JPS63305525A - Method of positioning probing head in inspection of semiconductor wafer - Google Patents

Method of positioning probing head in inspection of semiconductor wafer

Info

Publication number
JPS63305525A
JPS63305525A JP62141077A JP14107787A JPS63305525A JP S63305525 A JPS63305525 A JP S63305525A JP 62141077 A JP62141077 A JP 62141077A JP 14107787 A JP14107787 A JP 14107787A JP S63305525 A JPS63305525 A JP S63305525A
Authority
JP
Japan
Prior art keywords
wafer
small window
mark
microscope
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62141077A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takagi
啓行 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INTER TEC KK
TOKYO KASOODE KENKYUSHO KK
Tokyo Cathode Laboratory Co Ltd
Original Assignee
INTER TEC KK
TOKYO KASOODE KENKYUSHO KK
Tokyo Cathode Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INTER TEC KK, TOKYO KASOODE KENKYUSHO KK, Tokyo Cathode Laboratory Co Ltd filed Critical INTER TEC KK
Priority to JP62141077A priority Critical patent/JPS63305525A/en
Publication of JPS63305525A publication Critical patent/JPS63305525A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To observe the surface of a wafer and a projected reference line simultaneously by a microscope with an accurate focus by irradiating a glass surface with parallel rays from the upper section of a glass in parallel with an optical axis for the microscope and projecting the effect of a non-light-transmitting reference line on the glass surface onto the surface of the wafer. CONSTITUTION:A small window 5 is formed which is separate only by a regular interval from the position of the support of a probe group 4a on a support member 3 to which the probe group 4a in a probing head 4 is supported, the small window 5 is irradiated with parallel rays l1 by a light source 6 and a lens system 7 from the direction vertical to the surface of a wafer through a semitransparent mirror 8 in the upper section of the small window 5, and the image of a mark such as a cross line on a transparent plate is shaped onto the surface of the wafer. The image of the mark such as the cross line and a mark for confirming the position of the wafer such as pads on the surface of the wafer are observed by an optical microscope 9 from the upper section of the semitransparent mirror 8, and the relative positions of the probing head 4 and the wafer 2 are adjusted, thus positioning the tips of the probe group 4a and pad groups on the wafer 2 to be inspected. Accordingly, said image and mark for confirming the position of the wafer can be observed with an accu rate focus even by a microscope having high magnification, thus improving the precision of positioning.

Description

【発明の詳細な説明】 産業(−1の利用分野 本発明は、半導体ウェハ検査装置におけるプローブヘッ
ドの位置合わせ方法に関するものであって、集積回路及
び大規模集積回路等の半導体デバイスの製造プロ廿スに
おける1クエハ検査り法及び装置に関連を有し、特に電
極・パッド(=1及び配線等のプロセス以侵におけるつ
Tハの内部回路あるいは内部接続を検査するために、多
数のプローブ針を有するプローブヘッドをブO−バに1
着して多数のテスト点について試験・検査を行なう半導
体ウェハ検査装置において、そのプローブヘッドを検査
対象であるウェハのテスト貞パターンに対して位置合わ
せをするための方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application: Industry (-1) The present invention relates to a probe head positioning method in a semiconductor wafer inspection apparatus, and is applicable to manufacturing processes of semiconductor devices such as integrated circuits and large-scale integrated circuits. It is related to the method and equipment for testing one wafer in a process, and in particular, it uses a large number of probe needles to inspect the internal circuits or internal connections of a wafer during a process such as electrodes, pads (=1, and wiring). Place the probe head with the
The present invention relates to a method for aligning a probe head of a semiconductor wafer inspection apparatus to a test pattern of a wafer to be inspected in a semiconductor wafer inspection apparatus that performs tests and inspections on a large number of test points.

