JPS6330503B2 - - Google Patents

Info

Publication number
JPS6330503B2
JPS6330503B2 JP17593383A JP17593383A JPS6330503B2 JP S6330503 B2 JPS6330503 B2 JP S6330503B2 JP 17593383 A JP17593383 A JP 17593383A JP 17593383 A JP17593383 A JP 17593383A JP S6330503 B2 JPS6330503 B2 JP S6330503B2
Authority
JP
Japan
Prior art keywords
cathode
discharge
anode
propellant
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17593383A
Other languages
Japanese (ja)
Other versions
JPS6067789A (en
Inventor
Kyoichi Kuriki
Shinji Morimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP17593383A priority Critical patent/JPS6067789A/en
Publication of JPS6067789A publication Critical patent/JPS6067789A/en
Publication of JPS6330503B2 publication Critical patent/JPS6330503B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0006Details applicable to different types of plasma thrusters
    • F03H1/0012Means for supplying the propellant

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Plasma Technology (AREA)
  • Spark Plugs (AREA)

Description

【発明の詳細な説明】 本発明は、ロケツトの推進、実用衛星(通信、
放送、気象、資源探査等)の姿勢制御や軌道遷
移、大規模宇宙構造物の建造や運搬等を行うため
のプラズマエンジンに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is applicable to rocket propulsion, practical satellites (communications,
This technology relates to plasma engines for attitude control and orbit transitions (broadcasting, weather, resource exploration, etc.), and for the construction and transportation of large-scale space structures.

プラズマエンジンは、従来の化学ロケツト等の
推進装置と比較して、高速噴射が可能なため宇宙
空間における推進移動のような長距離の進行に適
した推進装置として注目されつつある。又、近年
は大規模宇宙構造物の建設や実用衛星の大型化に
伴つて推進装置の大出力化が要求されている。
Plasma engines are attracting attention as a propulsion device suitable for long-distance propulsion such as propulsion in outer space because they are capable of high-speed injection compared to conventional propulsion devices such as chemical rockets. In addition, in recent years, with the construction of large-scale space structures and the increase in the size of practical satellites, there has been a demand for higher output power from propulsion devices.

第1図は中実陰極を装備した従来考えられてい
るプラズマエンジンの一例を示すもので、中実陰
極aを適宜の間隔で包囲するごとく陽極bを設
け、前記陰極aと陽極bの間を絶縁物cで絶縁す
ると共に、前記陰極aと陽極bの間から気化した
推進剤d(例えばAr、Ne、H2等)を供給するよ
うにしている。図中eは放電電源、fは放電電流
を示す。しかしこの装置においては、放電電流f
の密度が陰極aの先端部a′と付け根部a″において
高くなり、その部分のプラズマが強く加速される
ために、その部分にホツトスポツトができて熱電
子放出が起こり、第2図に示すごとく電極aの先
端部a′と付け根部a″が著しく損耗することが知ら
れている。この現象は大出力を得ようとして放電
電流を大きくした場合に更に顕著になる。又、こ
のように損耗を受けた部分は凹凸形状を有してい
るために、放電電流fが集中することになつて
増々損耗が拡大される問題があると共に、放電に
乱れが生じてプラズマエンジン自体の性能を悪化
させてしまう問題がある。又先端部a′のみの損耗
であれば、陰極aを損耗に応じて送り出すように
することにより、長期間使用可能であるが、付け
根部a″が損耗したのでは前記したように放電に乱
れを生じるばかりでなく、陰極aが付け根部a″か
ら切れて脱落しプラズマエンジン自体が作動され
なくなる重大な危険があり、長期間使用が不可能
になる問題がある。
Figure 1 shows an example of a conventional plasma engine equipped with a solid cathode, in which an anode b is provided to surround a solid cathode a at appropriate intervals, and a space between the cathode a and the anode b is shown. In addition to insulating with an insulator c, a vaporized propellant d (for example, Ar, Ne, H2, etc.) is supplied from between the cathode a and anode b. In the figure, e indicates a discharge power source, and f indicates a discharge current. However, in this device, the discharge current f
The density of the cathode a becomes high at the tip a' and the base a'', and the plasma in those areas is strongly accelerated, creating hot spots and thermionic emission occurs, as shown in Figure 2. It is known that the tip a' and the base a'' of the electrode a are subject to significant wear. This phenomenon becomes even more noticeable when the discharge current is increased in an attempt to obtain a large output. In addition, since the parts that have suffered damage in this way have an uneven shape, there is a problem that the discharge current f is concentrated, further increasing the wear and tear, and the discharge is disrupted, causing damage to the plasma engine. There is a problem that the performance itself deteriorates. If only the tip a' is worn out, it is possible to use the cathode a for a long period of time by sending out the cathode according to the wear, but if the base part a'' is worn out, the discharge will be disturbed as described above. In addition to this, there is a serious risk that the cathode a will break off from the base a'' and fall off, making the plasma engine itself inoperable, making it impossible to use it for a long period of time.

