シールドプレート
電極、49,60.51・・・高濃度不純物拡散層領域
、52・・・溝内埋込み膜、53・・・薄い酸化膜、5
4・・・層間絶縁膜、55,56・・・電源。
Fig. 1 is a configuration diagram showing a first embodiment in which shield plate separation, high concentration impurity diffusion layer separation, and guard band of the present invention are used in combination. Fig. 2 is a block diagram showing the shield plate separation and high concentration impurity diffusion layer separation of the present invention. , a configuration diagram showing a second embodiment using groove separation, and Fig. 3 is a 0MO8 using conventional shield plate separation.
A block diagram showing the structure, Figure 4 shows the dirt surface 8tS of the MO8 capacitor and the yield sheet Y.
FIG. 5 is a configuration diagram showing a MOS transistor using both conventional shield plate isolation and a thick element isolation oxide film. 1-Efi concentration Sl substrate, 2... epitaxial silicon layer, 3... thermal oxide film, 4, 5... dirt electrode,
6゜7.--Shield grade electrode, 8,9.. Source or drain, 10..Gart band, 11..
・Well, 12.13...Power supply, 14...Transistor, 15...Transistor, 16.17...Thermal oxide film, 18.-P substrate, 19...Thick oxide film, 20.
-4"-) Electrode, 21... Shield plate electrode, 2
2...source or drain, 23--high concentration substrate,
j 4-...Top pitaxial silicon layer, 25.26
... Dirt electrode, 27.28 - Shield great electrode, 29... Thin oxide film, 30.31... High concentration impurity diffusion layer region, 32 - N well, 3:9, 34...
- Source or drain, 35... Insulating film between eyebrows, 36
...Gart band, J7, 38-...Power supply, 39
-High concentration substrate, 40...Epitaxial silicon layer, 41...-rs':) L, 42...Thin oxide film, 43.44...Dirt electrode, 45°46...Source or drain , 47.48... Shield plate electrode, 49, 60.51... High concentration impurity diffusion layer region, 52... Trench buried film, 53... Thin oxide film, 5
4... Interlayer insulating film, 55, 56... Power supply.

Claims (3)

【特許請求の範囲】[Claims] (1)素子間分離領域に含まれる第1の領域にMIS構
造から成るシールドプレート分離を有し、素子間分離領
域から該第1の領域を除く第2の領域の半導体基板表面
に半導体基板と同一の導電型を有する高濃度不純物拡散
層領域を設けることを特徴とする相補型MIS半導体集
積回路。
(1) A shield plate isolation consisting of an MIS structure is provided in a first region included in the element isolation region, and a semiconductor substrate is provided on the surface of the semiconductor substrate in a second region excluding the first region from the element isolation region. A complementary MIS semiconductor integrated circuit characterized by providing highly concentrated impurity diffusion layer regions having the same conductivity type.
(2)p型領域とn型領域の境界に溝分離を設けること
を特徴とする特許請求の範囲第1項記載の相補型MIS
半導体集積回路。
(2) Complementary MIS according to claim 1, characterized in that a groove isolation is provided at the boundary between the p-type region and the n-type region.
Semiconductor integrated circuit.
(3)素子間分離領域に含まれる第1の領域にMIS構
造から成るシールドプレート分離を有し、素子間分離領
域から該第1の領域とウェルの端部領域とを除く第2の
領域の半導体基板表面に半導体基板と同一の導電型を有
する高濃度不純物拡散層領域を設けた相補型MIS半導
体集積回路において、n型ウェルが使用されている場合
はn型ウェルとp型領域の境界にn型不純物の高濃度拡
散層領域を、p型ウェルが使用されている場合はp型ウ
ェルとn型領域の境界にp型不純物の高濃度拡散層領域
を設け、該高濃度拡散層領域がウェルと重なる領域をも
つことを特徴とする相補型MIS半導体集積回路。
(3) The first region included in the element isolation region has a shield plate isolation made of an MIS structure, and the second region excluding the first region and the end region of the well from the element isolation region. In a complementary MIS semiconductor integrated circuit in which a high-concentration impurity diffusion layer region having the same conductivity type as the semiconductor substrate is provided on the surface of the semiconductor substrate, if an n-type well is used, the boundary between the n-type well and the p-type region is If a p-type well is used, a high-concentration diffusion layer region of p-type impurity is provided at the boundary between the p-type well and the n-type region. A complementary MIS semiconductor integrated circuit characterized by having a region overlapping with a well.
JP62140997A 1987-06-05 1987-06-05 Complementary type mis semiconductor integrated circuit Pending JPS63305549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62140997A JPS63305549A (en) 1987-06-05 1987-06-05 Complementary type mis semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62140997A JPS63305549A (en) 1987-06-05 1987-06-05 Complementary type mis semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS63305549A true JPS63305549A (en) 1988-12-13

Family

ID=15281757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62140997A Pending JPS63305549A (en) 1987-06-05 1987-06-05 Complementary type mis semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS63305549A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406100A (en) * 1991-10-09 1995-04-11 Nec Corporation Semiconductor integrated circuit device having multi-contact wiring structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406100A (en) * 1991-10-09 1995-04-11 Nec Corporation Semiconductor integrated circuit device having multi-contact wiring structure
US5528061A (en) * 1991-10-09 1996-06-18 Nec Corporation Semiconductor integrated circuit device having multi-contact wiring structure

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US4590663A (en) High voltage CMOS technology with N-channel source/drain extensions
US5141890A (en) CMOS sidewall oxide-lightly doped drain process
JPH0695563B2 (en) Semiconductor device
US7345347B2 (en) Semiconductor device
US9899471B2 (en) Compact CMOS device isolation
JPH05129429A (en) Semiconductor device and manufacture thereof
JP2991489B2 (en) Semiconductor device
US5506438A (en) Semiconductor device with two different threshold voltages
US6278162B1 (en) ESD protection for LDD devices
US7355265B2 (en) Semiconductor integrated circuit
EP0091256B1 (en) Cmos device
JP2001284540A (en) Semiconductor device and its manufacturing method
JPH08213478A (en) Semiconductor integrated circuit device and its manufacture
US8026552B2 (en) Protection element and fabrication method for the same
JPH0575187B2 (en)
JPS62149163A (en) Manufacture of complementary mos integrated circuit
JPS63305549A (en) Complementary type mis semiconductor integrated circuit
US6482703B1 (en) Method for fabricating an electrostatic discharge device in a dual gate oxide process
JP2596340B2 (en) Semiconductor device
JPS62262462A (en) Semiconductor device
JPS62102555A (en) Semiconductor device
JPH01194349A (en) Semiconductor device
JPH05136405A (en) Semiconductor device
JPS63305548A (en) Complementary type mis semiconductor integrated circuit