JPS63304985A - Novel plasmid - Google Patents

Novel plasmid

Info

Publication number
JPS63304985A
JPS63304985A JP62140705A JP14070587A JPS63304985A JP S63304985 A JPS63304985 A JP S63304985A JP 62140705 A JP62140705 A JP 62140705A JP 14070587 A JP14070587 A JP 14070587A JP S63304985 A JPS63304985 A JP S63304985A
Authority
JP
Japan
Prior art keywords
plasmid
derived
ata
dna
bacillus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62140705A
Other languages
Japanese (ja)
Inventor
Kenji Soda
健次 左右田
Hiroaki Yamamoto
浩明 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP62140705A priority Critical patent/JPS63304985A/en
Publication of JPS63304985A publication Critical patent/JPS63304985A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE:To obtain a novel plasmid containing a gene to code AlaR and D-ATA derived from a thermostable bacterium useful for enzymatic synthesis of D-amino acid. CONSTITUTION:DNA fragment containing a gene to code AlaR (alanine recemase) derived from chromosome DNA of Bacillus stearothermophilus IFO12550 and DNA fragment containing a gene to code D-ATA (D-amino acid transaminase) derived from chromosome DNA of Bacillus sp. YM-1 (FERM P-8057) are prepared. The fragments and vector plasmid pUC18 are digested with ECoRI or SacI and linked with ligase T4 to constitute the aimed plasmid PICRT111. The plasmid is transduced to Escherichia coli HB101, etc., and a transformant is cultivated in a medium to produce AlaR and D-ATA.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、抗生物質や農薬の修飾剤として極めて有用な
り一アミノ酸の酵素合成などに特に有効に用いられる、
アラニンラセマーゼ(以下AIaRと略す)及びD−ア
ミノ酸トランスアミナーゼ(以下D−ATAと略す)を
コードする遺伝子を有する新規なプラスミドに関するも
のである。
Detailed Description of the Invention (Industrial Field of Application) The present invention is extremely useful as a modifier for antibiotics and agricultural chemicals, and is particularly effectively used for the enzymatic synthesis of monoamino acids.
The present invention relates to a novel plasmid having genes encoding alanine racemase (hereinafter abbreviated as AIaR) and D-amino acid transaminase (hereinafter abbreviated as D-ATA).

(従来技術) 従来バチルス ステアロサーモフィラスIF01255
0由来の耐熱性AIaRをコードする遺伝子を有するプ
ラスミドpICR4(バイオケミストリー(Bioch
emistry) 25 、3268−3274 (1
986))やバチルス エスピー YM−1由来の耐熱
性D−ATAをコードする遺伝子を有するプラスミドp
lcT113(特願昭62−39173号)などが構築
されている。
(Prior art) Conventional Bacillus stearothermophilus IF01255
Plasmid pICR4 (Biochemistry (Bioch.
emistry) 25, 3268-3274 (1
Plasmid p containing a gene encoding heat-stable D-ATA derived from Bacillus sp.
lcT113 (Japanese Patent Application No. 62-39173) has been constructed.

(発明が解決しようとする問題点) しかし、遺伝子組換え技術を用いてAlaR及びD−A
TAの二酵素を調製し、同時に該二酵素を使用する場合
、前述した該二酵素をコードする遺伝子を有する別個二
つのプラスミドで別々に宿主を形質転換し、形質転換株
を選択後、それらを別々に培養して該二E9gを調製す
る必要がある。
(Problems to be solved by the invention) However, using genetic recombination technology, AlaR and D-A
When preparing two TA enzymes and using the two enzymes at the same time, transform hosts separately with two separate plasmids carrying the genes encoding the two enzymes described above, select transformed strains, and then transform them. It is necessary to prepare the two E9g by culturing separately.

この方法では操作が繁雑で、時間、費用等がかかり、経
済的に有利でない。
This method requires complicated operations, takes time, costs, etc., and is not economically advantageous.

(問題点を解決するための手段) そこで本発明は、該二酵素をコードする遺伝子を一つの
プラスミド上に構築することにより、形質転換、培養な
どの該二酵素の調製を一度に行い、大幅な省エネルギー
、省力、省時間を可能とならしめることを目的とする。
(Means for Solving the Problems) Therefore, the present invention constructs genes encoding the two enzymes on one plasmid, thereby allowing the two enzymes to be prepared at the same time by transformation, culture, etc. The purpose is to make it possible to save energy, labor, and time.

即ち、本発明は、AlaR及びD−ATAをコードする
遺伝子を有するプラスミドである。
That is, the present invention is a plasmid having genes encoding AlaR and D-ATA.

本発明のプラスミドを得るには、例えば、AlaRをコ
ードする遺伝子を含むDNA断片、およびD−ATAを
コードする遺伝子を含むDNA断片を取得し、取得した
二つのDNA断片とベクターとしての役割を有するDN
Aを、ジャーナルオプ モレキュラー バイオロジー(
Journal ofMolecular Biolo
OV> 96.171−184 (1975〉に記載の
方法に従い、制限酵素で消化し、次いでリガーゼを用い
て結合することにより調製することができる。
In order to obtain the plasmid of the present invention, for example, a DNA fragment containing a gene encoding AlaR and a DNA fragment containing a gene encoding D-ATA are obtained, and the two obtained DNA fragments and a DNA fragment having a role as a vector are obtained. D.N.
A, Journal of Molecular Biology (
Journal of Molecular Biolo
OV>96.171-184 (1975), by digesting with restriction enzymes and then ligating with ligase.

本発明に好ましく用いられるAlaRをコードする遺伝
子としては、耐熱性、安定性などの点から、例えば好熱
性の微生物の染色体DNA由来の遺伝子があげられる。
The gene encoding AlaR preferably used in the present invention includes, for example, a gene derived from the chromosomal DNA of a thermophilic microorganism in terms of heat resistance, stability, and the like.

