JPS63304674A - Thin film semiconductor element and manufacture thereof - Google Patents

Thin film semiconductor element and manufacture thereof

Info

Publication number
JPS63304674A
JPS63304674A JP62139223A JP13922387A JPS63304674A JP S63304674 A JPS63304674 A JP S63304674A JP 62139223 A JP62139223 A JP 62139223A JP 13922387 A JP13922387 A JP 13922387A JP S63304674 A JPS63304674 A JP S63304674A
Authority
JP
Japan
Prior art keywords
thin film
film
solar battery
amorphous semiconductor
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62139223A
Other languages
Japanese (ja)
Inventor
Masaharu Ono
大野 雅晴
Koshiro Mori
森 幸四郎
Akira Hanabusa
花房 彰
Michio Osawa
道雄 大沢
Takashi Arita
有田 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62139223A priority Critical patent/JPS63304674A/en
Publication of JPS63304674A publication Critical patent/JPS63304674A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To cut down the cost of the element for solar battery by a method wherein a power supply using a solar battery is connected to be a DC bias power supply of a temperature sensing element. CONSTITUTION:A photoresisting film 2, lower electrodes 3, terminals 4-6 and a thin film resistor 7 are formed on a phototransmitting substrate 1; next amorphous semiconductor thin films 8, 9 with PIN junction at the substrate temperature are formed; and then upper electrodes 10, 11 as the backside electrodes are formed. The lower electrodes 3, the upper electrodes 10 isolated taking the insular shape and the amorphous semiconductor thin film 8 as common films are formed into a solar battery 12 by series connecting to multiple cells. When the solar battery of PIN junction is formed in the order of P.I.N, the terminal 5 becomes a terminal with the positive polarity and the terminal 4 becomes a terminal with the negative polarity corresponding to a circuit diagram. Consequently, a PIN diode 13 comprising single cell composed of the amorphous semiconductor film 9 and the upper electrode 11 is connected to be impressed with a bias voltage in the reverse direction by the solar battery 12 which is series-connected to multiple cells using a transparent conductive film or the photoresisting film 2 as a lower electrode. Through these procedures, the cost of the element for solar battery 12 can be cut down.

Description

【発明の詳細な説明】 2 ページ 産業上の利用分野 本発明は、太陽電池を電源とする温度計や温度検知素子
に用い、複合商品として温度計付ソーラー電卓や空調機
器用温度センサ付ワイヤレスリモコン等に用いる薄膜半
導体素子およびその製造法に関するものである。
[Detailed Description of the Invention] Page 2 Industrial Fields of Application The present invention is used for thermometers and temperature sensing elements powered by solar cells, and includes composite products such as solar calculators with thermometers and wireless remote controllers with temperature sensors for air conditioners. The present invention relates to a thin film semiconductor device used in, for example, a thin film semiconductor device and a method for manufacturing the same.

従来の技術 太陽電池材料としては、古くから単結晶シリコン、多結
晶シリコンが使われ、最近ではCdS/CdTeや非晶
質シリコン等が薄膜太陽電池用として使われている。薄
膜太陽電池の中でも水素化された非晶質シリコン薄膜太
陽電池は、ガラス・アルミナ・アルマイト拳ステンレス
・ポリイミド等の種々の基板上に250°C以下の低温
でプラズマCVD法により成膜することができる。
BACKGROUND OF THE INVENTION Monocrystalline silicon and polycrystalline silicon have long been used as solar cell materials, and recently CdS/CdTe, amorphous silicon, and the like have been used for thin-film solar cells. Among thin-film solar cells, hydrogenated amorphous silicon thin-film solar cells can be formed on various substrates such as glass, alumina, alumite stainless steel, and polyimide at low temperatures below 250°C by plasma CVD. can.