また、このため、第3図に示すごとく、中空陰
極を装備したプラズマエンジンが考えられてい
る。すなわち、中空内部を通して推進剤dを送給
するようにした中空陰極gを陽極bの内側中央部
に絶縁物cを介して設け、且つ前記陰極gの外周
及び先端部g′を絶縁物cで包囲するようにしてい
る。この装置において、放電電流が小さいときに
は、第3図に示すごとく放電電流fが陰極g内部
に広がるために損耗も少ないと共に、陰極g内面
温度の上昇も少なく良好に作動し得る。しかし、
プラズマエンジンの出力を上げるべく放電電流を
大きくした場合には、第4図に示すごとく、放電
電流fが陰極gの内側先端部g′に集中して密度が
高くなるために、この部分にホツトスポツトがで
きて熱電子放出が起こり、損耗が著しくなると共
に、放電に乱れが生じることになり、大きな放電
電流の場合には寿命が短かく長期間使用が実際上
不可能である等の問題点を有していた。
Furthermore, for this reason, a plasma engine equipped with a hollow cathode as shown in FIG. 3 has been considered. That is, a hollow cathode g, through which propellant d is fed through the hollow interior, is provided at the center inside the anode b via an insulator c, and the outer periphery and tip g' of the cathode g are covered with an insulator c. I'm trying to surround it. In this device, when the discharge current is small, the discharge current f spreads inside the cathode g as shown in FIG. 3, so that there is little wear and tear, and the internal temperature of the cathode g does not rise much, so it can operate well. but,
When the discharge current is increased in order to increase the output of the plasma engine, the discharge current f concentrates on the inner tip g' of the cathode g and becomes denser, as shown in Fig. 4, resulting in hot spots in this area. This causes thermionic emission, resulting in significant wear and tear and disturbances in the discharge.In the case of a large discharge current, the lifespan is short and long-term use is practically impossible. had.

そこで本願出願人は上記問題点を解消するため
に、特願昭55−189265号(特開昭57−110781号)
に開示したプラズマエンジンを案出した。
Therefore, in order to solve the above-mentioned problems, the applicant of the present application filed Japanese Patent Application No. 55-189265 (Japanese Unexamined Patent Publication No. 57-110781).
devised the plasma engine disclosed in .

一方、特願昭55−189265号及び上記第1図並に
第3図に示すプラズマエンジンの電源部構成は、
第5図に示され、該電源部構成hは主放電電源回
路i、トリガー回路j、逆流防止素子kより成つ
ている。主放電電源回路iとしては、準定常作動
の際はインダクターとキヤパシタより構成された
パルス整形回路、定常動作の際は定電流、定電圧
回路が用いられ、逆流防止素子kとしては一般的
にはダイオードが用いられ、又SCRが用いられ
ることもある。
On the other hand, the configuration of the power supply section of the plasma engine shown in Japanese Patent Application No. 55-189265 and the above-mentioned FIGS. 1 and 3 is as follows.
As shown in FIG. 5, the power supply section h consists of a main discharge power supply circuit i, a trigger circuit j, and a backflow prevention element k. As the main discharge power supply circuit i, a pulse shaping circuit composed of an inductor and a capacitor is used during quasi-steady operation, and a constant current and constant voltage circuit is used during steady operation, and as the backflow prevention element k, generally Diodes are used and sometimes SCRs are used.