その中でもAlaR活性の高いバチルス ステア0サー
モフイラス由来の遺伝子が望ましい。これらの具体例と
してIFOI2550、ATCC7953などがある。
Among these, a gene derived from Bacillus stear0 thermophilus with high AlaR activity is desirable. Specific examples of these include IFOI2550 and ATCC7953.

又、D−ATAをコードする遺伝子としては、同じく耐
熱性、安定性などの点から好熱性の微生物の染色体DN
A由来の遺伝子があげられる。中でもバチルス属の中等
度高熱菌由来の遺伝子が好ましい。
In addition, the chromosomal DNA of thermophilic microorganisms is used as the gene encoding D-ATA due to its heat resistance and stability.
Examples include genes derived from A. Among these, genes derived from moderately hyperthermic bacteria of the genus Bacillus are preferred.

これらの具体例としてバチルス エスピー YM−1、
バチルス エスピー YM−2(微工研菌寄第8058
号)などがあげられる。
Specific examples of these include Bacillus sp. YM-1,
Bacillus sp. YM-2 (Feikoken Bacillus No. 8058
(No.), etc.

また、ベクターとしての役割を有するプラスミドとして
は、特にプラスミドpUc18が好ましい。またυ1限
酵素としては、例えばl:coRI。
Furthermore, as a plasmid that functions as a vector, plasmid pUc18 is particularly preferred. Further, examples of the υ1 restriction enzyme include l:coRI.

3aCrなどがあげられ、リガーゼとしては例えばT4
DNAリガーゼがあげられる。
Examples of ligase include T4.
Examples include DNA ligase.

本発明のプラスミドとしては、例えば前記した方法で、
プラスミドpUc18に、バチルス ステアロサーモフ
ィラスIFO12550の染色体DNA由来のAlaR
をコードする遺伝子と、バチルス エスピー YM−1
の染色体DNA由来のD−ATAをコードする遺伝子を
導入したプラスミドpICRT111があげられる。
As the plasmid of the present invention, for example, by the method described above,
Plasmid pUc18 contains AlaR derived from the chromosomal DNA of Bacillus stearothermophilus IFO12550.
The gene encoding Bacillus sp. YM-1
An example is plasmid pICRT111 into which a gene encoding D-ATA derived from the chromosomal DNA of

本発明のプラスミドは、例えば常温で生育する細菌に導
入する事ができ、このプラスミドを導入することにより
形質転換された細菌を得ることができる。この常温で生
育する細菌としては例えばエシェリヒア(Escher
ichia )属に属する細菌があげられ、エシェリヒ
ア コリ(Escherichiacoli)が好まし
い。この中でもエシェリヒア コりH[3101が特に
好ましい。
The plasmid of the present invention can be introduced, for example, into bacteria that grow at room temperature, and transformed bacteria can be obtained by introducing this plasmid. Examples of bacteria that grow at room temperature include Escherichia
Bacteria belonging to the genus ichia are mentioned, with Escherichia coli being preferred. Among these, Escherichia Cori H[3101 is particularly preferred.

また、本発明のプラスミドにより上記常温で生育する細
菌を形質転換するには、例えばジャーナル モレキュラ
ー バイオロジー53,159−162(1970)の
方法に従って、0℃付近で塩化カルシウム処理した上記
細菌と本発明のプラスミドとを接触させることにより行
えばよい。
In addition, in order to transform the above-mentioned bacteria that grow at room temperature with the plasmid of the present invention, the above-mentioned bacterium treated with calcium chloride at around 0°C and the present invention may be used, for example, according to the method of Journal Molecular Biology 53, 159-162 (1970). This can be done by contacting the plasmid with the plasmid.

以上のようにして形質転換された細菌の例として、プラ
スミドplCRT111が導入されたエシェリヒア コ
リ 1−IB101/pICRT111株があげられる
。この菌株は耐熱性のAlaR生産能、耐熱性のD−A
TA生産能及びアンピシリン耐性を有する点以外は、公
知のエシェリヒアコリ HBlolと同じ菌学的性質を
有している。この菌体は、非伝達性を伝達性に変えるこ
となく、また非病原性を病原性に変えることなく、安全
性が保持されている。
An example of a bacterium transformed as described above is the Escherichia coli 1-IB101/pICRT111 strain into which plasmid plCRT111 has been introduced. This strain has heat-resistant AlaR production ability, heat-resistant D-A
It has the same mycological properties as the known Escherichia coli HBlol except that it has TA production ability and ampicillin resistance. This bacterial cell maintains safety without changing from non-transmissible to transmissible or from non-pathogenic to pathogenic.

本発明のプラスミドは、下記の式1に示されるD−アミ
ノ酸の合成、すなわち、AIaDH,D−ATA、A 
l aR及びギ酸脱水素酵素(以下FD Hと略す)の
触媒作用により、触媒量のOL−アラニン(以下0L−
Alaと略す)とNAD”の存在下、ギ酸、アンモニア
及びα−ケト酸からD−アミノ酸を合成する方法(特願
昭61−48233号)等に特に有効に使用することが
でき、AlaRおよびD−ATAの調製を容易にするも
のである。
The plasmid of the present invention can be used for the synthesis of D-amino acids shown in the following formula 1, that is, AIaDH, D-ATA, A
A catalytic amount of OL-alanine (hereinafter referred to as 0L-
It can be particularly effectively used in the method of synthesizing D-amino acids from formic acid, ammonia and α-keto acids (Japanese Patent Application No. 61-48233) in the presence of AlaR and NAD. - It facilitates the preparation of ATA.

式  1 (発明の効果) 本発明のプラスミドは前述したように、有用な微生物、
例えば常温で生育する細菌を形質転換することにより、
細菌にA l aR,D、−ATA生産能を同時に賦与
することができ、形質転換された細菌からAIaR及び
D−ATAを大量にかつ容易に、しかも同時に得ること
ができるので、前述したD−アミノ酸の製造等に非常に
有用である。
Formula 1 (Effect of the invention) As mentioned above, the plasmid of the present invention can be used as a useful microorganism,
For example, by transforming bacteria that grow at room temperature,
Bacteria can be endowed with the ability to produce AlaR,D,-ATA at the same time, and AIaR and D-ATA can be obtained from the transformed bacteria in large quantities easily and at the same time. Very useful for the production of amino acids, etc.

