JPS63305117A - Melamine resin, its production and melamine resin molding material - Google Patents
Melamine resin, its production and melamine resin molding materialInfo
- Publication number
- JPS63305117A JPS63305117A JP14210287A JP14210287A JPS63305117A JP S63305117 A JPS63305117 A JP S63305117A JP 14210287 A JP14210287 A JP 14210287A JP 14210287 A JP14210287 A JP 14210287A JP S63305117 A JPS63305117 A JP S63305117A
- Authority
- JP
- Japan
- Prior art keywords
- melamine resin
- melamine
- glycidyl compound
- molding material
- modified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000877 Melamine resin Polymers 0.000 title claims abstract description 110
- 239000004640 Melamine resin Substances 0.000 title claims abstract description 88
- 239000012778 molding material Substances 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims abstract description 37
- -1 glycidyl compound Chemical class 0.000 claims abstract description 32
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000000463 material Substances 0.000 claims abstract description 12
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 claims description 3
- 239000000376 reactant Substances 0.000 claims description 3
- 150000007974 melamines Chemical class 0.000 abstract description 6
- 239000011256 inorganic filler Substances 0.000 abstract description 2
- 229910003475 inorganic filler Inorganic materials 0.000 abstract description 2
- 239000012766 organic filler Substances 0.000 abstract description 2
- 238000000465 moulding Methods 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 12
- 239000007787 solid Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 239000006082 mold release agent Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 150000008064 anhydrides Chemical class 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 238000000748 compression moulding Methods 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 238000010517 secondary reaction Methods 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical class O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- CUGZWHZWSVUSBE-UHFFFAOYSA-N 2-(oxiran-2-ylmethoxy)ethanol Chemical compound OCCOCC1CO1 CUGZWHZWSVUSBE-UHFFFAOYSA-N 0.000 description 1
- KUAUJXBLDYVELT-UHFFFAOYSA-N 2-[[2,2-dimethyl-3-(oxiran-2-ylmethoxy)propoxy]methyl]oxirane Chemical compound C1OC1COCC(C)(C)COCC1CO1 KUAUJXBLDYVELT-UHFFFAOYSA-N 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 206010010214 Compression fracture Diseases 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 239000004460 silage Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000010454 slate Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Phenolic Resins Or Amino Resins (AREA)
Abstract
Description
【発明の詳細な説明】
[技術分野1
本発明は、可撓性を改良したメラミン樹脂及びそのM遣
方法、さらにメラミン樹脂成形材料に関するものである
。DETAILED DESCRIPTION OF THE INVENTION [Technical Field 1] The present invention relates to a melamine resin with improved flexibility, a method for using the same, and a melamine resin molding material.
【背景技術J
メラミン樹脂は機械的強度や電気的特性、着色性などの
面で優れているために、従来から種々の用途に使用され
ている。しかしメラミン樹脂は可撓性が低くて靭性が劣
り、衝撃強度や耐インサートクラツク性などの面で問題
を有するものであった。このためにメラミン樹脂をゴム
で変性したり7エ/−ルで変性したりする試みがなされ
ているが、十分な効果を得るまでに至っていないのが現
状である。[Background Art J] Melamine resin has been used for a variety of purposes since it has excellent mechanical strength, electrical properties, and colorability. However, melamine resin has low flexibility and poor toughness, and has problems in terms of impact strength and insert crack resistance. For this purpose, attempts have been made to modify the melamine resin with rubber or with 7 ether, but so far no sufficient effect has been achieved.
[発明の目的]
本発明は、上記の点に鑑みて為されたものであり、可視
性を高めて衝撃強度や耐インサートクラツク性などを改
良したメラミン樹脂とその製造方法、さらにメラミン樹
脂成形材料を提供することを目的とするものである。[Object of the Invention] The present invention has been made in view of the above points, and provides a melamine resin with increased visibility and improved impact strength and insert crack resistance, a method for producing the same, and a melamine resin molding method. The purpose is to provide materials.
【発明の開示]
しかして本発明に係るメラミン樹脂は、メラミンとホル
ムアルデヒドとが反応して得られるメラミン樹脂であっ
て、グリシジル化合物で変性されていることを特徴とす
るものであり、また本発明に係るメラミン樹脂の製造方
法は、メラミンとグリシジル化合物とを反応させ、次い
でこの反応物とホルムアルデヒドとを反応させることを
特徴とするものであり、さらに本発明に係るメラミン樹
脂成形材料は、グリシツル化合物で変性したメラミン樹
脂と基材とを配合して成ることを特徴とするものである
。[Disclosure of the Invention] The melamine resin according to the present invention is a melamine resin obtained by reacting melamine and formaldehyde, and is characterized in that it is modified with a glycidyl compound. The method for producing a melamine resin according to the present invention is characterized by reacting melamine and a glycidyl compound, and then reacting this reactant with formaldehyde, and furthermore, the melamine resin molding material according to the present invention is characterized by reacting melamine with a glycidyl compound, and then reacting the reaction product with formaldehyde. It is characterized by being made by blending a melamine resin modified with and a base material.