一方、電気的信号処理の容易冷温度センサとして、金属
抵抗体・熱電対・サーミスタ等が最も広く用いられてい
る。その中で熱容量を小さくして熱応答を速くする目的
で使われる薄膜温度センサーとして、高周波スパッタ法
で成膜したSiC薄膜3 パ−・ 抵抗体の抵抗温度変化を利用するサーミスタや、非晶質
シリコンと金属を接合した時の熱超電力を利用する熱電
対などが知られている。しかしながら、同一基板上に太
陽電池と温度検知素子を同一非晶質半導体薄膜を用いて
形成した従来例は無く、また、その太@電池を温度検知
素子の直流バイアス電源として接続した例も無い。
On the other hand, metal resistors, thermocouples, thermistors, etc. are most widely used as cold temperature sensors that are easy to process electrical signals. Among them, thin film temperature sensors used for the purpose of reducing heat capacity and speeding up thermal response include thermistors that utilize temperature changes in the resistance of SiC thin film 3-perilla resistors formed by high-frequency sputtering, and amorphous Thermocouples are known that utilize the thermal superpower generated when silicon and metal are bonded together. However, there is no conventional example in which a solar cell and a temperature sensing element are formed on the same substrate using the same amorphous semiconductor thin film, and there is also no example in which the thick battery is connected as a DC bias power source for the temperature sensing element.

発明が解決しようとする問題点 従来の温度検知素子は、バルク半導体素子・薄膜半導体
素子のいずれも製造コストが高い欠点があった。また太
陽電池と温度検知素子をそれぞれ別に取シ付けた、エア
コン等を制御する温度計術ソーラーリモコンの場合でも
、太陽電池と温度検知素子を取シつけて配線するコスト
や、消費電力の大きな温度検知素子を動作させるために
は大面積の太陽電池が必要であるという問題点がちった
Problems to be Solved by the Invention Conventional temperature sensing elements, both bulk semiconductor elements and thin film semiconductor elements, have the disadvantage of high manufacturing costs. In addition, even in the case of thermometer solar remote controllers that control air conditioners, etc., which have solar cells and temperature sensing elements installed separately, the cost of installing and wiring the solar cells and temperature sensing elements, and the high power consumption The problem was that a large-area solar cell was required to operate the sensing element.

本発明はこのような問題点を解決するもので、同一基板
上にプラズマCVD法等の薄膜半導体成膜法により太陽
電池と温度検知素子を形成することによ)、前記太陽電
池を電源とした温度計や温度センサを用いる。温度計術
ソーラー電卓や空調機器用温度センサ付ソーラーリモコ
ンなどに用いる薄膜半導体素子を安価に提供することを
目的とするものである。
The present invention solves these problems by forming a solar cell and a temperature sensing element on the same substrate by a thin film semiconductor deposition method such as a plasma CVD method, and using the solar cell as a power source. Use a thermometer or temperature sensor. The purpose is to provide thin film semiconductor devices at low cost for use in solar thermometer calculators, solar remote controllers with temperature sensors for air conditioners, and the like.

問題点を解決するための手段 本発明は、同一基板上にプラズマCVD法等で成膜した
水素化非晶質シリコン等の非晶質半導体薄膜の一部でP
iN接合やショットキー接合等の太陽電池を形成し、は
ぼ同一プロセスで形成可能な非晶質半導体薄膜の一部を
遮光してサーミスタ・熱電対・あるいはPiN接合の逆
方向飽和電流の温度特性等の半導体特性を応用した温度
検知素子を形成するものである。ここでの遮光手段とし
ては、電子ビーム蒸着やスパッタリングで成膜したCr
やN i Cr等の連光膜を必要に応じてSfOや5j
3N4で絶縁したものや、不透明のエポキシ樹脂による
パッシベーション膜を用いる。
Means for Solving the Problems The present invention provides P in a part of an amorphous semiconductor thin film such as hydrogenated amorphous silicon formed on the same substrate by a plasma CVD method or the like.
Forming solar cells such as iN junctions and Schottky junctions, and shielding part of the amorphous semiconductor thin film that can be formed in almost the same process, we can measure the temperature characteristics of the reverse saturation current of thermistors, thermocouples, or PiN junctions. This is to form a temperature sensing element that applies semiconductor characteristics such as. As a light shielding means here, a Cr film formed by electron beam evaporation or sputtering is used.
If necessary, a continuous light film such as N i Cr or SfO or 5j
Use 3N4 insulation or a passivation film made of opaque epoxy resin.