(実施例) 次に、実施例に基づいて本発明の詳細な説明するが、本
発明はこれに限定されるものではない。
(Examples) Next, the present invention will be described in detail based on Examples, but the present invention is not limited thereto.

(1)耐熱性AIaRをコードする遺伝子を有するプラ
スミドpICR113(plcR4をサブクローニング
したもの)および耐熱性D−ATAをコードする遺伝子
を有するプラスミドplcT113の調製 プラスミドplcR113は、ベクターpBR322に
、バチルス ステアロサーモフィラスIFO12550
の染色体DNA由来のAlaRをコードする遺伝子を導
入した°プラスミドであり、プラスミドp[cT113
は、ベクターpUC18に、バチルス エスピー YM
−1の染色体DNA由来のD−ATAをコードする遺伝
子を導入したプラスミドである。
(1) Preparation of plasmid pICR113 (subcloned from plcR4) carrying the gene encoding thermostable AIaR and plasmid plcT113 carrying the gene encoding thermostable D-ATA Plasmid plcR113 was added to vector pBR322 using Bacillus stearothermophila. IFO12550
This is a plasmid into which a gene encoding AlaR derived from the chromosomal DNA of plasmid p[cT113
is vector pUC18, Bacillus sp. YM
This is a plasmid into which a gene encoding D-ATA derived from the chromosomal DNA of -1 was introduced.

後述する(5)に記載したのと同様の方法でプラスミド
pICR113を尋人したエシェリヒアコリ 8810
1株を、50μg/M1のアンピシリンを含む11のス
ーパーブロース(Ij中にポリペプトン15g、酵母エ
キス20g、グリセロール5afl、100mの1Mリ
ン酸カリウムmII液(p117.6)を含む)で37
℃、2〜3時間培養後、クロラムフェニコール溶液(1
−のエタノールに34II1gを添加)を6af加え、
更に16時間培養した。
Escherichia coli 8810, which was infected with plasmid pICR113 by the same method as described in (5) below.
One strain was incubated with 11 super broth containing 50 μg/M1 ampicillin (15 g polypeptone, 20 g yeast extract, 5 afl glycerol, 100 m 1M potassium phosphate mII solution (p117.6) in Ij) at 37 ml.
After culturing at ℃ for 2 to 3 hours, chloramphenicol solution (1
- add 6af of 34II (1g of 34II to ethanol),
The cells were further cultured for 16 hours.

培養後、菌体を遠心分離により回収し、溶液I(50m
Mグルコース、25mMトリス−塩酸緩衝液(1)H8
,O) 、10mM  EDTA、5q/dリゾチーム
)20dと激しく混合し30分間放置した。次に溶液I
I(0,2N  NaOH,1%5DS(ソディウムド
デシルサルフエート))40mを加え、軽く撹拌し氷上
に10分間放直後、5M酢酸カリウム緩衝液(pH4,
8)を3〇−加え激しく撹拌し、氷上に10分間放置後
遠心分離によりタンパク、RNA、および染色体DNA
を含む沈殿を上清と分離した。次に粗プラスミドを含む
上清に110dの冷エタノールを加え、−80℃30分
放置後、遠心分離によりプラスミドDNAをエタノール
沈殿として回収した。沈殿を乾燥後、16dTE (1
0mMトリス−塩酸緩衝液(pH8,O)、1mM  
EDTA>、リボヌクレアーゼA (RNaseA、生
化学工業製、10gw/d)200.11を加え37℃
で1時間反応させ、フェノール−クロロホルム(1:1
)抽出により変性タンパクを除去し、2倍Mのエタノー
ルを添加して一80℃で30分間放置し、プラスミドD
NAをエタノール沈殿として回収した。続いてベレット
状のプラスミドを少量のTEに溶解し、塩化セシウム(
1dのプラスミド溶液に1gを添加)及びエチジウムブ
ロマイド(10dの塩化セシウム溶液にエチジウムブロ
マイド溶液(10N1g/d)0.8dを添加)を加え
、45,000rpmで12時間超遠心分離し、c c
 c (covalently closed cir
cular)DNAのバンドのみを回収し、旦−ブタノ
ール抽出によりエチジウムブロマイドを除去した後、T
Eに対して充分に透析し、精製pICR113を得た。
After culturing, the bacterial cells were collected by centrifugation, and solution I (50 m
M glucose, 25mM Tris-HCl buffer (1) H8
, O), 10mM EDTA, 5q/d lysozyme) 20d and left for 30 minutes. Then solution I
Add 40ml of I (0,2N NaOH, 1% 5DS (sodium dodecyl sulfate)), stir gently and leave on ice for 10 minutes, then add 5M potassium acetate buffer (pH 4,
8) was added for 30 minutes, stirred vigorously, left on ice for 10 minutes, and centrifuged to remove proteins, RNA, and chromosomal DNA.
The precipitate containing the supernatant was separated from the supernatant. Next, 110 d of cold ethanol was added to the supernatant containing the crude plasmid, and after being left at -80°C for 30 minutes, the plasmid DNA was recovered as an ethanol precipitate by centrifugation. After drying the precipitate, 16dTE (1
0mM Tris-HCl buffer (pH 8, O), 1mM
EDTA>, ribonuclease A (RNase A, Seikagaku Corporation, 10 gw/d) 200.11 was added and the mixture was heated at 37°C.
The mixture was reacted for 1 hour with phenol-chloroform (1:1
) Remove the denatured protein by extraction, add 2xM ethanol and leave at -80°C for 30 minutes to extract the plasmid D.
NA was recovered as an ethanol precipitate. Next, the pellet-shaped plasmid was dissolved in a small amount of TE, and cesium chloride (
Add 1 g of plasmid solution to 1 d of plasmid solution) and ethidium bromide (add 0.8 d of ethidium bromide solution (10N 1 g/d) to 10 d of cesium chloride solution), ultracentrifuge at 45,000 rpm for 12 hours, and c c
c (covalently closed cir)
After collecting only the DNA band (Cular) and removing ethidium bromide by extraction with butanol, T
Purified pICR113 was obtained by thorough dialysis against E.