先米辺且I 半導体装置における集積密度の増大は、必然的に半導体
ウェハにおける電極・パッドの数の増大と、これらを含
む配線パターンの複雑化をもたらし、ウェハ プロセス
の最終段階でのブ【−1−バによるウェハ試験検査にお
けるテスト点を増大さVた。昭和58年5 J]16日
公開に係る特開昭58−80.847号L1.クバトロ
ニツタによる1981年11月2日の米国特許出願第3
17.413号に基く優先権主張)の発明によって、こ
のJ:うに多数のテスト点があり、しかもそれが2次元
的に分布する半導体ウェハに対して適用可能な、マトリ
クス型テストプローブ・ヘッド装防、及び、それによる
ミニアチュア回路処即装置、つまり、ウエハブローバが
開発された。その構成の要部は、あらまし次のとおりで
ある。リーなわら、ベースプレート及びプリント配線板
をaむ支持手段により固定された可撓性/ローブガイド
に挿通され、かつ、このプローブガイド中を滑動自在な
プローブワイヤ7を有する多数のプローブを備えている
こと、上記の各ブローブワイt7の先端部は、セラミッ
ク等の取付プレー1〜のマトリクス状に分布する多数の
案内孔から突出して実質的に共通な接触平面を形成し得
ること、上記プローブワイヤの他端部に%I して弾力
的に押圧力が作用すると、プローブワイヤはそれぞれ、
そのブ[1−ブガイド中を滑動するので、上記取付プレ
ートから突出している各ブ1コーブワイA7、の先端部
は、ウニハトでマトリクス状分布(パッドパターン)を
なす各テスト点との間に電気接触を形成すること、さら
に、プローブワイヤに関する上記取付プレートの両側に
は、合名それから等しい距前にあり、かつ、それぞれイ
Q置合わμ用十字線と、ウェハの上記パッドパターンに
相当するピットアレーとが刻設された第1及び第2の標
線手段を備えること、そして、これらの各標線手段に垂
直な軸線に泊って第1及び第2の観察用顕微鏡(なお、
1つの顕微鏡を用い、それを上記2つの軸線に関して選
択的にそのいずれかの位置を採り得るようにしてもよい
)を備えること、等である。
The increase in the integration density of semiconductor devices inevitably leads to an increase in the number of electrodes and pads on semiconductor wafers, and the complexity of the wiring patterns containing these, which leads to the increase in the number of electrodes and pads on semiconductor wafers, and the complexity of the wiring patterns that include them. The test points in wafer test inspection by 1-bar were increased. 1985 5 J] JP-A-58-80.847 L1, published on the 16th. U.S. Patent Application No. 3 filed November 2, 1981 by Kubatroni Tsuta
No. 17.413 (priority claim based on No. 17.413) has developed a matrix-type test probe head device that can be applied to semiconductor wafers that have a large number of test points and are distributed two-dimensionally. A miniature circuit processing device, ie, a wafer blower, was developed. The main parts of its structure are summarized as follows. It is equipped with a number of probes having probe wires 7 which are inserted into a flexible/lobe guide fixed by supporting means that includes a base plate and a printed wiring board, and which are slidable in the probe guide. In addition, the tip of each of the probe wires t7 can protrude from a large number of guide holes distributed in a matrix of the mounting plate 1, which is made of ceramic or the like, to form a substantially common contact plane. When a pressing force is applied elastically to the end of the probe wire, the probe wire becomes
Since the wire slides in the guide, the tip of each wire A7 protruding from the mounting plate makes electrical contact with each test point forming a matrix distribution (pad pattern) on the sea urchin pigeon. Further, on each side of the mounting plate with respect to the probe wire, a crosshair for IQ alignment μ and a pit array corresponding to the pad pattern of the wafer are formed, which are equal distances in front of the mounting plate, respectively. engraved with first and second marking means, and the first and second observation microscopes (in addition,
For example, one microscope may be used, and it may be configured to selectively take either position with respect to the two axes.