而して、プラズマエンジンは、低電圧大電流作
動で良好な性能を達成できることを特長としてお
り、主放電電源回路iの供給電圧は、普通400〜
500V程度で用いられている。しかし、第5図の
右側に示すエンジン本体lに推進剤dが噴射され
ても、供給電圧が400〜500Vでは放電は開始され
ない。従つて、従来は、主放電電源回路i以外に
トリガー回路jを設け、推進剤dの噴射と同期し
てパルス的に高い電圧(1.0〜1.5KV)を陽極b、
陰極a間に印加し、放電のスタートを行つてい
た。このため、陽極b側(ホツトライン側)に
は、トリガー用の高い電圧が印加され、低電圧に
ある主放電電源回路iの素子を破壊する虞れがあ
り、これを防止するため、トリガー回路j側の高
電圧が低電圧側に印加されないよう逆流防止素子
kが配置してある。
Plasma engines are characterized by being able to achieve good performance with low voltage and high current operation, and the supply voltage of the main discharge power supply circuit i is usually 400 to 400 volts.
It is used at around 500V. However, even if the propellant d is injected into the engine body 1 shown on the right side of FIG. 5, discharge will not start if the supply voltage is 400 to 500V. Therefore, conventionally, a trigger circuit j is provided in addition to the main discharge power supply circuit i, and a high voltage (1.0 to 1.5 KV) is applied in a pulsed manner to the anode b, in synchronization with the injection of the propellant d.
A voltage was applied between the cathodes a to start the discharge. Therefore, a high voltage for triggering is applied to the anode b side (hot line side), and there is a risk of destroying the elements of the main discharge power supply circuit i which are at a low voltage.To prevent this, the trigger circuit j A backflow prevention element k is arranged so that the high voltage on the side is not applied to the low voltage side.

しかし、上記電源部構成では、放電開始時のト
リガーのための高電圧の印加により、低電圧作動
が可能である特長を持つプラズマエンジンのメリ
ツトを生かしておらず、又逆流防止素子は大電力
用となると素子そのものが重いとか、素子を冷却
するための放電フインの重量増も重なり、プラズ
マエンジンシステムの重量増をもたらしていた。
However, the above power supply configuration does not take advantage of the plasma engine's ability to operate at low voltage by applying a high voltage for triggering at the start of discharge, and the backflow prevention element is not suitable for high-power applications. This combined with the fact that the element itself was heavy and the weight of the discharge fins used to cool the element increased, resulting in an increase in the weight of the plasma engine system.

本発明はトリガー回路及び逆流防止素子を不要
にしてプラズマエンジンが本来持つていた特長を
引出すことを目的としてなしたもので、陽極と、
該陽極の内側に陽極の内周に対して所要の間隔を
置いて配設された陰極と、陽極に取付けられ推進
剤を陰極に向つて噴射し得るようにしたノズルと
を備え、推進剤の圧力を放電開始電圧により定ま
る換算電極間距離に基づきコントロールしてい
る。従つて放電開始時に高電圧の電源が不要にな
り、低電圧作動によりメリツトを奏することが可
能となる。
The present invention was made with the purpose of eliminating the need for a trigger circuit and a backflow prevention element and bringing out the original characteristics of a plasma engine.
A cathode is provided inside the anode at a required distance from the inner periphery of the anode, and a nozzle is attached to the anode to inject propellant toward the cathode. The pressure is controlled based on the equivalent distance between the electrodes determined by the discharge starting voltage. Therefore, a high-voltage power source is not required at the start of discharge, and the advantages of low-voltage operation can be achieved.