太陽電池と温度検知素子のデバイス形成はほぼ共通のプ
ラズマCVD工程と電極蒸着工程とマスクプロセスで行
なうことができ、非晶質半導体薄5・・−ジ 嘆の成膜も共通の装置で同時成膜または2回の成膜工程
で行なうことができる。太陽電池と温度検知素子の電気
接続や薄膜抵抗回路の形成も同じマスクプロセスで同時
に実現することができる。
Device formation for solar cells and temperature sensing elements can be performed using almost the same plasma CVD process, electrode deposition process, and mask process, and the formation of amorphous semiconductor thin films can also be performed simultaneously using common equipment. This can be done in a film or two film formation steps. Electrical connections between solar cells and temperature sensing elements and formation of thin film resistor circuits can be simultaneously realized using the same mask process.

作  用 半導体接合部をもち、遮光していない非晶質半導体薄膜
は光の入射により発生したフォトキャリアが半導体接合
部の内部電界で分離して光起電力を発生し太陽電池とし
て機能する。
An amorphous semiconductor thin film that has a working semiconductor junction and is not light-shielded functions as a solar cell by generating photocarriers generated by incident light and separating them by the internal electric field of the semiconductor junction to generate photovoltaic force.

一方、遮光された非晶質半導体薄膜は半導体としての種
々の温度特性たとえばサーミスタ特性や順方向電流温度
特性や逆方向飽和電流温度特性などを電気信号として出
力する。1層または不純物を微量ドープしたi層にプレ
ナー型の電極を蒸着し、直流電圧を印加すると温度によ
り抵抗値の変化するサーミスタとし又動作する。またP
iN接合に逆バイアス電圧を印加すると逆方向飽和電流
が温度上昇に伴なうキャリア濃度の平方根に比例して変
化する。この場合のいずれも非晶質半導体薄膜が高抵抗
であるため信号消費電流が小さく、61・−ン 太陽電池を用いた直流電源で上記プレナー型の直流電圧
やPiN接合の逆バイアス電圧を印加することが容易に
可能となる。
On the other hand, the light-shielded amorphous semiconductor thin film outputs various temperature characteristics as a semiconductor, such as thermistor characteristics, forward current temperature characteristics, and reverse saturation current temperature characteristics, as electrical signals. A planar electrode is deposited on a single layer or an i-layer doped with a small amount of impurity, and when a DC voltage is applied, it functions as a thermistor whose resistance value changes depending on the temperature. Also P
When a reverse bias voltage is applied to the iN junction, the reverse saturation current changes in proportion to the square root of the carrier concentration as the temperature rises. In both cases, the signal current consumption is small because the amorphous semiconductor thin film has high resistance, and the planar type DC voltage or reverse bias voltage of the PiN junction is applied using a DC power supply using a 61-inch solar cell. This becomes possible easily.

実施例 本発明による代表的実施例の斜視図を第1図に示し、2
次電池と定電圧ダイオードを組み合わせた太陽電池電源
を用いる本発明による実施例の回路図を第2図に示す。
Embodiment A perspective view of a typical embodiment according to the present invention is shown in FIG.
FIG. 2 shows a circuit diagram of an embodiment of the present invention using a solar battery power source that combines a secondary battery and a constant voltage diode.