以下本発明の詳細な説明する。グリシジル化合あり、本
発明においてグリシジル化合物とは例えましいグリシジ
ル化合物を例示すれば、エチレングリコールグリシジル
エーテル、ポリエチレングリコールジグリシジルエーテ
ル、ポリプロピレングリコールグリシノルエーテル、ネ
オペンチルグリコールジグリシジルエ−テル
ノオールグリシジルエーテル、トリメチロールプロパン
ポリグリシノルエーテル、ポリエチレングリコールジグ
リシジルエーテルなどである。The present invention will be explained in detail below. Examples of glycidyl compounds include ethylene glycol glycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol glycinole ether, neopentyl glycol diglycidyl ether, nool glycidyl ether, These include trimethylolpropane polyglycinole ether and polyethylene glycol diglycidyl ether.
本発明においてはこのグリシジル化合物によってメラミ
ン樹脂を変性するものであり、グリシジル化合物で変性
したメラミン樹脂を調製するにあたっては、まず−次反
応としてメラミンとグリシジル化合物とを反応させ、次
ぎに二次反応としてこの反応物とホルムアルデヒドとを
反応させることによっておこなうことができる。ここで
−次反応は、([)式のようにメラミンの7ミ/基にグ
リシジル化合物のエポキシ基が開環して脱水付加すH2
?
\N/
H2
■
また二次反応は、(n)式のようにメラミンの未反応の
アミノ基にホルムアルデヒドが脱水付加することによっ
て生じると考えられる。In the present invention, melamine resin is modified with this glycidyl compound, and in preparing the melamine resin modified with the glycidyl compound, melamine and the glycidyl compound are first reacted as a secondary reaction, and then as a secondary reaction. This can be carried out by reacting this reactant with formaldehyde. Here, in the next reaction, the epoxy group of the glycidyl compound opens the ring and dehydrates the 7mi/group of melamine to add H2? \N/H2 ■ Also, the secondary reaction is thought to occur due to the dehydration addition of formaldehyde to the unreacted amino groups of melamine, as shown in formula (n).
H−CHO
に
こで、−次反応は80〜100℃程度の温度で10〜1
50分間程度おこなわせるように条件を設定するのが望
ましく、また二次反応は70〜90℃程度の温度で5〜
60分間程度おこなわせるように条件を設定するのが望
ましい.また、上記反応の際の各成分の配合量は、メラ
ミンのモル数をM,グリシジル化合物のモル数をG,ホ
ルムアルデヒドのモル数をFとすると、
メラミンに対するグリシジル化合物のモル比がG/M=
0.0 1〜5.8
メラミンとグリシジル化合物のモル数の差に対するホル
ムアルデヒドのモル比が
F/I M−G l =0.5〜4.0となるようにそ
の範囲を設定するのが望ましい。In H-CHO Niko, the next reaction is 10-1 at a temperature of about 80-100℃.
It is desirable to set the conditions so that the reaction takes place for about 50 minutes, and the secondary reaction is carried out at a temperature of about 70 to 90°C for 5 to 50 minutes.
It is desirable to set conditions so that the test lasts about 60 minutes. In addition, the blending amount of each component in the above reaction is as follows: where the number of moles of melamine is M, the number of moles of glycidyl compound is G, and the number of moles of formaldehyde is F, the molar ratio of glycidyl compound to melamine is G/M=
0.0 1 to 5.8 It is desirable to set the range so that the molar ratio of formaldehyde to the difference in the number of moles of melamine and glycidyl compound is F/I M - G l =0.5 to 4.0. .
メラミンに対するグリシジル化合物のモル比が0。The molar ratio of glycidyl compound to melamine is 0.
01未満であるとグリシジル化合物による変性が不十分
で、メラミン樹脂の可撓性を高めて強靭性を向上させる
効果を十分に得ることができず、またこのモル比が5.
8を超えると反応系でのグリシジル化合物の量が多くな
り過ぎてアミンの作用でゲル化し易くなり、同様にメラ
ミン樹脂の可視性を高めて強靭性を向上させる効果を十
分に得ることができない。一般的にはメラミン樹脂のモ
ル数Mはグリシジル化合物のモル数Gよりも大きく設定
される。さらにメラミンとグリシツル化合物のモル数の
差に対するホルムアルデヒドのモル比が0.5未満であ
るとホルムアルデヒドの配合量が不十分でメラミン樹脂
を十分に硬化させることができず、またこのモル比が4
.0を超えるとホルムアルデヒドが過多となってメラミ
ン樹脂の架橋密度が高(なり過ぎ、メラミン樹脂の可撓
性を高めて強靭性を向上させる効果を十分に得ることが
できない。If the molar ratio is less than 5.01, the modification by the glycidyl compound will be insufficient, and the effect of increasing the flexibility and toughness of the melamine resin will not be sufficiently obtained.