以下、本発明につき図面を参照しつつ説明す
る。
Hereinafter, the present invention will be explained with reference to the drawings.

先ず、本発明の原理について説明すると、放電
電極間(間隔d0)にガス(圧力p)が満たされて
いるとき、放電が開始するに必要な電圧は放電開
始電圧或いは火花電圧と呼ばれている。放電開始
電圧は電極形状、電極材質、ガスの種類にも依存
し、単純に換算電極間距離pd0に依存するもので
はないが、放電開始電圧Vと換算電極間距離pd0
との関係の一例は第6図のグラフに示すような曲
線になる。この曲線をパツシエン曲線と呼び、該
曲線から種々のガスについて放電開始電圧Vが最
小となる換算電極間距離pd0があることが分る。
そして、このときの最小放電開始電圧Vmin.は
300〜500Vである。プラズマエンジンの主放電電
源回路電圧は400〜500Vであることを考えると、
放電開始時のみプラズマエンジン本体の陽極及び
陰極間にpd0が最小となるような条件を作ること
によつて第5図に示すトリガー回路jを省略する
ことができることが分る。特に放電の開始は、先
ず陰極から電子が放出され、陽極によつて電子が
加速され、電極間のガスを順次電離して行けるか
どうかにかかつている。このため、陰極近傍に適
当なガス圧力になるよう推進剤の噴射をすること
が必要条件であり、陽極側のガス圧力には比較的
鈍感であることが実験的にも明らかであつた。
First, to explain the principle of the present invention, when gas (pressure p) is filled between the discharge electrodes (distance d 0 ), the voltage required to start discharge is called the discharge starting voltage or spark voltage. There is. The discharge starting voltage depends on the electrode shape, electrode material, and gas type, and does not simply depend on the converted electrode distance pd 0 , but the discharge starting voltage V and the converted electrode distance pd 0
An example of the relationship is a curve as shown in the graph of FIG. This curve is called a Patsien curve, and it can be seen from this curve that there is a reduced inter-electrode distance pd 0 at which the discharge starting voltage V is minimum for various gases.
And the minimum discharge starting voltage Vmin. at this time is
It is 300-500V. Considering that the main discharge power supply circuit voltage of the plasma engine is 400-500V,
It can be seen that the trigger circuit j shown in FIG. 5 can be omitted by creating conditions such that pd 0 is minimized between the anode and cathode of the plasma engine body only at the start of discharge. In particular, the start of a discharge depends on whether electrons are first emitted from the cathode, accelerated by the anode, and successively ionize the gas between the electrodes. For this reason, it is a necessary condition to inject the propellant so that an appropriate gas pressure is achieved near the cathode, and it has been experimentally clear that the propellant is relatively insensitive to the gas pressure on the anode side.

次に本発明の実施例について説明する。 Next, examples of the present invention will be described.

第7図は本発明の一実施例を示し、陽極1の中
空部に、一端部が陽極1中空部の中途部に位置す
るよう絶縁物2を嵌合せしめ、該絶縁物2の中空
部に、先端部が絶縁物2より前方へ突出して陽極
1の先端部近傍まで延びる中実陰極3を嵌合せし
め、陽極1の内周と陰極3の外周との間に適宜の
間隔d0を形成せしめる。電極材料は、陽極1は例
えば酸化トリウム含侵タングステンが使用され、
陰極3は仕事関数が低い金属例えばバリウム或い
は酸化バリウムを含侵したタングステンが使用さ
れる。
FIG. 7 shows an embodiment of the present invention, in which an insulator 2 is fitted into the hollow part of the anode 1 so that one end thereof is located in the middle of the hollow part of the anode 1. , a solid cathode 3 whose tip protrudes forward from the insulator 2 and extends to the vicinity of the tip of the anode 1 is fitted, and an appropriate distance d 0 is formed between the inner periphery of the anode 1 and the outer periphery of the cathode 3. urge As for the electrode material, for example, tungsten impregnated with thorium oxide is used for the anode 1;
The cathode 3 is made of a metal with a low work function, such as barium or tungsten impregnated with barium oxide.