ところで、半導体ウェハのテスト点が甲にリング状に配
列されているのでなく、微小面積内に非常に密集した多
数のテスト点がある場合(マトリクス状テスト点配列と
いう)には、対象とするテスト点、すなわち、パッドと
プローブヘッドのプローブワイヤとが正確に接触してい
るが否かを、光学顕微鏡によって直接確認することはパ
ッド間の間隔が余りにも狭いため、きわめて困難で、む
しろ不可能に近い。そのために上記の従来技術では、第
2図に示すごとく、それぞれの先端が共通な接触平面を
形成するプローブ群4aを支持しているプローブヘッド
4と離れた別の位rに、すなわち、ブ[J−アヘッドの
中心を通る軸線から直角方向に所定距離りだ(〕離れ、
かつ、該軸線と平行にその軸線が位置するようにして位
置合ねU用小窓14を設け、この小窓に、レーデ彫刻あ
るいはエツチング等により十字線及び多数のピット群を
刻設して成るガラス板を設け、小窓の軸線と平行な光学
軸を有する光学顕微鏡で?B2察しながら、同一ウェハ
2の表面−Fにあって上記プローブ群が接触する区14
10から所定距離りだけ離れた対応区域15の対応パッ
ドパターン12に対してこれらの十字線13及びピッド
群を合致uしめるように調整することによって、いわば
間接的に、ブローアヘッドのプローブ群4aの先端とテ
スト点のパッドとの位置合わせを行なっている。
By the way, if the test points of the semiconductor wafer are not arranged in a ring shape on the back, but there are a large number of test points very densely packed in a small area (referred to as a matrix test point arrangement), the target test It is extremely difficult, or even impossible, to directly check with an optical microscope whether or not there is accurate contact between the pad and the probe wire of the probe head because the spacing between the pads is too narrow. close. For this reason, in the above-mentioned prior art, as shown in FIG. A predetermined distance in the perpendicular direction from the axis passing through the center of J-Ahead,
In addition, a small window 14 for positioning U is provided so that the axis is located parallel to the axis, and a cross line and a large number of pit groups are engraved in this small window by Rede engraving or etching. An optical microscope with a glass plate and an optical axis parallel to the axis of the small window? While observing B2, the area 14 on the surface -F of the same wafer 2 where the probe group contacts
By adjusting the crosshairs 13 and the pit group so that they coincide with the corresponding pad pattern 12 in the corresponding area 15 that is a predetermined distance away from the probe group 10, the probe group 4a of the blower head can be adjusted indirectly. The tip is aligned with the pad at the test point.

発明の解決しようとする間 、 前)ホの従来の技術では、小窓を通してウェハ表面の対
応区域をIJ察し小窓に設けた上記ガラス板の一1字線
及びビット群とウェハ表面の対応するパッドパターンと
の位置合わせをする訳であるが、十字線とウェハ表面と
の間には微小間隔dだ番ノのへだたりが存在するため、
顕微鏡の視野上でウェハ表向上の対応区域にあるパッド
パターンとガラス板の十字線及びビット群との双方を同
時に、かつ、正確にピント含わ往することはできない。
While attempting to solve the invention, the conventional technique described in E) is to detect the corresponding area on the wafer surface through a small window and to identify the corresponding area on the wafer surface with the 11-character line and bit group on the glass plate provided in the small window. This is to align with the pad pattern, but since there is a minute gap d between the crosshair and the wafer surface,
It is not possible to simultaneously and accurately focus on both the pad pattern, the crosshairs on the glass plate, and the bit group in corresponding areas on the surface of the wafer on the field of view of the microscope.