また、精製pICT113もpICR113と同様の手
順で調製した。
Purified pICT113 was also prepared in the same manner as pICR113.

(2)プラスミドpICR113のEC0RI−sac
 r断片の調製 (1)で得られたpICR11340μ9を制限酵素3
acl(宝酒造社製)300Uを含むSac I用緩衝
液(10mM  トリス−塩酸W衝液(pH8,O) 
、 7mM  MCJCI  、7mM  2−ME、
0.01%BSA)400μp中で5時間反応させ消化
した後、5M  NaC18μm、冷エタノール850
μmを添加し、遠心分離によりDNAをエタノール沈殿
として回収した。回収したDNAペレットを20μmの
TEに溶解し、150Uの制限酵素EcoRI(宝酒造
社製)を含むECORI用緩衝液(50mM  トリス
−塩11111i1(1)117.5) 、7mM  
MgCI  、100mM  NaCI 、7mM  
2−ME、0.01%BSA)400μβ中で37℃、
5時間反応させ、冷エタノール800μmを添加するこ
とにより、DNAをエタノール沈殿として回収した。こ
のDNAを20μmのTHに溶解し、0.7%LMP(
low melting point )アガロース(
BethesdaResearch Laborato
ries @ )を用いて4℃において100■で5〜
6時間電気泳動を行い、△1aRをコードする遺伝子を
有する1、9KbのECORl−8ac (断片を分離
し、この断片を含むアガロースを切り取り、5倍容量の
TEを加え65℃で5分間加熱してアガロースを溶解し
た。この溶液を、フェノール抽出、フェノール−クロロ
ホルム(1:1)抽出、クロロホルム抽出を各1回行い
エタノール沈殿としてDNA断片を回収した。このDN
A断片を少ωのTEに溶解し、逆相液体クロマトグラフ
ィー(NENSOR31M20、デュポン類)により精
製し、50%メタノールで溶出した後、乾固してプラス
ミドplcR113の精製EcoRl−8ac I断片
を調製した。
(2) EC0RI-sac of plasmid pICR113
pICR11340μ9 obtained in r fragment preparation (1) was digested with restriction enzyme 3
Sac I buffer (10mM Tris-HCl W buffer (pH 8, O) containing 300U of acl (manufactured by Takara Shuzo)
, 7mM MCJCI, 7mM 2-ME,
After reaction and digestion for 5 hours in 400 µm of 0.01% BSA, 5 M NaC 18 µm, cold ethanol 850 µm.
μm was added, and the DNA was recovered as an ethanol precipitate by centrifugation. The recovered DNA pellet was dissolved in 20 μm TE, and ECORI buffer (50 mM Tris-salt 11111i1(1)117.5) containing 150 U of restriction enzyme EcoRI (manufactured by Takara Shuzo Co., Ltd.), 7 mM
MgCI, 100mM NaCI, 7mM
2-ME, 0.01% BSA) at 37°C in 400 μβ;
After reacting for 5 hours, 800 μm of cold ethanol was added to collect the DNA as an ethanol precipitate. This DNA was dissolved in 20 μm TH and 0.7% LMP (
low melting point) agarose (
Bethesda Research Laborato
ries@) at 100 μm at 4°C.
Electrophoresis was performed for 6 hours, a 1.9 Kb ECORl-8ac (fragment) containing the gene encoding Δ1aR was separated, the agarose containing this fragment was cut out, 5 times the volume of TE was added, and the mixture was heated at 65°C for 5 minutes. This solution was subjected to phenol extraction, phenol-chloroform (1:1) extraction, and chloroform extraction once each to recover DNA fragments as ethanol precipitation.
The A fragment was dissolved in low ω TE, purified by reverse phase liquid chromatography (NENSOR31M20, DuPont), eluted with 50% methanol, and dried to prepare a purified EcoRl-8ac I fragment of plasmid plcR113. .

(3)プラスミドplcT113のEC0R(−8aC
I断片の調製 (1)で得られたプラスミドplCT11330μ9を
Sac 1300Uを含む3ac l用緩衝液400μ
p中で37℃で5時間反応させ消化した後、5M  N
aC18μm、冷エタノール850μmを添加し、遠心
分離によりDNAをエタノール沈殿として回収した。回
収したDNAベレットを20μmのTEに溶解し、EC
0R1150Uを含むEC0RI用緩衝液400μオ中
で5時間反応させ消化した後、800μmの冷エタノー
ルを添加し遠心分離によりDNAをエタノール沈殿とし
て回収した。
(3) EC0R (-8aC) of plasmid plcT113
Plasmid plCT11330μ9 obtained in Preparation of I fragment (1) was mixed with 400μ of 3acI buffer containing 1300U of Sac.
After reaction and digestion for 5 hours at 37°C in p.p., 5M N
18 μm of aC and 850 μm of cold ethanol were added, and DNA was recovered as an ethanol precipitate by centrifugation. The recovered DNA pellet was dissolved in 20 μm TE and subjected to EC.
After reaction and digestion for 5 hours in 400 μm of EC0RI buffer containing 1150 U of 0R, 800 μm of cold ethanol was added and the DNA was recovered as an ethanol precipitate by centrifugation.

このプラスミドpICT113の[coRI−8ac 
T断片はベクターpUC18由来の部分である。
This plasmid pICT113 [coRI-8ac
The T fragment is a portion derived from vector pUC18.