第1図において、厚み0.1〜2聰のガラスからなる透
光性基板1の上に膜厚200OA以上のCrまたはN 
i Crの遮光膜2と厚み700八〜2100人の5%
S n O2をドープした工n203からなる透明導電
性の下部電極3・端子4・端子5・端子6・薄膜抵抗子
を約1O−4Torrの酸素分圧をもつ真空蒸着法かス
パッタリング法にょシ形成した。次に、RFグロー放電
を用いたプラズマCVD法か光CVD法によ’j) S
 1)(411GeH4’I S 12H6等を主な原
料とするH2希釈の混合ガスを真空容器中で分解し、1
50°C〜250°Cの基板温度でPiN接合を持つ非
晶質半導体薄膜8・9を0.4μ〜1μ7・・−ジ の厚みに形成した。100八〜150人の膜厚のP層は
H2で希釈したB2H6ガスを、150人〜300人の
膜厚のN層はH2で希釈したPH3ガスを不純物ガスと
してS z H4等に対し0.1%〜2係のB2H6や
PH3濃度で混合し、ドーピングした。
In FIG. 1, a Cr or N film with a thickness of 200 OA or more is deposited on a transparent substrate 1 made of glass with a thickness of 0.1 to 2 layers.
i Cr light shielding film 2 and thickness 7008~2100 5%
A transparent conductive lower electrode 3, a terminal 4, a terminal 5, a terminal 6, and a thin film resistor made of SN203 doped with SnO2 are formed using a vacuum evaporation method or a sputtering method with an oxygen partial pressure of about 1O-4 Torr. did. Next, a plasma CVD method using RF glow discharge or a photoCVD method is used.
1) (411GeH4'I S 12H6 etc. is the main raw material and H2 diluted mixed gas is decomposed in a vacuum container, 1
Amorphous semiconductor thin films 8 and 9 having PiN junctions were formed at a substrate temperature of 50° C. to 250° C. to a thickness of 0.4 μm to 1 μ7. The P layer with a thickness of 1008 to 150 people uses B2H6 gas diluted with H2, and the N layer with a thickness of 150 to 300 people uses PH3 gas diluted with H2 as an impurity gas. Doping was performed by mixing B2H6 and PH3 at a concentration of 1% to 2%.

更に裏面電極として厚み2000八〜6000八〇AJ
2やTiあるいはこれらを積層した上部電極10.11
を真空蒸着法かスパッタリング法によシ形成した。
Furthermore, as a back electrode, the thickness is 20008~600080AJ.
2, Ti, or a stack of these upper electrodes 10.11
was formed by vacuum evaporation or sputtering.

これらの薄膜はメタルマスクによって膜形成時に容易に
パターニングすることができる。
These thin films can be easily patterned using a metal mask during film formation.

島状に分離された下部電極3と上部電極10と共通膜の
非晶質半導体薄膜8とは複数のセルを直列接続して太陽
電池12を形成した。第1図でP・i−Nの順序でPi
N接合の太陽電池を形成した場合、端子5は正極の端子
となシ、端子4は負極の端子となって第2図の回路図と
対応する。従って、透明導電膜または遮光膜2を下部電
極として非晶質半導体膜9と上部電極11で構成される
単セルのPiN ダイオード13は複数セル直列接続の
太陽電池12で逆方向にバイアス電圧が印加されるよう
接続される。非晶質半導体薄膜のPiNダイオード1セ
ルの逆方向飽和電流が安定するのは通常の1μm以下の
膜厚では1■〜1ovの範囲である。1v以下では飽和
が不充分であり、1o■以上では降伏電流が流れ温度検
知素子として望ましい動作をしない。一方弁晶質太陽電
池1セルの開放電圧は2oofl工下で約o−eV 、
AMl(100mW/crrt )下で約o、85vで
あシ、動作電圧は開放電圧の60%〜70%の点を用い
るから1セル当シの動作電圧は0.36 V〜0.6■
である。
A solar cell 12 was formed by connecting a plurality of cells in series using the lower electrode 3 and the upper electrode 10 separated into island shapes and the amorphous semiconductor thin film 8 as a common film. In Figure 1, Pi in the order P・i−N
When an N-junction solar cell is formed, the terminal 5 becomes a positive terminal, and the terminal 4 becomes a negative terminal, corresponding to the circuit diagram in FIG. 2. Therefore, a single-cell PiN diode 13 composed of an amorphous semiconductor film 9 and an upper electrode 11 with a transparent conductive film or a light-shielding film 2 as a lower electrode is a solar cell 12 connected in series with a plurality of cells, and a bias voltage is applied in the opposite direction. connected so that The reverse saturation current of one cell of an amorphous semiconductor thin film PiN diode is stable in the range of 1 to 1 ov when the film thickness is usually 1 μm or less. If it is less than 1V, saturation is insufficient, and if it is more than 1O2, a breakdown current will flow and the temperature sensing element will not operate as desired. On the other hand, the open circuit voltage of one crystalline solar cell is approximately o-eV under 2 oofl construction,
The operating voltage is about 85 V under AMl (100 mW/crrt), and the operating voltage is 60% to 70% of the open circuit voltage, so the operating voltage per cell is 0.36 V to 0.6 V.
It is.