陽極1内周と絶縁物2外周との間に、推進剤送
給路4を設けると共に絶縁物2の後方に螺着した
ノズル5から前記推進剤送給路4へ推進剤送給路
6を介して推進材を送給し得るようにし、絶縁物
2内周と陰極3との間に推進剤送給路10を設け
ると共に絶縁物2の後方に螺着したノズル7から
前記推進剤送給路10へ推進剤送給路8を介して
推進剤を送給し得るようにする。又、陽極1に、
軸線が陰極3の中心側に向き且つ推進剤を絶縁物
2の一端部近傍に噴射し得るようにしたノズル9
を螺着せしめる。ノズル5,7,9は、夫々必要
に応じ任意の個数設けるが、複数設ける場合に
は、円周方向に略等間隔になるよう配設する。
A propellant feed path 4 is provided between the inner periphery of the anode 1 and the outer periphery of the insulator 2, and a propellant feed path 6 is provided from a nozzle 5 screwed to the rear of the insulator 2 to the propellant feed path 4. A propellant feeding path 10 is provided between the inner periphery of the insulator 2 and the cathode 3, and the propellant is fed from a nozzle 7 screwed onto the rear of the insulator 2. Propellant can be fed to the channel 10 via the propellant feed channel 8. Also, to the anode 1,
a nozzle 9 whose axis is directed toward the center of the cathode 3 and capable of injecting propellant near one end of the insulator 2;
Screw it on. Any number of nozzles 5, 7, and 9 may be provided as required, but if a plurality of nozzles are provided, they are arranged at approximately equal intervals in the circumferential direction.

次に作用について説明する。 Next, the effect will be explained.

プラズマエンジンの作動においては、推進剤送
給路4,10より電極軸線方向へ向けて推進剤を
略平行に噴射すると共にノズル9から陰極3側へ
向けて推進剤を圧力コントロールしてパルス的に
噴射し、陽極1と陰極3との間で放電を行わせ
る。ノズル9から噴射される推進剤の圧力pは次
のようにしてコントロールされる。すなわち、放
電電源回路電圧は400〜500Vであるから、この電
圧が放電開始電圧になるよう、第6図に示す換算
電極間距離pd0が選定され、又陽極1と陰極3間
の間隔d0は一定であるため、換算電極間距離pd0
により圧力pが決定され、コントロールされる。
In the operation of the plasma engine, the propellant is injected approximately parallel to the electrode axis direction from the propellant feed channels 4 and 10, and the propellant is pressure-controlled and pulsed from the nozzle 9 toward the cathode 3 side. and causes discharge to occur between the anode 1 and the cathode 3. The pressure p of the propellant injected from the nozzle 9 is controlled as follows. That is, since the discharge power supply circuit voltage is 400 to 500 V, the converted electrode distance pd 0 shown in FIG. 6 is selected so that this voltage becomes the discharge starting voltage, and the distance d 0 between the anode 1 and cathode 3 is selected. is constant, so the converted electrode distance pd 0
The pressure p is determined and controlled.

放電が開始されると、先ずノズル9から噴射さ
れた推進剤が電離してプラズマ状態のまま電磁的
に後方へ向けて加速され、続いて推進剤送給路
4,6より噴射された推進剤が順次電離してプラ
ズマ状態のまま電磁的に加速され、推力が発生す
る。ノズル9からの推進剤を陰極3に向けて噴射
するのは、放電開始時にノズル9から噴射される
推進剤の拡散を防止するためであり、又絶縁物2
表面での沿面放電を活用した方が有利となるため
である。
When discharge starts, the propellant injected from the nozzle 9 is first ionized and electromagnetically accelerated backward while remaining in a plasma state, and then the propellant injected from the propellant feed channels 4 and 6 is sequentially ionized and electromagnetically accelerated while in a plasma state, generating thrust. The purpose of injecting the propellant from the nozzle 9 toward the cathode 3 is to prevent the propellant injected from the nozzle 9 from spreading at the start of discharge, and also to prevent the propellant injected from the insulator 2
This is because it is more advantageous to utilize creeping discharge on the surface.