なぜなら顕微鏡の焦点深度は微小間隔dに較べてはるか
に小さいからである。従来技術の実施に際してこのにう
な難点を回避する手段としては、次の2つの方法が考え
られる。先ず第1の方法は、ガラス板の十字線及びビッ
ト群とウェハ表面の対応区域間の微小間隔dそれ自体を
可及的に小さくすることである。しかし、この場合には
、プローブヘッドの前端の支持板によりそのブローブガ
イドの先端がそれぞれ固定されているプローブBT#ユ
、それらの各プローブワイヤの先端がL記共通接触平面
を形成してつ1ハのデス1一点のパッドパターンと相豆
に接触するために、反対端に作用する押圧力により支持
扱を越えて特定寸法だ【ノ突出している必要があり、か
つ、顕微鏡を用いてプローブヘッドとウェハ間の位置合
わせを行なう簡には、これら突出したプローブワイヤ先
端とウェハとの接触を防止する必要があるため、上記微
小間隔の短縮はこの突出部分の寸法に制約されることに
なり、使用できる顕微鏡の倍率にはおのずから限界があ
った。そのため、これが検査精度の向上を阻害する人き
f、N [i;を囚となっていた。次に第2の方法は、
顕微鏡の光学系を+’+n 1% 2回にわたり一ヒ)
仙させることにJ:す、上記ガラス板の十字線及びピッ
1へ群とウェハ表面の対応区域のパッドパターンのそれ
ぞれに対して各別に、2回にわたってピント合わUをし
、このピント合わせの都度、各別にそれらを光学系に固
定された基準線と比較し観察するものである。しかしこ
の方法を採る場合には、光学系のJ二下動に起因してそ
の先軸に振れが生じるため、検査111σが低下するの
みならず、ピント合わUの操作が面倒で、調節に時間が
かかるという欠点があり、検査粘度を確保する為には剛
性の、αい光学系の橢構と光軸の精密な調整作業が必要
であり、非常に高価なものになってしまう。
This is because the depth of focus of the microscope is much smaller than the minute interval d. The following two methods can be considered as means to avoid this difficulty when implementing the prior art. The first method is to make the very small distance d between the crosshairs and bit groups on the glass plate and the corresponding areas on the wafer surface as small as possible. However, in this case, the probes BT#, each of which has its probe guide tips fixed by a support plate at the front end of the probe head, and the tips of their respective probe wires forming a common contact plane L, are used. In order to make contact with the pad pattern at one point on the soy bean, the pressure force acting on the opposite end must protrude beyond the support handle, and the probe head must be protruded using a microscope. To align the probe wire and the wafer, it is necessary to prevent the tips of these protruding probe wires from coming into contact with the wafer, so the shortening of the minute distance described above is limited by the dimensions of this protruding portion. There was a natural limit to the magnification of the microscopes that could be used. Therefore, this has become a prisoner of f, N[i;, which hinders the improvement of test accuracy. Next, the second method is
The optical system of the microscope is +'+n 1% twice)
To do this, I focused twice on each of the crosshairs on the glass plate and the pad pattern in the corresponding area on the wafer surface, and each time I focused on them. , these are compared and observed separately with a reference line fixed to the optical system. However, when this method is adopted, the optical system's downward movement causes vibration at its tip axis, which not only lowers the inspection 111σ, but also makes the focusing U operation troublesome and takes time to adjust. However, in order to ensure the test viscosity, a rigid optical system structure and precise adjustment of the optical axis are required, resulting in a very expensive product.

問題点を解決するための手段(作用) プローブヘッドに固定されたガラス上の基準線と、ウェ
ハ表面とを顕微鏡で観察して両者の位置合わVをし、ひ
いてプローブとパッドとの位置合わUを行なう方式にJ
3いて、本発明では特に、ガラス上方より平行光線を、
顕微鏡の光軸と平行にガラス面に照射し、ウェハの表面
上にガラス面上の非透光性の基準線の影像を投影するこ
とによって、前述の問題点を解決したものである。
Means (action) for solving the problem Observe the reference line on the glass fixed to the probe head and the wafer surface with a microscope to align them V, and then align the probe and pad. J to the method of doing U
3. In the present invention, in particular, parallel light rays are transmitted from above the glass,
The above-mentioned problem is solved by irradiating the glass surface parallel to the optical axis of the microscope and projecting an image of a non-transparent reference line on the glass surface onto the wafer surface.

−4なわら、本発明の方法によれば、ウェハ表面と投影
された基準線とを同時に正確なピントで顕微vL観察す
ることができる。従って顕微鏡の倍率は要求粘度、操作
性の向上などへの配慮から適当な倍率のものを随意に選
択することができる。
-4 However, according to the method of the present invention, the wafer surface and the projected reference line can be simultaneously observed under a microscope with accurate focus. Therefore, the magnification of the microscope can be arbitrarily selected from consideration of the required viscosity, improvement of operability, etc.