If it exceeds 8, the amount of the glycidyl compound in the reaction system becomes too large and tends to gel due to the action of the amine, and similarly, the effect of increasing the visibility and toughness of the melamine resin cannot be sufficiently obtained. Generally, the number of moles M of the melamine resin is set larger than the number G of moles of the glycidyl compound. Furthermore, if the molar ratio of formaldehyde to the difference in the number of moles between melamine and the glycitol compound is less than 0.5, the amount of formaldehyde blended will be insufficient and the melamine resin will not be able to be sufficiently cured, and if this molar ratio is 4.
.. If it exceeds 0, there will be too much formaldehyde and the crosslinking density of the melamine resin will become too high (too much), making it impossible to sufficiently obtain the effect of increasing the flexibility and toughness of the melamine resin.
このように反応させることによって得られるものはシラ
ツブ状であり、このままグリシジル化合物変性メラミン
樹脂シラツブとして用いることができる他に、このシラ
ツブを脱水することによってグリシツル化合物変性固形
メラミン樹脂として使用することもできる。脱水に際し
ては樹脂をさらに高分子化させる反応が進行させるよう
にするのがよく、このために脱水は加熱を伴う工法であ
ることが好ましいものであり、従つで脱水の工法として
は真空加熱脱水法やスプレードライヤー法、WEF法(
薄膜蒸発法)など加熱操作を含む脱水法が良好である。The product obtained by this reaction is in the form of a melamine resin, and in addition to being able to be used as is as a glycidyl compound-modified melamine resin slate, this slag can also be used as a glycidyl compound-modified solid melamine resin by dehydrating it. . During dehydration, it is best to allow the reaction to further polymerize the resin to proceed, and for this reason, it is preferable that dehydration be performed using a method that involves heating. method, spray dryer method, WEF method (
Dehydration methods that include heating operations, such as thin film evaporation (thin film evaporation), are preferred.
そして、Ht層板や化粧板の製造やその他塗料などに用
いる場合には上記メラミン樹脂をシラツブ状のまま用い
ることができるものであり、またこのシラツブを基材と
混練して乾燥させたのちにこれを離型剤や硬化剤など他
の配合成分と混合して成形材料を調製し、この成形材料
を圧縮成形など1こ供して成形品を作成することもでき
る。また、脱水乾燥した上記メラミン樹脂を粉砕して基
材やその他離型剤や硬化剤などと混合して成形材料を調
製し、同様にして圧縮成形などに供して成形品を作成す
ることもでさる。さらに脱水乾燥した上記メラミン樹脂
は基材を配合することなく純樹脂の成形品に成形するこ
とも可能であり、このときには圧縮成形の他にトランス
ファー成形、インノエクシ層ン成形など成形法を問うこ
となく成形をおこなうことができる。上記した基材とし
ては、パルプ、木粉、紙、糸くずなどの有機充填剤や、
アスベスト、雲母、プラス繊維などの無機充填剤を用い
ることができる。When the melamine resin is used in the production of Ht laminates, decorative laminates, or other paints, it is possible to use the above melamine resin in the form of a silage, or after kneading this silica with a base material and drying it. It is also possible to prepare a molding material by mixing this with other ingredients such as a mold release agent and a hardening agent, and then subject this molding material to compression molding or the like to produce a molded article. It is also possible to prepare a molding material by crushing the dehydrated and dried melamine resin and mixing it with a base material, other mold release agents, curing agents, etc., and then subjecting it to compression molding in the same way to create molded products. Monkey. Furthermore, the dehydrated and dried melamine resin can be molded into a pure resin molded product without adding a base material, and in this case, in addition to compression molding, there is no need to worry about the molding method such as transfer molding or innoexy layer molding. Can be molded. The above-mentioned base materials include organic fillers such as pulp, wood flour, paper, and thread waste;
Inorganic fillers such as asbestos, mica, and plus fibers can be used.
次ぎに本発明を実施例によって具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.
犬1」[L
メラミン1500g1ポリエチレングリコールノグリシ
ノルエーテル750g、水1430.をそれぞれ51の
三つロフラスコに仕込み、昇温しで95℃の温度で45
分間反応させた0次ぎにこれに40%ホルマリンを19
35g注入したのちに昇温しで85℃で35分間反応さ
せることによって、グリシジル化合物で変性したメラミ
ン樹脂シラツブを得た。この配合においてG/M=0.
12であり、F/(M−G)=2.4である。Dog 1" [L Melamine 1500g1 Polyethylene glycol noglycinol ether 750g, Water 1430g. were charged into 51 three-bottle flasks, and heated to 95°C.
After reacting for 1 minute, add 40% formalin to this for 19 minutes.
After injecting 35 g, the temperature was raised and the reaction was carried out at 85° C. for 35 minutes to obtain a melamine resin sill modified with a glycidyl compound. In this formulation, G/M=0.
12, and F/(MG)=2.4.
