JPS63304614A - Semiconductor epitaxy method - Google Patents

Semiconductor epitaxy method

Info

Publication number
JPS63304614A
JPS63304614A JP13921487A JP13921487A JPS63304614A JP S63304614 A JPS63304614 A JP S63304614A JP 13921487 A JP13921487 A JP 13921487A JP 13921487 A JP13921487 A JP 13921487A JP S63304614 A JPS63304614 A JP S63304614A
Authority
JP
Japan
Prior art keywords
substrate
growth
epitaxial growth
solution
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13921487A
Other languages
Japanese (ja)
Inventor
Minoru Kubo
実 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13921487A priority Critical patent/JPS63304614A/en
Publication of JPS63304614A publication Critical patent/JPS63304614A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain an epitaxial layer of good crystal properties by providing a solution bath having a solution which allows the melting or liquid phase epitaxy of a substrate, and performing an etching or liquid phase epitaxial growth before and after the vapor phase epitaxial growth, thereby enabling the defects of the interface and the interface level to be easily reduced. CONSTITUTION:In a furnace core tube 3 for growth of an organic metal vapor phase epitaxy (MOVPE) method, an InP substrate 1 is placed on a susceptor 2 made of carbon. Before the growth, it is heated by a high-frequency coil 4 to the growth temperature, e.g., 650 deg.C while a H2 gas or a mixed gas of PH3-H2 for preventing the elimination of P of the substrate 1 is made to flow. When the temperature of In 5 and the temperature of the susceptor 2 including the substrate 1 have stabilized, a slider 8 is moved, and by this movement a partitioning plate 7 drops into a groove 9 for the partitioning, whereby the solution of the In 5 flows into a liquid bath 10 passing over the substrate 1. the substrate 1 is melted back by about-2mum by being brought into contact with the In 5, and thereafter the supply of the raw material gas is continuously begun to apply a vapor phase epitaxy to the surface. With this, an epitaxial growth layer of a reduced defect density and interface level can stably and simply be formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体基板とエピタキシャル成長層の界面が
、欠陥密度、界面準位等が少ないものを安定かつ簡便に
形成することができる半導体エピタキシャル成長方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor epitaxial growth method that can stably and easily form an interface between a semiconductor substrate and an epitaxial growth layer with low defect density, interface states, etc. It is.

従来の従来 従来の技術を、有機金属化合物を原料に用いた有機金属
気相成長法(Metal Organic Vapor
2/、−。
The conventional conventional technique has been replaced with the metal organic vapor phase epitaxy method using an organometallic compound as a raw material.
2/, -.

Phase Epitaxy ;略してMOVPE法)
によるInP基板上へのエピタキシャル成長を例に説明
する。第6図にMOVPE法の一例を示す。InP基板
1は、カーボン等によるサセプター2上に、石英炉芯管
3内に設置されている。InP基板1上にIn1.−x
GaxAsyPl−ア層を成長する場合は原料ガスを供
給し、高周波コイル4による加熱で熱分解反応を利用し
てエピタキシャル成長を行う。
Phase Epitaxy (abbreviated as MOVPE method)
An example of epitaxial growth on an InP substrate will be described. FIG. 6 shows an example of the MOVPE method. An InP substrate 1 is placed inside a quartz furnace core tube 3 on a susceptor 2 made of carbon or the like. In1. -x
When growing the GaxAsyPl-A layer, a raw material gas is supplied, and epitaxial growth is performed using thermal decomposition reaction by heating with the high frequency coil 4.

原料ガスはトリエチルインジウム((C2H6)3■n
The raw material gas is triethyl indium ((C2H6)3■n
.

TEI)、)リエチルガリウム((C2H6)3Ga、
TEG)。
TEI),) ethyl gallium ((C2H6)3Ga,
TEG).

ホスフィン(PH3)、アルシン(A s H3)を用
い、組成X、  Vによってこれらの原料ガスの供給量
を調整、制御する。InP基板1上にエピタキシャル成
長を行う際、基板表面の汚染または欠陥等を除去するた
めに、成長を同一系内で気相により成長直前にエツチン
グを施す事も行なわれている。この方法は第S図に示し
た系内に基板を設置した後、三塩化リン(PCl3)や
塩化水素(HCn)を供給し、基板表面をエツチングす
ることにより行うものである。その後、エツチング用ガ
スを排気し、成長31、 。
Using phosphine (PH3) and arsine (A s H3), the supply amounts of these raw material gases are adjusted and controlled by the compositions X and V. When performing epitaxial growth on the InP substrate 1, in order to remove contamination or defects on the substrate surface, etching is performed in the same system using a vapor phase immediately before the growth. This method is carried out by placing a substrate in the system shown in FIG. S and then supplying phosphorus trichloride (PCl3) or hydrogen chloride (HCn) to etch the surface of the substrate. After that, the etching gas is exhausted and the growth 31.