発明の構成及び実施例 第1図は、半導体ウエハプローバにおいて、本発明のプ
ローブヘッドの位置合わせ方法の実施のために用いる装
置の概要を示すもので、1は検査されるべき半導体ウェ
ハを支持して検査位置に回くための真空チャック、2は
検査位置にある半導体ウェハ、4はプローブヘッド、4
aはブ0−ブヘッドにお(」る多数のf rJ−ブ群で
ある。3は、員空ブVツク1上のウェハ表面と平行どな
るように設けられた支持テーブルを示し、その所定位社
には、プローブ群4aの先端がウェハ表面に対し垂直方
向から接触し得るようにプローブヘッド4を支持して固
定し、またこのプローブヘッド4から所定の間隔D′だ
け離れた位置には、ガラス等の透明板が嵌められた位置
合わせ用小窓5を支持し固定している。この透明板には
、周知の手段kJ:り所定の十字線とドツト鮮から成る
非透光性のパターンが形成されている。かくして、図示
し41い調整装置によりプローブヘッド4から所定の1
7i1隔D′だけ離れた小窓5の上記ガラス板上のも(
準パターンをプローブ群が接触すべきウェハのデス1一
区域からD′離れたウェハ表面上の対応区域に対向ケる
ように調整されると、プローブヘッド4のプローブ群4
aの先端が、検査されるべぎ2のウェハ表面にあるパッ
ドパターン(これをテス1〜+i 14のパッドパター
ンという)と接触する。この時、光学顕微鏡9は図示し
ない連結手段により支持テーブルと一体的に移動するよ
うに構成されているので、その先軸Xが常にガラス板の
基準点を通る位4にある。本発明方法を具現するこの実
施例の装置では、上記顕微鏡9と小窓との間に、上記光
軸x 、J−に、それと角度45°をなすように設けた
それ自体周知の半透明鏡8を設けるとともに、この半透
明1n8の側方には、照明用光′l1A6からの光を集
束して平行光線11にするためのレンズ系7を備えてい
る。それ故、光源6からンズ系7を経て半透明鏡8に入
射する平行光Wa11は、半透明鏡8で反射されて顕微
鏡の光軸に平行な平行光線12と41つて上記小窓5の
ガラス板を照射するのC、ウェハ表面の対応区域のパッ
ドパターン上には、ガラス仮に形成されている非透光竹
の十字線及びドラ1一群の影像が投影される。第3図は
参考までにその様子を示す部分図で、15は対応区域に
J3いてパッドパターンを形成づるパッドの1つであり
、13はこのパッド十に投影されている十字線の影像で
ある。、このように構成されているので、光学顕微鏡9
のビン1〜をつ1ハ表面にピント合わぜしてざえJ3 
Itば、その対応区域に存在するパッドパターンと、(
の土に形成された十字線及びドラ1一群の影像とを同時
に観察り゛ることにより、両者間の位置合わせをi[確
かつ迅速に行なうことができる。なお1.し述の実施例
の装置において、レンズ系7及σ光m6は半透明ia8
と一体的に連動し得るようにして、例えばvA@鏡9及
び支持テーブル3の連結手段における適宜の個所に固定
されている。
Structure and Embodiments of the Invention FIG. 1 shows an outline of an apparatus used for implementing the probe head positioning method of the present invention in a semiconductor wafer prober, in which 1 supports a semiconductor wafer to be inspected. 2 is a semiconductor wafer in the inspection position; 4 is a probe head;
A is a large number of f rJ-bums located on the wafer head. 3 is a support table provided parallel to the wafer surface on the empty book board 1, and its predetermined position is At the company, a probe head 4 is supported and fixed so that the tip of the probe group 4a can contact the wafer surface from the vertical direction, and a position a predetermined distance D' from the probe head 4 is provided. A small positioning window 5 fitted with a transparent plate made of glass or the like is supported and fixed.This transparent plate is covered with a non-transparent pattern consisting of predetermined cross lines and dots using well-known means. Thus, the adjusting device 41 shown in the figure allows the probe head 4 to be adjusted to a predetermined one.
Also on the glass plate of the small window 5, which is 7i1 distance D' apart (
When the quasi-pattern is adjusted so that the probe group faces a corresponding area on the wafer surface that is a distance D' from the area of the wafer to be contacted, the probe group 4 of the probe head 4
The tip of a comes into contact with a pad pattern (referred to as the pad pattern of tests 1 to +i 14) on the surface of the wafer to be inspected. At this time, since the optical microscope 9 is configured to move integrally with the support table by means of a connecting means (not shown), its tip axis X is always at a position 4 passing through the reference point of the glass plate. In the apparatus of this embodiment embodying the method of the present invention, a translucent mirror, known per se, is provided between the microscope 9 and the small window on the optical axis x, J-, making an angle of 45° therewith. 8, and a lens system 7 for converging the light from the illumination light 'l1A6 into parallel light rays 11 is provided on the side of this translucent 1n8. Therefore, the parallel light Wa11 that enters the semi-transparent mirror 8 from the light source 6 via the lens system 7 is reflected by the semi-transparent mirror 8 and is combined with the parallel light rays 12 and 41 parallel to the optical axis of the microscope through the glass of the small window 5. When the plate is irradiated, an image of a group of non-transparent bamboo crosshairs and a driver 1 formed on the glass is projected onto the pad pattern in the corresponding area on the wafer surface. Figure 3 is a partial diagram showing the situation for reference, 15 is one of the pads that are in the corresponding area and forms the pad pattern, and 13 is the image of the cross line projected on this pad 10. . , Since it is configured in this way, the optical microscope 9
Focus on the surface of the bottles 1 to 1.
If it is, the pad pattern existing in the corresponding area and (
By simultaneously observing the crosshairs formed in the soil and the image of the group of drums 1, the positioning between them can be performed accurately and quickly. Note 1. In the device of the embodiment described above, the lens system 7 and the σ light m6 are translucent IA8
For example, it is fixed at an appropriate location in the connection means of the vA@mirror 9 and the support table 3 so that it can be integrally interlocked with the vA@mirror 9 and the support table 3.