このメラミン樹脂シラツブを100重量部採り、20重
量部のパルプにニーグーで浸透させて粉砕し、これをさ
らに110℃の温風乾燥機で1時間乾燥するによって乾
燥品を1llitiシた。これにさらに離型剤としてス
テアリン酸亜鉛を0.6重量部、硬化剤として無水7タ
ル酸を0.2重量部加九、ポットミルで混合粉砕するこ
とによってメラミン樹脂成形材料を得た。100 parts by weight of this melamine resin sill was taken, permeated into 20 parts by weight of pulp with a Nigu, crushed, and further dried in a hot air dryer at 110° C. for 1 hour to obtain a dried product of 1 liter. This was further mixed with 0.6 parts by weight of zinc stearate as a mold release agent and 0.2 parts by weight of 7-talic anhydride as a hardening agent and ground in a pot mill to obtain a melamine resin molding material.
犬11」−
各成分の仕込み量をメラミン1500.、ポリエチレン
グリコールジグリシルエーテル600g。Dog 11'' - The amount of each ingredient was melamine 1500. , 600 g of polyethylene glycol diglycyl ether.
40%ホルマリン1950gに設定すようにした他は、
実施例1と同様にしてメラミン樹脂シラツブを調製し、
さらに実施例1と同様にしてメラミンU(層成形材料を
得た。この配合においてG/M=0.1であり、F/(
M−G)=2.0である。Other than setting it to 1950g of 40% formalin,
Melamine resin sills were prepared in the same manner as in Example 1,
Furthermore, a melamine U (layer molding material) was obtained in the same manner as in Example 1. In this formulation, G/M = 0.1, F/(
M−G)=2.0.
上記のようにして得た実施例1及び実施例2のパウダー
状のメラミン樹脂成形材料をJIS K6911に準
拠して、37tプレス成形機で金型温度165℃、2分
間の条件で成形し、テストピースを作成した。このテス
トピースについてJIS K 6911に準拠して
、シャルピー衝撃強度及びデュポン衝撃強度を測定した
。結果を第1表に示す、尚、比較のために、変性してい
ないメラミン樹脂として松下電工株式会社製のCP−9
012を用い、あとは実施例1と同様にして1it9I
tたメラミン樹IIIt成形材料(比較例1)について
も同様にシャルピー衝撃強度及びデろボン衝撃強度を第
1表の結果、グリシジル化合物変性メラミン樹脂を用い
た実施例1,2のものは、グリシジル化合物で変性しな
いメラミン樹脂の比較例1のものよりも衝撃強度が向上
しており、メラミン樹脂をグリシツル化合物で変性する
ことによって、成形品の可撓性を高める効果を得られる
ことが確認される。The powdered melamine resin molding materials of Examples 1 and 2 obtained as described above were molded in accordance with JIS K6911 using a 37t press molding machine at a mold temperature of 165°C for 2 minutes, and then tested. Created a piece. The Charpy impact strength and DuPont impact strength of this test piece were measured in accordance with JIS K 6911. The results are shown in Table 1. For comparison, CP-9 manufactured by Matsushita Electric Works Co., Ltd. was used as an unmodified melamine resin.
012, and the rest is 1it9I in the same manner as in Example 1.
Similarly, the results of Charpy impact strength and Derovon impact strength of the melamine resin III molding material (Comparative Example 1) shown in Table 1 show that Examples 1 and 2 using glycidyl compound modified melamine resins The impact strength is improved compared to that of Comparative Example 1, which is a melamine resin that is not modified with a compound, and it is confirmed that modifying the melamine resin with a glycytyl compound can have the effect of increasing the flexibility of molded products. .
犬 3−6
実施例1で得たグリシジル化合物変性メラミン樹脂シラ
ツブを真空ニーグーに投入し、60−mHgに減圧して
200℃の蒸気で加熱することによって真空加熱脱水し
、グリシ・ツル化合物で変性した固形メラミン樹脂を得
た。Dog 3-6 The glycidyl compound-modified melamine resin stubble obtained in Example 1 was placed in a vacuum Neegoo, dehydrated by vacuum heating by reducing the pressure to 60-mHg and heating with 200°C steam, and modified with a glycidyl compound. A solid melamine resin was obtained.