従って、太陽電池の直列接続セル数が温度検知素子の直
列接続セル数の3倍以上であれば、逆方向電圧1■以上
の安定な飽和電流値が得られる。
Therefore, if the number of series-connected cells of the solar cell is three times or more the number of series-connected cells of the temperature sensing element, a stable saturation current value with a reverse voltage of 1■ or more can be obtained.

本発明において第1図の実施例の様に電源側である太陽
電池と電源を利用する側である温度検知素子を同一基板
上で接続配線する場合、第2図に示す回路図の様に2次
電池14と定電圧ダイオード15の間に逆流防止ダイオ
ードを用いない構成も可能である。非晶質薄膜の太陽電
池12は2次電池14で暗時に順方向にバイアスされて
も順方向9パ−7 の漏れ電流が小さいため無視して使うことができ、逆流
防止ダイオードを必要としない。また逆流防止ダイオー
ドの電圧ロスo、3v−0,4Vを補償する必要がなく
、より小型の太陽電池設計が可能になる。
In the present invention, when the solar cell on the power source side and the temperature sensing element on the side that uses the power source are connected and wired on the same board as in the embodiment shown in FIG. A configuration in which no backflow prevention diode is used between the secondary battery 14 and the constant voltage diode 15 is also possible. Even if the amorphous thin film solar cell 12 is forward biased by the secondary battery 14 in the dark, the leakage current in the forward direction is small, so it can be ignored and does not require a backflow prevention diode. . Furthermore, there is no need to compensate for the voltage loss o, 3v-0, 4V of the backflow prevention diode, making it possible to design a more compact solar cell.

第3図に本発明による別の実施例を示す。第1図と同様
の方法で厚み0.2mm〜0.5mmのアルマイト基板
や厚み0.5mm〜2mmのセラミックス基板の導光性
絶縁基板16の上に厚み2000八〜1μのCrからな
る金属下部電極17・18を設け、H2で希釈したS 
x H4をRFグロー放電によ5て分解し基板温度15
00C〜25o0Cで200八〜400への膜厚のP層
・0.4μ〜1μのi層@10o入〜20〇への膜厚の
N層を順次形成しPiN接合を有する非晶質半導体薄膜
21を成膜した後その上に透明電極22・23争24・
25 @26を蒸着しオーム接触を得た。次にCF4と
02の混合ガスを用いたドライエツチングで温度検知素
子のN層と1層の一部を除去し非晶質半導体薄膜2oが
ほぼi層として機能するよう形成した。下部の2層10
”−′ はBが拡散により減少し高抵抗化することができる。透
明電極23・24の端子部となる部分を除いて温度検知
素子となる非晶質半導体薄膜2Qの上には遮光性樹脂を
、太陽電池の上には透明樹脂をパッシベーションとして
スクリーン印刷した。
FIG. 3 shows another embodiment according to the invention. In the same manner as shown in FIG. 1, a metal lower part made of Cr with a thickness of 2000mm to 1μ is placed on the light-guiding insulating substrate 16, such as an alumite substrate with a thickness of 0.2 mm to 0.5 mm or a ceramic substrate with a thickness of 0.5 mm to 2 mm. Electrodes 17 and 18 were provided, and S diluted with H2
x H4 is decomposed by RF glow discharge and the substrate temperature is 15.
Amorphous semiconductor thin film having a PiN junction by sequentially forming a P layer with a thickness of 2008 to 400 at 0C to 25oC, an I layer of 0.4μ to 1μ @ 10o to an N layer with a thickness of 200 After forming a film 21, transparent electrodes 22 and 23 and 24 and
25@26 was deposited to obtain ohmic contact. Next, a part of the N layer and the first layer of the temperature sensing element were removed by dry etching using a mixed gas of CF4 and 02, and the amorphous semiconductor thin film 2o was formed so as to function almost as an i layer. bottom two layers 10
``-'' can increase the resistance by reducing B through diffusion.A light-shielding resin is placed on the amorphous semiconductor thin film 2Q, which serves as the temperature sensing element, except for the terminal portions of the transparent electrodes 23 and 24. A transparent resin was screen printed on top of the solar cell as passivation.