発明の詳細 な説明したように、プローブヘッドの支持部材上に固定
されたガラス面上のU準線とウェハ表面との顕m鏡での
観察による、本発明の位置合わUh法でtま、ガラス面
上の基準線の替わりに、つ1ハ面上に投影された基準線
の影像を観察するため、高倍率の顕微鏡でも正確なピン
トで両者を観察することができ、位首合わ「の精度が高
められる。
As described in detail of the invention, the alignment Uh method of the present invention is performed by observing the U directrix on the glass surface fixed on the support member of the probe head and the wafer surface using a microscope. Instead of the reference line on the glass surface, the image of the reference line projected onto the glass surface is observed, so even with a high-magnification microscope, both can be observed with precise focus, making it easier to align the positions. Accuracy is increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の半導体ウェハ検査にお(〕るププロ
ーブヘラの位置合わせ方法の一実施例の構成を明らかに
し、特にその方法の実施のために用いる装置の要部を概
略的に示す図面である。第2図は本発明がその改良の前
提に置いた従来技術の方法・装置を示す略図、第2A図
は、第2図においニブローブ群先端が接触するウェハの
テス[・区域のパッドパターンを示す図面、第2B図は
同じく光学顕微鏡の視野に現われた対応区域のパッドパ
ターン及び十字線を示す図面である。第3図は、本発明
の方法において、ウェハ上の対応区域におけるパッドパ
ターン中のパッド、及び、ガラス板の十字線の影像との
関係を例示した図面である。
FIG. 1 is a drawing that clarifies the structure of an embodiment of the probe spatula positioning method for semiconductor wafer inspection of the present invention, and particularly schematically shows the main parts of the apparatus used to carry out the method. FIG. 2 is a schematic diagram showing the prior art method and apparatus on which the present invention is based on its improvement, and FIG. FIG. 2B is a drawing showing the pad pattern and crosshairs in the corresponding area on the wafer in the method of the present invention. It is a drawing illustrating the relationship between the pad inside and the image of the crosshair on the glass plate.

Claims (1)