そしてこの固形メラミン樹脂を、変性されていない従来
のメラミン樹脂(前出のCP−9012)を配合した成
形材料に混合した。成形材料はメラミン樹脂メラミン樹
脂(CP−9012)を210Oat部に対してパルプ
900重量部、離型剤としてステアリン酸亜鉛20重量
部、硬化剤として無水7タル酸0.4重量部を加えてボ
ットミルに投入し、3時間回転させてパウダー状に調製
されるものであり、この成形材料のメラミン樹脂(CP
−9012)とパルプとの合計1100重量部のうち、
上記グリシジル化合物変性固形メラミン樹脂が1重量部
(実施例3)、20重量部(実施例4)、50重量部(
実施例5)それぞれ置き換えられるようにこのグリシジ
ル化合物変性固形メラミン樹脂の混合量を設定した。さ
らにグリシツル化合物変性固形メラミン樹脂で100重
ji部の総てを1iftk換えられるようにしてこの樹
脂100%(実施例6)のものも調製し、また比較のた
めにグリシツル化合物変性固形メラミン樹脂を配合しな
いもの(比較例2)も11!Iした。上記のようにして
得た実施例3乃至実施例6及び比較例2のパウダー状の
メラミン樹脂成形材料を用いてJIS K 691
1に準拠して37tプレス成形機で金型温度165℃、
2分間の条件で成形し、テストピースを作成した。この
テストピースについてJISK 6911に準拠して
デュポン衝撃強度、曲げ弾性率、クラック性を測定した
。クラック性の試験は、金属材をインサートした状態で
金型温度165℃、2分間の条件で成形してテストピー
スを作成し、このテストピースを110℃の乾燥機で1
時間加熱したのち取り出して空冷する処理を繰り返しお
こない、クラックが発生するまでの処理のサイクル数に
応じて評価し、1サイクルでクラックが発生したものを
「×」、5サイクルまでにクラックが発生したものを「
Δ」、5サイクル経過するもクラックが発生しないもの
を「○」で示した。上記第1表にみられたように、本発
明に係るグリシツル化合物変性メラミン樹脂の最も大き
な特徴は上記のように成形品の可撓性を高めて耐衝撃性
を向上できることであるが、このことは第2表の結果で
も裏付けられる。すなわち変性しない従来のメラミン樹
脂のみを用いる比較例2のものに対して、実施例3,4
.5のように、この変性しない従来のメラミン樹脂にグ
リシツル化合物で変性したメラミン樹脂を配合すること
によって、従来のメラミン樹脂成形品の可撓性を高めて
耐衝撃性やインサートクラック性を改良することができ
ることになるのである。This solid melamine resin was then mixed into a molding material containing an unmodified conventional melamine resin (CP-9012 mentioned above). The molding material is 210 Oat parts of melamine resin melamine resin (CP-9012), 900 parts by weight of pulp, 20 parts by weight of zinc stearate as a mold release agent, and 0.4 parts by weight of 7-talic anhydride as a hardening agent, and then processed in a bot mill. The molding material is melamine resin (CP).
-9012) and pulp, of a total of 1100 parts by weight,
The above-mentioned glycidyl compound-modified solid melamine resin contains 1 part by weight (Example 3), 20 parts by weight (Example 4), and 50 parts by weight (
Example 5) The mixing amount of this glycidyl compound-modified solid melamine resin was set so that it could be replaced with each other. Furthermore, a product made of 100% of this resin (Example 6) was prepared by replacing all 100 parts by weight with a solid melamine resin modified with a glycicul compound (Example 6), and for comparison, a solid melamine resin modified with a glycicul compound was also blended. The one that does not (comparative example 2) is also 11! I did it. JIS K 691 using the powdered melamine resin molding materials of Examples 3 to 6 and Comparative Example 2 obtained as described above.
1, the mold temperature is 165℃ using a 37t press molding machine.
A test piece was created by molding for 2 minutes. The DuPont impact strength, flexural modulus, and crack resistance of this test piece were measured in accordance with JISK 6911. In the crack resistance test, a test piece is created by molding the metal material inserted in the mold at a mold temperature of 165°C for 2 minutes, and then the test piece is placed in a dryer at 110°C for 1 hour.
The process of heating for a period of time, then taking it out and cooling it in the air was repeated, and the evaluation was made according to the number of processing cycles until cracks appeared, and those that cracked in one cycle were marked "x", and those that cracked by the fifth cycle were evaluated. Things"
Δ", and those in which no cracks occurred after 5 cycles were marked with "○". As seen in Table 1 above, the most significant feature of the glycityur compound-modified melamine resin of the present invention is that it can increase the flexibility and impact resistance of molded products as described above. This is also supported by the results in Table 2. That is, compared to Comparative Example 2 using only conventional unmodified melamine resin, Examples 3 and 4
.. 5, by blending a melamine resin modified with a glycytyl compound with this unmodified conventional melamine resin, the flexibility of conventional melamine resin molded products can be increased and the impact resistance and insert crack resistance can be improved. This means that it will be possible to do this.
実」1例ニし
上記「実施例3〜6」と同様にして111g1シた固形
メラミンuI脂100重量部に、離型剤としてステアリ
ン酸亜鉛0.6重量部、硬化剤として無水7タル酸を0
.2重量部添加し、これをボッ)ミルで混合して粉砕す
ることによって、パウダー状のメラミン樹脂成形材料を
得た。To 100 parts by weight of solid melamine uI fat, prepared in the same manner as in Examples 3 to 6, was added 0.6 parts by weight of zinc stearate as a mold release agent, and 7 talic anhydride as a hardening agent. 0
.. A powdery melamine resin molding material was obtained by adding 2 parts by weight, mixing and pulverizing this in a bottle mill.