(4)プラスミドI)ICT113のEC0RI−8a
c I断片とプラスミドpicR113の1旦0RI−
3aCI断片ノ連結 (3)で調製したベクターpUc18由来の部分である
plcT113のEcoRl−8ac I断片を20μ
pのTEに溶解し、(2)で調製したplcR113の
ECORl−8ac I断片を20μmのTEに溶解し
た。pICT113の旦coRl−8ac I断片溶液
11.pICR113のEcoRl−8ac Iの断片
溶液8μmをT4DNAリガーゼ(宝酒造社製)700
LJを含むT4DNAリガーゼ用緩衝液(66mMトリ
ス−塩1lll衝液(1)I7.6) 、6.6mM 
 MgCI2.10mM  ジチオスライトール(DT
T)、1iHATP)20μρ中で一晩反応させDNA
断片を連結した。
(4) Plasmid I) EC0RI-8a of ICT113
cI fragment and plasmid picR113 once 0RI-
The EcoRl-8ac I fragment of plcT113, which is the part derived from vector pUc18 prepared in ligation (3) of the 3aCI fragment, was added to 20μ
plcR113 ECORl-8ac I fragment prepared in (2) was dissolved in 20 μm TE. pICT113 coRl-8ac I fragment solution 11. 8 μm of EcoRl-8ac I fragment solution of pICR113 was treated with T4 DNA ligase (Takara Shuzo Co., Ltd.) 700
T4 DNA ligase buffer containing LJ (66mM Tris-salt 1lll buffer (1) I7.6), 6.6mM
MgCI2.10mM dithiothreitol (DT
T), 1iHATP) DNA was reacted overnight in 20 μρ.
The fragments were ligated.

<5)(4)で連結したDNAによるエシェリヒア コ
リ HBlolの形質転換 エシェリヒア コリ HBlolを100dのYT培地
(ポリペプトン1g、酵母エキス0.5び、NaCl0
.5gを含む100Idの培地、pH7,2)で2〜3
時間培養し、遠心分離により菌体を回収して冷100m
M  M gCl 2で洗浄後、冷100mM  Ca
Cl2に1濁し1時間氷上に放置した。次に遠心分離に
より上滑を除去後、冷100mM  CaCl25mに
再懸濁し、コンピテントセルとした。
<5) Transformation of Escherichia coli HBlol with the DNA ligated in (4) Escherichia coli HBlol was transformed into 100 d of YT medium (1 g of polypeptone, 0.5 g of yeast extract, NaCl0
.. 2-3 in 100Id medium containing 5g, pH 7,2)
Incubate for an hour, collect the bacterial cells by centrifugation, and cool at 100 m
After washing with M M gCl2, cold 100 mM Ca
The mixture was suspended in Cl2 and left on ice for 1 hour. Next, after removing the supernatant by centrifugation, the cells were resuspended in 25 mL of cold 100 mM CaCl to obtain competent cells.

次に(4)で得られた連結したDNA溶液10μmとコ
ンピテントセル懸濁液200μΩを0℃で混合し、時々
撹拌しながら氷上に60分間放置した後、42℃で2分
間放置し、氷上で急冷した。
Next, 10 μm of the ligated DNA solution obtained in (4) and 200 μΩ of the competent cell suspension were mixed at 0°C, left on ice for 60 minutes with occasional stirring, then left at 42°C for 2 minutes, and then placed on ice. It was rapidly cooled.

次にこの懸濁液に1dのYT培地を加え、37℃で1時
間振盪培養した後、アンピシリン含有(50μg/d)
YT−寒天培地(寒天20グ/1)にブレーティングし
、37℃で一晩培養し、形成したコロニーをアンピシリ
ン含有YT−寒天培地に再ブレーティングし、37℃で
一晩培養して得られたコロニーを形質転換株とした。
Next, 1 d of YT medium was added to this suspension, and after culturing with shaking at 37°C for 1 hour, ampicillin-containing (50 μg/d)
The colonies were plated on YT-agar medium (20 g of agar/1) and cultured overnight at 37°C, and the formed colonies were re-plated on YT-agar medium containing ampicillin and cultured overnight at 37°C. The resulting colonies were used as transformed strains.

(6)目的とするプラスミドを保有する形質転換株の選
択 (5)で得られた15個の形質転換株より10株をアン
ピシリン含有(100μg/d)YT培地5dで一晩培
養し、該株から(1)と同様の方法に従い、小スケール
で各プラスミドを単離した。
(6) Selection of transformed strains possessing the desired plasmid Ten of the 15 transformed strains obtained in (5) were cultured overnight in 5 d of YT medium containing ampicillin (100 μg/d). Each plasmid was isolated on a small scale according to the same method as in (1).

これらのプラスミドを(2)の方法に従いEC0R1お
よびSac Iで消化したところ、全ての7ラスミドが
、それぞれ1ケ所ずつ切られて約4゜5Kbの単一なバ
ンドを生じた。また、EcoRl、5aCIのダブル消
化により、約2.7Kbと約1.9Kbの2本のバンド
を生じたことより、すべてのプラスミドが、ベクターp
LJC18由来の部分であるpICT113のEcoR
I−8旦cl断片とAIaRをコードする遺伝子を有す
るplcR113のEcoRl−8ac I断片が1つ
ずつ結合したものであることがわかった。これらのプラ
スミドをplcR114とした。
When these plasmids were digested with ECOR1 and Sac I according to method (2), all 7 lasmids were cut at one site each, resulting in a single band of approximately 4.5 Kb. Furthermore, double digestion with EcoRl and 5aCI produced two bands of approximately 2.7 Kb and approximately 1.9 Kb, indicating that all plasmids were isolated from the vector p
EcoR of pICT113, a portion derived from LJC18
It was found that one I-8ac I fragment and one EcoRl-8ac I fragment of plcR113 containing the gene encoding AIaR were combined. These plasmids were named plcR114.