【特許請求の範囲】[Claims] マトリックス状テスト点配列を有する半導体ウェハの検
査において、プローブヘッドのプローブ群が支持される
支持部材上で、該プローブ群の支持位置と所定の間隔だ
け離れた位置に小窓を設け、側方に配設した光源及びレ
ンズ系による平行光線を、前記小窓上方の半透明鏡を介
してウェハ面に対して垂直方向から該小窓に照射し、該
小窓に装着されている透明板上の非透光性の十字線等の
マークの影像をウェハ表面上に形成せしめ、ウェハ表面
をに投影された前記十字線等のマークの影像とウェハ表
面上にあるパッド等のウェハの位置確認用マークとを前
記半透明鏡の上方から光学顕微鏡で観察して、プローブ
ヘッドとウェハの相対的位置を調整することにより、プ
ローブ群の先端と検査対象のウエハのパッド群との位置
合わせをすることを特徴とするプローブヘッドの位置合
わせ方法。
In the inspection of a semiconductor wafer having a matrix-like test point array, a small window is provided on the support member supporting the probe group of the probe head at a predetermined distance from the supporting position of the probe group, and a small window is provided on the side. Parallel light from the disposed light source and lens system is irradiated onto the small window from a direction perpendicular to the wafer surface through the semi-transparent mirror above the small window, and the light beams on the transparent plate attached to the small window are illuminated. An image of a mark such as a non-transparent cross line is formed on the wafer surface, and the image of the mark such as the cross line projected onto the wafer surface is combined with a mark for confirming the position of the wafer such as a pad on the wafer surface. The tips of the probe group and the pad group of the wafer to be inspected can be aligned by observing them with an optical microscope from above the semi-transparent mirror and adjusting the relative position of the probe head and the wafer. Characteristic probe head positioning method.
JP62141077A 1987-06-05 1987-06-05 Method of positioning probing head in inspection of semiconductor wafer Pending JPS63305525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62141077A JPS63305525A (en) 1987-06-05 1987-06-05 Method of positioning probing head in inspection of semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62141077A JPS63305525A (en) 1987-06-05 1987-06-05 Method of positioning probing head in inspection of semiconductor wafer

Publications (1)

Publication Number Publication Date
JPS63305525A true JPS63305525A (en) 1988-12-13

Family

ID=15283688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62141077A Pending JPS63305525A (en) 1987-06-05 1987-06-05 Method of positioning probing head in inspection of semiconductor wafer

Country Status (1)

Country Link
JP (1) JPS63305525A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170061135A (en) * 2014-09-30 2017-06-02 도쿄엘렉트론가부시키가이샤 Positional precision inspection method, positional precision inspection device, and position inspection unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170061135A (en) * 2014-09-30 2017-06-02 도쿄엘렉트론가부시키가이샤 Positional precision inspection method, positional precision inspection device, and position inspection unit
US20170219625A1 (en) * 2014-09-30 2017-08-03 Tokyo Electron Limited Position accuracy inspecting method, position accuracy inspecting apparatus, and position inspecting unit
CN107078072A (en) * 2014-09-30 2017-08-18 东京毅力科创株式会社 Positional precision inspection method, positional precision check device and position detection unit
US10006941B2 (en) * 2014-09-30 2018-06-26 Tokyo Electron Limited Position accuracy inspecting method, position accuracy inspecting apparatus, and position inspecting unit
TWI697970B (en) * 2014-09-30 2020-07-01 日商東京威力科創股份有限公司 Position accuracy checking method, position accuracy checking device and position checking unit

Similar Documents

Publication Publication Date Title
US6710798B1 (en) Methods and apparatus for determining the relative positions of probe tips on a printed circuit board probe card
US5657394A (en) Integrated circuit probe card inspection system
KR100272187B1 (en) Probe apparatus
US20070159194A1 (en) Probing apparatus
KR860000227B1 (en) Miniature circuit processing devices and matrix test heads for use therein
JPH03209737A (en) Probe equipment
JP3156192B2 (en) Probe method and apparatus
US5416592A (en) Probe apparatus for measuring electrical characteristics of objects
US9110131B2 (en) Method and device for contacting a row of contact areas with probe tips
WO2017142132A1 (en) Marking position correcting apparatus and method
US7355422B2 (en) Optically enhanced probe alignment
JP2737744B2 (en) Wafer probing equipment
JP2986142B2 (en) Probe method
JP2007010671A (en) Method and system for electrically inspecting test subject, and manufacturing method of contactor used in inspection
TWI787668B (en) Probe card, probing system and probing method
US6668076B2 (en) Apparatus and method for projecting an alignment image
JP2004063877A (en) Wafer-positioning correction method
JP2007183194A (en) Probing apparatus
JPS63305525A (en) Method of positioning probing head in inspection of semiconductor wafer
JP5236556B2 (en) Semiconductor inspection apparatus having alignment function and alignment method
JP2012503189A (en) Method for inspecting a plurality of electronic components having a repetitive pattern under a predetermined temperature condition
JPS60153138A (en) Wafer alignment mechanism of automatic prober
JPH10177245A (en) Reticle, semiconductor substrate and semiconductor chip
US6116493A (en) Flip-chip bonding parts, flip-chip bonding confirmation parts and a flip-chip bonding method
JP2005123293A (en) Method for inspecting probe