第8図は本発明の他の実施例で、本実施例で
は、陽極1と絶縁物2の間及び絶縁物2と陰極3
の間に推進剤送給路を設けず、ノズル9を複数個
設けるようにしている。図中第7図に示す符号と
同一の符号のものは同一のものを示す。斯かる構
成としても前記実施例と同様に放電を開始するこ
とができる。
FIG. 8 shows another embodiment of the present invention. In this embodiment, between the anode 1 and the insulator 2 and between the insulator 2 and the cathode 3,
A plurality of nozzles 9 are provided without providing a propellant feeding path between them. In the figure, the same reference numerals as those shown in FIG. 7 indicate the same components. Even with such a configuration, discharge can be started in the same manner as in the above embodiment.

なお、本発明は上述の実施例に限定されるもの
ではなく本発明の要旨を逸脱しない範囲内で種々
変更を加え得ることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiments, and it goes without saying that various changes can be made without departing from the gist of the present invention.

本発明のプラズマエンジンによれば、放電開始
時に高電圧が不要となるから機器が破損しにくく
寿命が長期化し、、又トリガー回路及び逆流素子
が不要となるから重量が軽減されて価格が安価に
なり、陰極に仕事関数が低い材料を含浸させた材
料を使用すれば電極寿命も長くなり、プラズマエ
ンジンが本来持つている低電圧作動によるメリツ
トを十分に発揮できる、等種々の優れた効果を発
揮し得る。
According to the plasma engine of the present invention, since high voltage is not required at the start of discharge, the equipment is less likely to be damaged and has a longer lifespan, and since a trigger circuit and a backflow element are not required, the weight is reduced and the price is reduced. Therefore, if the cathode is impregnated with a material with a low work function, the life of the electrode will be extended, and the benefits of the plasma engine's inherent low-voltage operation can be fully utilized, and other excellent effects can be achieved. It is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は中実陰極を装備した従来のプラズマエ
ンジンの一例を示す切断側面図、第2図は第1図
の中実陰極の損耗状態を示す説明図、第3図は中
空陰極を装備した従来のプラズマエンジンの切断
側面図、第4図は第3図の放電状態の説明図、第
5図は上記プラズマエンジンの電源部構成の説明
図、第6図は放電開始電圧と換算電極間距離との
関係を示す曲線を表わすグラフ、第7図は本発明
のプラズマエンジンの第1実施例を示す断面図、
第8図は本発明のプラズマエンジンの第2実施例
を示す断面図である。 図中1は陽極、2は絶縁物、3は陰極、4は推
進剤送給路、5はノズル、6は推進剤送給路、7
はノズル、8は推進剤送給路、9はノズル、10
は推進剤送給路を示す。
Figure 1 is a cutaway side view showing an example of a conventional plasma engine equipped with a solid cathode, Figure 2 is an explanatory diagram showing the state of wear and tear on the solid cathode in Figure 1, and Figure 3 is a diagram showing an example of a conventional plasma engine equipped with a hollow cathode. A cutaway side view of a conventional plasma engine, FIG. 4 is an explanatory diagram of the discharge state of FIG. 3, FIG. 5 is an explanatory diagram of the power supply configuration of the plasma engine, and FIG. 6 is a diagram showing the discharge starting voltage and the equivalent distance between electrodes. FIG. 7 is a cross-sectional view showing the first embodiment of the plasma engine of the present invention;
FIG. 8 is a sectional view showing a second embodiment of the plasma engine of the present invention. In the figure, 1 is an anode, 2 is an insulator, 3 is a cathode, 4 is a propellant feed path, 5 is a nozzle, 6 is a propellant feed path, 7
is a nozzle, 8 is a propellant feeding path, 9 is a nozzle, 10
indicates the propellant feed path.