第4図は、第3図の実施例に2次電池26と定電圧ダイ
オード2了を接続した回路図であシ、太陽電池28と温
度検知素子29のほか透明電極26のパターンで形成し
た電流変化読み出し用の薄膜抵抗30を接続した。第3
図の実施例において非晶質半導体薄膜2oは高抵抗であ
るため消費電力の少ない温度検知素子として機能し、第
1図の実施例と同様に太陽電池を直流電源として用いる
のに適している。
FIG. 4 is a circuit diagram in which a secondary battery 26 and a constant voltage diode 2 are connected to the embodiment shown in FIG. A thin film resistor 30 for reading out changes was connected. Third
In the embodiment shown in the figure, the amorphous semiconductor thin film 2o has a high resistance, so it functions as a temperature sensing element with low power consumption, and is suitable for using a solar cell as a DC power source as in the embodiment shown in FIG.

発明の効果 本発明によれば、同一基板上に太陽電池と温度検知素子
が形成でき、あるいは同一製造プロセスで同時に太陽電
池と温度検知素子とが製造できて非常に低コストである
Effects of the Invention According to the present invention, a solar cell and a temperature sensing element can be formed on the same substrate, or a solar cell and a temperature sensing element can be manufactured simultaneously in the same manufacturing process, resulting in extremely low cost.

また、非晶質半導体薄膜を用いるため温度検知11” 素子の消費電流が小さくなシ、同一基板上の小面積の太
陽電池を電源として用いることが可能であシ、接続回路
や薄膜抵抗素子も同一基板上に形成することができるた
め低コストで信頼性か高いという、すぐれた効果が得ら
れる。
In addition, since an amorphous semiconductor thin film is used, the current consumption of the temperature sensing 11" element is small, a small solar cell on the same substrate can be used as a power source, and connection circuits and thin film resistance elements can also be used. Since they can be formed on the same substrate, excellent effects such as low cost and high reliability can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による代表的実施例を示す斜視図、第2
図は第1図の実施例を用いた電源回路を含む回路図、第
3図は本発明による別の実施例の斜視図、第4図は第3
図の実施例を用いた電源回路を含む回路図である。 1・・・透光性基板、2・・−遮光膜、3・・・下部電
極、4,5.6−・−・端子、7・・−抵抗、8,9・
・−非晶質半導体薄膜、10,11−・−上部電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名11
11、 lイー−−]]二1−≧4略ろ子it4−−2
犬覧蜆
FIG. 1 is a perspective view showing a typical embodiment according to the present invention;
The figure is a circuit diagram including a power supply circuit using the embodiment of FIG. 1, FIG. 3 is a perspective view of another embodiment according to the present invention, and FIG.
FIG. 3 is a circuit diagram including a power supply circuit using the illustrated embodiment. DESCRIPTION OF SYMBOLS 1... Translucent substrate, 2...-Light-shielding film, 3... Lower electrode, 4,5.6--Terminal, 7...-Resistor, 8,9-
-Amorphous semiconductor thin film, 10, 11-...Top electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person11
11, lE--]]21-≧4 it4--2
Dog viewing

Claims (3)