犬11」一
実施例2で得たメラミン樹脂シラツブを上記「実施例3
〜6」と同様にしで乾燥することによって固形メラミン
樹脂をIW製し、この固形メラミン樹脂を用いて以下「
実施例7」と同様にしてパウダー状のメラミン樹脂成形
材料を得た。The melamine resin slag obtained in Example 2 of "Dog 11" was added to the above "Example 3".
A solid melamine resin is made from IW by drying it in the same manner as in ``6'', and this solid melamine resin is used in the following ``
A powdered melamine resin molding material was obtained in the same manner as in Example 7.
上記実施例7.8で得たメラミン樹脂成形材料を用い、
JIS K 6911に準拠して、37tブレス成
形機を用いて金型温度165℃、2分間の条件でテスト
ピースを作成すると共に、曲げ強さ、曲げ弾性率、シャ
ルピー衝撃強度、デュポン衝撃強度、外観光沢、クラッ
ク性を測定した。また比較のために、メラミン樹脂とし
て前出のCP−9012を用いてll製した比較例1の
メラミン樹脂成形材料についても同様に測定をおこなっ
た。Using the melamine resin molding material obtained in Example 7.8 above,
In accordance with JIS K 6911, a test piece was made using a 37t press molding machine at a mold temperature of 165°C for 2 minutes, and the bending strength, flexural modulus, Charpy impact strength, DuPont impact strength, and appearance were measured. Gloss and crack resistance were measured. For comparison, the same measurements were also carried out on the melamine resin molding material of Comparative Example 1, which was manufactured using the above-mentioned CP-9012 as the melamine resin.
以上の結果を第3表に示す。The above results are shown in Table 3.
メラミン樹脂はそれ単独では脆いためにパルプなどの基
材と共に混合しないと成形することが一般に困難である
が、本発明に係るグリシジル化合物で変性したメラミン
樹脂は可撓性を有するために、実施例7.8にみちれる
ようにパルプなどの基材と混合することなく樹脂単独で
成形をおこなうことができることも大きな特徴である。Since melamine resin alone is brittle, it is generally difficult to mold it unless mixed with a base material such as pulp. However, since the melamine resin modified with the glycidyl compound according to the present invention has flexibility, As shown in 7.8, another major feature is that the resin can be molded alone without being mixed with a base material such as pulp.
その成形物は第3表にみられるように高強度、高弾性、
耐衝撃性、外観性、耐クラック性などを備え、食器など
の成形品に最適であり、また基材を多量に含まないため
に成形方法として圧縮成形(直圧成形)やトランス77
−成形の他に射出成形など成形方法を特に選ぶこともな
くなることになる。As shown in Table 3, the molded product has high strength, high elasticity,
It has impact resistance, good appearance, and crack resistance, making it ideal for molded products such as tableware, and since it does not contain a large amount of base material, compression molding (direct pressure molding) and Transformer 77 can be used as molding methods.
-In addition to molding, there is no need to choose a molding method such as injection molding.
また、実施例?及び実施例8で得たメラミン樹脂成形材
料をJIS K 6911に準拠して、プレス10
0t、金型温度165℃、2分間の条件で射出成形する
ことによってテストピースを作成し、圧縮破壊試験をお
こなった。実施例7.8についてそれぞれテストピース
を4個(Nol〜N。Also, an example? And the melamine resin molding material obtained in Example 8 was press 10 in accordance with JIS K 6911.
A test piece was prepared by injection molding under the conditions of 0t, mold temperature of 165° C., and 2 minutes, and a compression fracture test was performed. 4 test pieces each for Examples 7 and 8 (Nol to N.
4)作成し、各々において試験をおこなった。また比較
のために変性されでいない従来のメラミン樹Wt(前出
のCP−9012)を用いて実施例7と同様にしてメラ
ミン樹脂成形材料を調製しく比較例3)、このものにつ
いても同様に試験をおこなった。結果を第4表に示す。4) Created and tested each. In addition, for comparison, a melamine resin molding material was prepared in the same manner as in Example 7 using a conventional unmodified melamine tree Wt (CP-9012) (Comparative Example 3), and the same procedure was applied to this material. A test was conducted. The results are shown in Table 4.
本発明に係るグリシジル化合物で変性したメラミン樹脂
は第4表にみられるように、圧縮力に対して破壊されな
いことも大きな特徴である。熱硬化性樹脂は一般に圧縮
強度が小さくて破壊が発生し易いが、本発明に係るグリ
シジル化合物で変性したメラミン樹脂は圧縮力に対して
自らが変形することによって圧縮エネルギーを吸収し、
破壊を防ぐことができると考えられる。As shown in Table 4, a major feature of the melamine resin modified with the glycidyl compound according to the present invention is that it is not destroyed by compressive force. Thermosetting resins generally have low compressive strength and are easily broken, but the melamine resin modified with the glycidyl compound according to the present invention absorbs compressive energy by deforming itself in response to compressive force.