Claims (1)

【特許請求の範囲】[Claims] 1 陽極の内側に、陽極内周に対して所要の間隔
を置いて陰極を配設し、前記陽極に、放電開始電
圧により定まる換算電極間距離に基づき圧力をコ
ントロールされた推進剤を陰極へ向つて噴射し得
るようにしたノズルを設けたことを特徴とするプ
ラズマエンジン。
1 A cathode is arranged inside the anode at a required distance from the inner periphery of the anode, and a propellant whose pressure is controlled based on the reduced distance between the electrodes determined by the discharge starting voltage is directed toward the anode. A plasma engine characterized by being equipped with a nozzle capable of ejecting water.
JP17593383A 1983-09-22 1983-09-22 Plasma engine Granted JPS6067789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17593383A JPS6067789A (en) 1983-09-22 1983-09-22 Plasma engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17593383A JPS6067789A (en) 1983-09-22 1983-09-22 Plasma engine

Publications (2)

Publication Number Publication Date
JPS6067789A JPS6067789A (en) 1985-04-18
JPS6330503B2 true JPS6330503B2 (en) 1988-06-17

Family

ID=16004787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17593383A Granted JPS6067789A (en) 1983-09-22 1983-09-22 Plasma engine

Country Status (1)

Country Link
JP (1) JPS6067789A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4805400A (en) * 1987-04-27 1989-02-21 Olin Corporation Non-erosive arcjet starting control system and method
US4995231A (en) * 1988-02-01 1991-02-26 Olin Corporation Performance arcjet thruster
US4926632A (en) * 1988-02-01 1990-05-22 Olin Corporation Performance arcjet thruster
US5425231A (en) * 1993-07-02 1995-06-20 Burton; Rodney L. Gas fed pulsed electric thruster
US7246483B2 (en) * 2004-07-21 2007-07-24 United Technologies Corporation Energetic detonation propulsion

Also Published As

Publication number Publication date
JPS6067789A (en) 1985-04-18

Similar Documents

Publication Publication Date Title
US6373023B1 (en) ARC discharge initiation for a pulsed plasma thruster
US8375697B2 (en) Electrolytic igniter for rocket engines using liquid propellants
US8387359B2 (en) Electrolytic igniter for rocket engines using monopropellants
US6769241B2 (en) Description of methods to increase propellant throughput in a micro pulsed plasma thruster
US8735766B2 (en) Cathode assembly and method for pulsed plasma generation
US4301391A (en) Dual discharge plasma device
US5146742A (en) Ion thruster for interplanetary space mission
US5357747A (en) Pulsed mode cathode
US5945623A (en) Hybrid electrothermal gun with soft material for inhibiting unwanted plasma flow and gaps for establishing transverse plasma discharge
JP4130974B2 (en) Hollow cathode
JPS6330503B2 (en)
US6295804B1 (en) Pulsed thruster system
US7408303B2 (en) Pulsed plasma accelerator and method
CA2695902A1 (en) Cathode assembly and method for pulsed plasma generation
US3862449A (en) Ion sleeve for arc lamp electrode
US3362158A (en) Arc ignition system
US11629706B2 (en) Vacuum cathode arc-induced pulsed thruster
US4553064A (en) Dual-mode electron gun with improved shadow grid arrangement
JPS6017952B2 (en) plasma engine
JP7129074B1 (en) Pulse-type propulsion machine using vacuum cathodic arc discharge
RU2099573C1 (en) Electric arc rocket engine
US10863612B2 (en) System for generating a plasma jet of metal ions
US5569976A (en) Ion emmiter based on cold cathode discharge
RU2146776C1 (en) End-type impulse plasma-jet engine operating on solid propulsive mass
JPH10511755A (en) Ignition device