(7)プラスミドpICT113のEcoRI −EC
ORI断片の調製 (1)で得られた1)ICT113 40μびをEco
RI  150Uを含むECORI用緩衝液400μρ
中で37℃、5時間反応させ消化した後、冷エタノール
800μm添加し遠心分離によりエタノール沈殿として
回収した。このDNAを20μmのTHに溶解し、(3
)と同様にしてLMPアガロース電気泳動により分離後
、D−ATAをコードする遺伝子を有する約1.7Kb
のDNA断片を切り出し、(4)と同様にして精製し、
20μmのTEに溶解してプラスミドplcT113の
EcoRI−EcoRI断片溶液を得た。
(7) EcoRI-EC of plasmid pICT113
1) ICT113 40μ obtained in preparation of ORI fragment (1) was
ECORI buffer 400μρ containing RI 150U
After reaction and digestion at 37° C. for 5 hours, 800 μm of cold ethanol was added and centrifuged to recover as an ethanol precipitate. This DNA was dissolved in 20 μm TH and (3
) After separation by LMP agarose electrophoresis, approximately 1.7 Kb containing the gene encoding D-ATA was obtained.
The DNA fragment was excised and purified in the same manner as in (4),
It was dissolved in 20 μm TE to obtain an EcoRI-EcoRI fragment solution of plasmid plcT113.

(8)プラスミドpICR114のECORIによる消
化 (6)でW4製したpICR114の一部(約4μg)
を、10tJのEC0RIを含むEC0RI用!1衝液
50μp中で37℃、5時間反応させ消化した後、20
0μmの冷エタノールを添加し、遠心分離によりエタノ
ール沈殿として回収し、10μmのTEに溶解してプラ
スミドpICR114のEcoRI消化物溶液を得た。
(8) A portion of pICR114 (approximately 4 μg) produced in W4 by digestion of plasmid pICR114 with ECORI (6)
For EC0RI including 10tJ EC0RI! After reacting and digesting in 50μp of 1 buffer at 37°C for 5 hours,
0 μm cold ethanol was added, centrifugation was performed to collect the ethanol precipitate, and the mixture was dissolved in 10 μm TE to obtain an EcoRI digest solution of plasmid pICR114.

(9)プラスミドplcT113のEcoRI−Eco
RI断片とpICR114のl:coRIfi化物との
連結 (7)で1il製したプラスミドpICT113のEc
oRI−EcoRI断片溶液8μmと、(10)で調製
したpICR114のECORI消化物溶液0.5μm
とをT4DNAリガーぜ700Uを含むT4DNAリガ
ーゼ用緩衝液20μp中で、16℃−晩反応させDNA
断片を連結した。
(9) EcoRI-Eco of plasmid plcT113
Ec of plasmid pICT113 prepared by ligation (7) of RI fragment and pICR114 l:coRIfi
8 μm oRI-EcoRI fragment solution and 0.5 μm ECORI digest solution of pICR114 prepared in (10)
The DNA was reacted overnight at 16°C in 20 μp of T4 DNA ligase buffer containing 700 U of T4 DNA ligase.
The fragments were ligated.

(10)(9)で連結したDNAによるエシェリヒア 
コリ HBlolの形質転換 (5)と同様にして調製したコンピテントセル200μ
mと(9)で連結したDNAを含む反応液10μmとを
混合し、(5)と同様にして形質転換株を得た。
(10) Escherichia using DNA linked in (9)
200μ of competent cells prepared in the same manner as for transformation of E. coli HBloI (5)
m and 10 μm of the reaction solution containing the DNA linked in (9) were mixed, and a transformed strain was obtained in the same manner as in (5).

(11)D−ATA活性を有する形質転換株の選択 (10)で得られた約2000個の形質転換株のうち1
68個のコロニーを500μ」の緩衝液I(10mM 
 リン酸カリウムSaW液(pl+7.2)、0.01
%2−ME、50μMピリドキサール=5°−リン酸(
PLP))に懸濁し、30秒間超音波破砕したものを酵
素液としてD−ATA活性を測定した。
(11) Selection of transformants with D-ATA activity (10) 1 out of about 2000 transformants obtained in (10)
68 colonies were added to 500μ' of Buffer I (10mM
Potassium phosphate SaW solution (pl+7.2), 0.01
%2-ME, 50 μM pyridoxal = 5°-phosphoric acid (
D-ATA activity was measured using an enzyme solution that was suspended in PLP) and disrupted by ultrasonication for 30 seconds.

<D−ATA活性の測定方法〉 トリス−塩酸緩衝液(pH8,1) 50μmol、P
LP50nmo I 、a−’yt”JルタルWJ10
μmol、D−アラ二> 25 、cZmo l 、乳
酸11R水JR酵素(LDH,ベーリンガーマンハイム
山之内製)5U1NADH0,2μmol及び酵素を含
む11dの反応液を50℃でキュベツト中で反応させ、
NADHの減少に由来する340nmの吸光度の減少を
測定した。尚1Uはこの条件下1分間に1μmolのN
ADHの減少を触媒する酵素量とした。上記方法に従っ
て168個のコロニーのD−ATA活性を測定した結果
、2つのコロニーにD−ATA活性が認められた。
<Method for measuring D-ATA activity> Tris-HCl buffer (pH 8,1) 50 μmol, P
LP50nmo I, a-'yt”J Lutal WJ10
A reaction solution of 11d containing μmol, D-Arani>25, cZmol, lactic acid 11R water JR enzyme (LDH, manufactured by Boehringer Mannheim Yamanouchi) 5U1NADH0.2μmol and enzyme was reacted in a cuvette at 50°C.
The decrease in absorbance at 340 nm due to the decrease in NADH was measured. Note that 1U is 1 μmol of N per minute under these conditions.
It was defined as the amount of enzyme that catalyzes the reduction of ADH. As a result of measuring the D-ATA activity of 168 colonies according to the above method, D-ATA activity was observed in two colonies.