It is thought that destruction can be prevented.
犬MJILL’
「実施例3〜6」で調製した固形メラミン樹@2100
重量部に対してパルプ900重量部、離型剤としてステ
アリン酸亜鉛20重量部、硬化剤として無水7タル酸0
.4重量部を加えてポットミルに投入し、3時間回@さ
せてパウダー状のメラミン樹脂成形材料を得た。Dog MJILL' Solid melamine tree prepared in "Examples 3 to 6" @2100
900 parts by weight of pulp, 20 parts by weight of zinc stearate as a mold release agent, 0 parts by weight of 7-talic anhydride as a hardening agent.
.. 4 parts by weight was added and put into a pot mill, and the mixture was rotated for 3 hours to obtain a powdery melamine resin molding material.
このメラミン樹脂成形材料を37tのプレス成形機で1
65℃、2分間の条件で成形して、直径が50m+eで
厚みが0.8 arm、 1.6 arm、 3 、
2 mmの円盤を作成した。この各円盤についてデュポ
ン衝撃強度を測定した。また比較のために比較例1の成
形材料についても同様な円盤を作成してデュポン衝撃強
度を測定した。結果を第5表に示す。This melamine resin molding material is molded into 1 piece using a 37t press molding machine.
Molded at 65℃ for 2 minutes, diameter is 50m+e, thickness is 0.8 arm, 1.6 arm, 3.
A 2 mm disk was created. The DuPont impact strength of each disc was measured. For comparison, similar disks were prepared for the molding material of Comparative Example 1, and the DuPont impact strength was measured. The results are shown in Table 5.
第5表の結果、グリシジル化合物で変性したメラミン樹
脂を用いた実施例9のものは、変性しない従来のメラミ
ン樹脂を用いた比較例1のものに対して衝撃強度が2倍
以上に向上していることが確認される。従って肉厚を従
来のものの172にしても同レベル以上の衝撃強度を確
保することができ、薄肉の食器などを成形することが可
能になる。As shown in Table 5, the impact strength of Example 9 using a melamine resin modified with a glycidyl compound was more than double that of Comparative Example 1 using an unmodified conventional melamine resin. It is confirmed that there is. Therefore, even if the wall thickness is reduced to 172mm compared to the conventional one, it is possible to secure the same or higher impact strength, and it becomes possible to mold thin-walled tableware and the like.
W二虹
「実施例3〜6]で調製した固形メラミン樹脂2700
重量部に対してパルプ300重量部、離型剤としてステ
アリン酸亜鉛20重量部、硬化剤として無水7タル酸0
.4重量部を加えてボットミルに投入し、3時間回転さ
せてパウダー状のメラミン樹脂成形材料を得た。Solid melamine resin 2700 prepared in W Nihong “Examples 3 to 6”
300 parts by weight of pulp, 20 parts by weight of zinc stearate as a mold release agent, 0 parts by weight of 7-talic anhydride as a hardening agent.
.. 4 parts by weight was added and put into a bot mill and rotated for 3 hours to obtain a powdery melamine resin molding material.
このメラミン樹脂成形材料をJIS K 6911
に準拠して、射出成形機で成形してテストピースを作成
すると共にシャルピー衝撃強度と圧縮強度を測定した。This melamine resin molding material conforms to JIS K 6911.
A test piece was prepared by molding with an injection molding machine in accordance with the above, and its Charpy impact strength and compressive strength were measured.
!Jた比較のために熱可塑性樹脂であるPP5(ポリフ
ェニレンサルファイド)を用いて同様にテストピースを
作成すると共に測定をおこなった(比較例4)、結果を
tA6表に示す。! For comparison, a test piece was similarly prepared using thermoplastic resin PP5 (polyphenylene sulfide) and measurements were conducted (Comparative Example 4). The results are shown in Table tA6.
第6表にみられるように、グリシツル化合物変性メラミ
ン樹脂を用いた実施例10のものは、エンノニアリング
プラスチックとして知られるPPSのような熱可塑性樹
脂の比較例4と同様な衝撃強度や圧縮強度を有しており
、例えばキャスター等の構造部品など従来では熱硬化性
樹脂では無理であった熱可塑性樹脂分野に用途を広げる
ことが可能である。As shown in Table 6, Example 10, which uses a glycityur compound-modified melamine resin, has the same impact strength and compressive strength as Comparative Example 4, which is a thermoplastic resin such as PPS known as ennonearing plastic. Therefore, it is possible to expand the application to the field of thermoplastic resins, which was previously impossible to use with thermosetting resins, such as structural parts such as casters.
〔発明の効果J
上述のように本発明にありでは、メラミンtM1!′I
tをグリシジル化合物で変性することによって、メラミ
ン樹脂の可撓性を高めることができ、耐衝撃性や耐クラ
ツク性や寸法安定性などを向上させることができるもの
である。[Effect of the Invention J As described above, in the present invention, melamine tM1! 'I
By modifying t with a glycidyl compound, the flexibility of the melamine resin can be increased, and the impact resistance, crack resistance, dimensional stability, etc. can be improved.