【特許請求の範囲】[Claims] (1)基板上に形成した非晶質半導体薄膜の一部で太陽
電池を構成する一方、前記基板上に遮光して形成した非
晶質半導体薄膜の一部で温度検知素子を構成し、上記太
陽電池を用いた電源が前記温度検知素子の直流バイアス
電源となるよう接続したことを特徴とする薄膜半導体素
子。
(1) A part of the amorphous semiconductor thin film formed on the substrate constitutes a solar cell, while a part of the amorphous semiconductor thin film formed on the substrate in a shielded manner constitutes a temperature sensing element, and A thin film semiconductor device, characterized in that a power source using a solar cell is connected to serve as a DC bias power source for the temperature sensing device.
(2)温度検知素子が太陽電池と同一半導体接合部を有
し、かつ太陽電池によって逆バイアスされた逆方向飽和
電流の温度特性を有している特許請求の範囲第1項記載
の薄膜半導体素子。
(2) The thin film semiconductor device according to claim 1, wherein the temperature sensing element has the same semiconductor junction as the solar cell and has temperature characteristics of a reverse saturation current reversely biased by the solar cell. .
(3)同一基板上にプラズマCVD法で同時に形成した
半導体接合部を有する非晶質半導体薄膜の一部が太陽電
池を形成し、他の一部が温度検知素子を形成することを
特徴とする薄膜半導体素子の製造法。
(3) A part of the amorphous semiconductor thin film having a semiconductor junction formed simultaneously on the same substrate by a plasma CVD method forms a solar cell, and the other part forms a temperature sensing element. A method for manufacturing thin film semiconductor devices.
JP62139223A 1987-06-03 1987-06-03 Thin film semiconductor element and manufacture thereof Pending JPS63304674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62139223A JPS63304674A (en) 1987-06-03 1987-06-03 Thin film semiconductor element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62139223A JPS63304674A (en) 1987-06-03 1987-06-03 Thin film semiconductor element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS63304674A true JPS63304674A (en) 1988-12-12

Family

ID=15240367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62139223A Pending JPS63304674A (en) 1987-06-03 1987-06-03 Thin film semiconductor element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63304674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131658A (en) * 2011-12-22 2013-07-04 Hitachi Ltd Solar battery and photovoltaic power generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131658A (en) * 2011-12-22 2013-07-04 Hitachi Ltd Solar battery and photovoltaic power generation system

Similar Documents

Publication Publication Date Title
US4724356A (en) Infrared display device
CN100374838C (en) Monolithic silicon based SOI high-temperature low-drift pressure sensor
US5100479A (en) Thermopile infrared detector with semiconductor supporting rim
JPH0510834B2 (en)
JPH0449789B2 (en)
CN108844652B (en) MEMS gas sensor chip, sensor and preparation method of sensor
JPS6030163A (en) Thin film solar cell module
US20110155219A1 (en) Thin film solar cell and method for fabricating the same
JP2641800B2 (en) Solar cell and method of manufacturing the same
JPS63304674A (en) Thin film semiconductor element and manufacture thereof
US4754254A (en) Temperature detector
JPS5910593B2 (en) Method of manufacturing photovoltaic device
CN103077994A (en) Polysilicon and cadmium telluride film double-knot solar panel and preparation process
US20050016582A1 (en) Solar cell and method of manufacturing the same
JPS5899647A (en) Solar heat collector with solar cell
JP2758741B2 (en) Photoelectric conversion element and method for manufacturing the same
JP2522024B2 (en) Method for manufacturing photoelectric conversion element
CN211905185U (en) Constant temperature structure for high-performance humidity detection device
JPH0125234B2 (en)
CN115084296B (en) Composite self-driven zinc oxide homojunction ultraviolet detector and preparation method thereof
JP2003031831A (en) Photovoltaic element and its manufacturing method
CN111239208A (en) Constant temperature structure for high-performance humidity detection device and preparation method
JPS6016473A (en) Non-linear resistance element
JPS5778135A (en) Semiconductor device and manufacture thereof
JP2002299658A (en) Photovoltaic element