(12)D−ATA活性保持株のプラスミドの確認 (11)で選択した2株から(1)と同様にして小スケ
ールでプラスミドを単離した。これらのプラスミドを、
5aClで消化したところ約6゜2Kbの単一のバンド
を生じ、ECORIで消化したところpICR114の
EcoRI消化物と同じ約4.5Kbのバンドおよびp
lcT113のEcoRI−EcoRI断片と同じ約1
.7にbのバンドを生じた。またECORIと3ac 
iのダブル消化によりpICT113のFCORI−E
CORI断片と同じ約1.7Kbのバンド、pICR1
14のECORl−3ac i断片と同じ約1.9Kb
のバンドおよびplcT113のECORl−8ac 
1断片と同じ約2.7Kbのバンドを生じたことから、
これらのプラスミドは、plcR114のEcoRI消
化物にplcT113のEcoRI−EcoRI断片が
結合したものであることがわかった。
(12) Confirmation of plasmids in strains retaining D-ATA activity Plasmids were isolated on a small scale from the two strains selected in (11) in the same manner as in (1). These plasmids,
Digestion with 5aCl yielded a single band of approximately 6°2 Kb, and digestion with ECORI yielded a band of approximately 4.5 Kb, the same as the EcoRI digest of pICR114, and pICR114.
Approximately 1 same as EcoRI-EcoRI fragment of lcT113
.. 7, a band b was generated. Also ECORI and 3ac
FCORI-E of pICT113 by double digestion of i
Approximately 1.7 Kb band, pICR1, same as CORI fragment
Approximately 1.9 Kb, same as the ECORl-3ac i fragment of 14
band and plcT113 ECORl-8ac
Since a band of about 2.7 Kb, which is the same as that of 1 fragment, was generated,
These plasmids were found to be the EcoRI-EcoRI fragment of plcT113 fused to the EcoRI digest of plcR114.

これらのプラスミドをpICRTlllとした。These plasmids were named pICRTllll.

よって、得られたプラスミドplcRT111はA l
 aRをコードする遺伝子と、D−ATAをコードする
遺伝子とを同時に有するプラスミドである。
Therefore, the obtained plasmid plcRT111 is Al
This is a plasmid that simultaneously contains a gene encoding aR and a gene encoding D-ATA.

プラスミドpICRT111の制限酵素切断地図を第1
図に示す。
The restriction enzyme cleavage map of plasmid pICRT111 is
As shown in the figure.

(13)A l aRSD−ATA活性の測定プラスミ
ドpLIC18、pICR114、pICT113、お
よびpICRTlllでそれぞれ形質転換されたニジI
リヒア コリ H8101を1.5jのアンピシリン含
有YT培地(50Ug/ml>で37℃−晩培養し、7
.OOOrpmで5分間の遠心分離により菌体を回収し
た。回収した国体の湿重量はそれぞれ4.8g、5.7
g、7.2g、5.1gであった。
(13) Measurement of Al aRSD-ATA activity Niji I transformed with plasmids pLIC18, pICR114, pICT113, and pICRT1ll, respectively.
Lichia coli H8101 was cultured at 37°C overnight in 1.5j of ampicillin-containing YT medium (50Ug/ml),
.. Bacterial cells were collected by centrifugation at OOOrpm for 5 minutes. The wet weight of the collected national polity was 4.8g and 5.7g, respectively.
g, 7.2 g, and 5.1 g.

各菌体を5ml!の緩衝液(10mMリン酸緩衝液(p
H7,2) 、0.01%2−ME、50UM  PL
P)に懸濁し10分間超音波破砕し、18,000rp
mで20分間遠心分離し、得られた上清を上記緩衝液に
対して透析し、無細胞抽出液を得た。
5ml of each bacterial body! buffer (10mM phosphate buffer (p
H7,2), 0.01% 2-ME, 50UM PL
P) and sonicated for 10 minutes at 18,000 rpm.
The supernatant obtained was dialyzed against the above buffer to obtain a cell-free extract.

この無細胞抽出液を用いて、以下の方法に従い各酵素活
性を測定した。
Using this cell-free extract, each enzyme activity was measured according to the following method.

また、タンパク質は、ローリ−らの方法(ジャーナル 
オブ バイオロジカル ケミストリー聾ournal 
of biolo 1cal chemistr ) 
193 、265(1951))に従って測定した。
In addition, proteins were prepared using the method of Lowry et al. (Journal
of biological chemistry deafournal
of biolo 1cal chemist)
193, 265 (1951)).

その結果を表−1に示す。The results are shown in Table-1.

<D−ATA活性の測定方法〉 前述した通りの方法で行なった。<Method for measuring D-ATA activity> This was done in the same manner as described above.

<A I aR活性の測定方法〉 グリシン−KC1−KOH!1衝液(pH9,0)10
0μmo l 、PLP50nmo I 、D−アラニ
ン50μmo I 、NAD+ 2.5μmo l 、
Al aDH(バチルス ステアロサーモフィラスIF
OI 2550由来)10U及び酵素を含む1mの反応
液を50℃でキュベツト中で反応させ、NADHの増加
に由来する340nmの吸光度の上昇を測定した。尚1
Uは、この条件下1分間に1μmolのNADHの増加
を触媒する酵素量とした。
<Method for measuring AI aR activity> Glycine-KC1-KOH! 1 buffer solution (pH 9,0) 10
0 μmol, PLP50 nmol I, D-alanine 50 μmol I, NAD+ 2.5 μmol,
Al aDH (Bacillus stearothermophilus IF
A 1 ml reaction solution containing 10 U (derived from OI 2550) and the enzyme was reacted in a cuvette at 50° C., and the increase in absorbance at 340 nm due to the increase in NADH was measured. Sho 1
U is the amount of enzyme that catalyzes an increase in NADH by 1 μmol per minute under these conditions.