Claims (3)
るメラミン樹脂であって、グリシジル化合物で変性され
ていることを特徴とするメラミン樹脂。(1) A melamine resin obtained by reacting melamine and formaldehyde, which is characterized by being modified with a glycidyl compound.
でこの反応物とホルムアルデヒドとを反応させることを
特徴とするメラミン樹脂の製造方法。(2) A method for producing a melamine resin, which comprises reacting melamine and a glycidyl compound, and then reacting the reactant with formaldehyde.
とを配合して成ることを特徴とするメラミン樹脂成形材
料。(3) A melamine resin molding material comprising a base material and a melamine resin modified with a glycidyl compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14210287A JPS63305117A (en) | 1987-06-05 | 1987-06-05 | Melamine resin, its production and melamine resin molding material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14210287A JPS63305117A (en) | 1987-06-05 | 1987-06-05 | Melamine resin, its production and melamine resin molding material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63305117A true JPS63305117A (en) | 1988-12-13 |
Family
ID=15307476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14210287A Pending JPS63305117A (en) | 1987-06-05 | 1987-06-05 | Melamine resin, its production and melamine resin molding material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63305117A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03163156A (en) * | 1989-06-26 | 1991-07-15 | Matsushita Electric Works Ltd | Amino resin composition |
JPH069963U (en) * | 1992-07-15 | 1994-02-08 | 株式会社浅野ベークライト工業所 | Printing material |
WO2012043245A1 (en) * | 2010-09-29 | 2012-04-05 | 日本カーバイド工業株式会社 | Melamine epoxy resin monomer and resin composition |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58122956A (en) * | 1982-01-15 | 1983-07-21 | Matsushita Electric Works Ltd | Production of urea resin molding material |
JPS59221320A (en) * | 1983-06-01 | 1984-12-12 | Matsushita Electric Works Ltd | Preparation of epoxy modified melamine resin |
-
1987
- 1987-06-05 JP JP14210287A patent/JPS63305117A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58122956A (en) * | 1982-01-15 | 1983-07-21 | Matsushita Electric Works Ltd | Production of urea resin molding material |
JPS59221320A (en) * | 1983-06-01 | 1984-12-12 | Matsushita Electric Works Ltd | Preparation of epoxy modified melamine resin |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03163156A (en) * | 1989-06-26 | 1991-07-15 | Matsushita Electric Works Ltd | Amino resin composition |
JPH069963U (en) * | 1992-07-15 | 1994-02-08 | 株式会社浅野ベークライト工業所 | Printing material |
WO2012043245A1 (en) * | 2010-09-29 | 2012-04-05 | 日本カーバイド工業株式会社 | Melamine epoxy resin monomer and resin composition |
JPWO2012043245A1 (en) * | 2010-09-29 | 2014-02-06 | 日本カーバイド工業株式会社 | Melamine epoxy resin monomer and resin composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3518326A (en) | Thermosetting resins derived from n - 3 - oxohydrocarbon - substituted acrylamides | |
US4320036A (en) | Ligno-novolak resin molding compositions | |
JPS63305117A (en) | Melamine resin, its production and melamine resin molding material | |
US3637548A (en) | Melamine molding composition | |
US2826559A (en) | Cured resinous compositions of phenol, melamine, and formaldehyde and process of preparing same | |
JP3152421B2 (en) | Method for producing lignocellulose-phenolic resin and lignocellulose-phenolic resin molded product | |
JPH01301751A (en) | Thermosetting polyimide resin composition | |
US3044973A (en) | Molding composition comprising melamine formaldehyde resin and monomethylol melamine, and cured product thereof | |
US3770705A (en) | Thermosetting resins prepared from dimaleimides and isocyanuric acid or derivative thereof | |
US2485187A (en) | Condensation products of methylol aliphatic diureas and methylol aminotriazines | |
US2343497A (en) | Urea-formaldehyde composition | |
US2665260A (en) | Preparation of infusible resins of superior toughness and flexibility from a ketodiguanamine and formaldehyde | |
JP3406006B2 (en) | Melamine resin molding material | |
JP2923303B2 (en) | Melamine resin composition | |
JPH03195716A (en) | Production of melamine resin | |
JPH0450254A (en) | Melamine resin composition and molding material | |
JP3598789B2 (en) | Method for producing amino resin molding material | |
JPH04356556A (en) | Melamine resin molding material | |
JPH05230334A (en) | Amino resin molding material | |
JPS5947253A (en) | Melamine resin molding material | |
JPH047315A (en) | Preparation of melamine resin and molding material prepared from the resin | |
JPS6040152A (en) | Amino resin molding material | |
JPH0480941B2 (en) | ||
JPS6322213B2 (en) | ||
JPH047319A (en) | Melamine resin molding material |