表  −1Table-1

【図面の簡単な説明】[Brief explanation of drawings]

第1図はプラスミドplcRT111の制限酵素切断地
図を表わす。 図中円の一本線はベクターpLJ018に由来する部分
、二二は目的酵素をコードする部分を表わ特許出願人 
ダイセル化学工業株式会社第1図
FIG. 1 represents a restriction enzyme cleavage map of plasmid plcRT111. In the figure, the single line in the circle represents the part derived from vector pLJ018, and 22 represents the part encoding the target enzyme.Patent applicant
Daicel Chemical Industries, Ltd. Figure 1

Claims (4)

【特許請求の範囲】[Claims] (1)アラニンラセマーゼ及びD−アミノ酸トランスア
ミナーゼをコードする遺伝子を有するプラスミド
(1) Plasmid containing genes encoding alanine racemase and D-amino acid transaminase
(2)アラニンラセマーゼ及びD−アミノ酸トランスア
ミナーゼをコードする遺伝子が、共に耐熱性細菌由来の
ものである特許請求の範囲第一項記載のプラスミド
(2) The plasmid according to claim 1, wherein the genes encoding alanine racemase and D-amino acid transaminase are both derived from heat-resistant bacteria.
(3)耐熱性細菌がバチルス(¥Bacillus¥)
属細菌である特許請求の範囲第二項記載のプラスミド
(3) Heat-resistant bacteria are Bacillus (¥Bacillus¥)
The plasmid according to claim 2, which is a bacterium of the genus
(4)アラニンラセマーゼをコードする遺伝子が、バチ
ルス ステアロサーモフィラス(¥Bacillus¥
¥stearothermophilus¥)IFO1
2550由来のものであり、D−アミノ酸トランスアミ
ナーゼをコードする遺伝子が、バチルス エスピー(¥
Bac−illus¥sp.)YM−1(微工研菌寄第
8057号)由来のものである特許請求の範囲第一項記
載のプラスミド
(4) The gene encoding alanine racemase is derived from Bacillus stearothermophilus (¥Bacillus¥
¥stearothermophilus¥)IFO1
2550, and the gene encoding D-amino acid transaminase is derived from Bacillus sp.
Bac-illus\sp. ) The plasmid according to claim 1, which is derived from YM-1 (Feikoken Bibori No. 8057)
JP62140705A 1987-06-04 1987-06-04 Novel plasmid Pending JPS63304985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62140705A JPS63304985A (en) 1987-06-04 1987-06-04 Novel plasmid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62140705A JPS63304985A (en) 1987-06-04 1987-06-04 Novel plasmid

Publications (1)

Publication Number Publication Date
JPS63304985A true JPS63304985A (en) 1988-12-13

Family

ID=15274812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62140705A Pending JPS63304985A (en) 1987-06-04 1987-06-04 Novel plasmid

Country Status (1)

Country Link
JP (1) JPS63304985A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0474965A2 (en) * 1990-09-14 1992-03-18 Takeda Chemical Industries, Ltd. DNA encoding acylamino acid racemase and its use
WO1994025606A2 (en) * 1993-04-23 1994-11-10 Sandoz Ltd. Recombinant alanine racemase and gapdh from tolypocladium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0474965A2 (en) * 1990-09-14 1992-03-18 Takeda Chemical Industries, Ltd. DNA encoding acylamino acid racemase and its use
WO1994025606A2 (en) * 1993-04-23 1994-11-10 Sandoz Ltd. Recombinant alanine racemase and gapdh from tolypocladium
WO1994025606A3 (en) * 1993-04-23 1994-12-22 Sandoz Ag Recombinant alanine racemase and gapdh from tolypocladium

Similar Documents

Publication Publication Date Title
JP3162091B2 (en) Genetic DNA encoding polypeptide having nitrile hydratase activity, transformant containing the same
JP2022535648A (en) Use of thermostable β-glucosidase in the production of gentiooligosaccharides
JPH0286779A (en) Improved type recombinant dna, transformant containing the same and production of heat-resistant glucose dehydrogenase therewith
US4612287A (en) Plasmids containing a gene coding for a thermostable pullulanase and pullulanase-producing strains of Escherichia coli and Bacillus subtilis containing the plasmids
JP2907479B2 (en) Genetic DNA encoding a polypeptide having nitrile hydratase activity, transformant containing the same, and method for producing amides
WO1996020275A1 (en) PROCESS FOR PRODUCING D-N-CARBAMOYL-α-AMINO ACID
JPS63304985A (en) Novel plasmid
WO2000055329A1 (en) Sorbitol dehydrogenase, gene encoding the same and use thereof
JPS62104580A (en) Dna-expressing heat-resistant enzyme
KR910005627B1 (en) Cloned tryptophan synthase gene and recombinant plasmid containing the same
JPS63304986A (en) Plasmid
JP4405324B2 (en) Modified sarcosine oxidase, modified sarcosine oxidase gene and method for producing modified sarcosine oxidase
JPH10248578A (en) Expression vector for bacterium of genus rhodococcus
JPS63112985A (en) Novel plasmid
JPS63112978A (en) Escherichia coli
CN117187274B (en) 2, 4-diaminobutyric acid acetyltransferase mutant gene and expression protein and application thereof
JP4485734B2 (en) 5-substituted hydantoin racemase, DNA encoding the same, recombinant DNA, transformed cell, and method for producing optically active amino acid
JPH02286077A (en) Bacillus-s-p, dna fragment containing l-lactic acid dehydrogenase gene, gene recombinant plasmid containing the same gene, l-lactic acid dehydrogenase gene and gene recombinant plasmid containing the same gene
CN115851641A (en) Fusion enzyme for efficiently producing (R) -2-hydroxy-4-phenylbutyric ethyl butyrate and application thereof
JPH0394677A (en) Production of aspartic acid racemase
JPH0698003B2 (en) DNA fragment having β-tyrosinase activity and transformed prokaryotic cell
CN116042554A (en) Dextran monooxygenase with high enzymatic activity and high thermal stability, and preparation method and application thereof
JP2655148B2 (en) A recombinant plasmid having a novel thermostable amylase gene
JP2928265B2 (en) DNA fragment, slightly acidic slightly cryogenic cellulase and method for producing the same
JPH01168287A (en) Heat-resistant sarcosine oxidase n-gene