用原料ガスを供給し、エピタキシャル成長を行う。Supplies raw material gas and performs epitaxial growth.

しかしこのようなエツチングは、腐蝕性の高いガスを用
いるために、成長装置系に及ぼす影響が大きい。
However, since such etching uses a highly corrosive gas, it has a large effect on the growth apparatus system.

発明が解決しようとする問題点 気相エピタキシャル成長では、基板とエピタキシャル成
長層界面が重要であり、そのため従来の技術で示したよ
うなエツチングも行なわれている。
Problems to be Solved by the Invention In vapor phase epitaxial growth, the interface between the substrate and the epitaxially grown layer is important, and therefore etching as shown in the prior art is also performed.

しかしエツチングのために腐蝕性の高いガスを用いると
、成長系内の汚染や残留によるエピタキシャル層への不
純物としての取り込み、欠陥の生成が有り、その制御が
難しいものである。またガスの配管、流量制御系が腐蝕
のため装置のメンテナンス上、多大な労力がかかるもの
である。しかし、この様なエツチングを施さない場合は
、成長前処理の影響や基板表面の欠陥、また昇温時の基
板表面の熱損傷、基板内不純物の昇温による表面析出等
の影響によシ、基板とエピタキシャル層界面に、欠陥や
界面準位が増加したシ、基板表面の欠陥や表面に析出し
た不純物がそのままエピタキシャル成長層に取り込1れ
てしまうという問題があった。
However, when a highly corrosive gas is used for etching, contamination or residue within the growth system may be incorporated into the epitaxial layer as impurities and defects may be generated, which is difficult to control. Furthermore, because the gas piping and flow control system are corroded, it takes a great deal of effort to maintain the equipment. However, if such etching is not performed, it may be affected by the effects of pre-growth treatment, defects on the substrate surface, thermal damage to the substrate surface during temperature rise, surface precipitation of impurities in the substrate due to temperature rise, etc. There has been a problem that defects and interface states have increased at the interface between the substrate and the epitaxial layer, and defects on the substrate surface and impurities precipitated on the surface are taken into the epitaxial layer as they are.

このようなエピタキシャル基板を用いて素子を形成する
と、電気的にも光学的にも著しい特性劣化が観測される
ものである。
When an element is formed using such an epitaxial substrate, significant deterioration in electrical and optical characteristics is observed.

また気相エピタキシャル成長は、液相エピタキシャル成
長と比較すると成長速度が遅く、例えばInP基板上へ
のInPのエピタキシャル成長については、液相エピタ
キシャル成長では1μm/min程度は可能であるが、
MOVPE法では0.06μm/m程度である。超格子
構造等超薄膜の形成には、気相エピタキシャル成長はそ
の薄膜制御性の良さから適しているが、数μmの厚膜を
形成するには、時間がかかり過ぎるためエピタキシャル
層間や基板との界面における不純物等の固相拡散や欠陥
の形成、また原料ガスの長時間に渡る供給での流量変動
による組成変動等の問題が生じやすかった。そのため、
厚膜を形成するときは液相エピタキシャル成長で形成し
、薄膜は気相エピタキシャル成長で交互に成長する手法
がある。しかし、成長力法切9換え時には、基板は各成
長系から出6/、、−7 さなければならず、各成長前の基板表面処理の影響を受
は易くなり、前述の様なエピタキシャル層界面における
欠陥、界面準位、昇温による熱損傷や不純物等の析出等
の問題が生じるものである。
Also, the growth rate of vapor phase epitaxial growth is slower than that of liquid phase epitaxial growth. For example, for InP epitaxial growth on an InP substrate, liquid phase epitaxial growth can grow at a rate of about 1 μm/min.
In the MOVPE method, it is about 0.06 μm/m. Vapor phase epitaxial growth is suitable for forming ultra-thin films such as superlattice structures due to its good thin film controllability, but it takes too much time to form a thick film of several μm, so it is difficult to form layers between epitaxial layers or at the interface with the substrate. Problems such as solid-phase diffusion of impurities, formation of defects, and composition fluctuations due to flow rate fluctuations during long-term supply of raw material gas are likely to occur. Therefore,
There is a method in which thick films are formed by liquid phase epitaxial growth, and thin films are grown alternately by vapor phase epitaxial growth. However, when switching the growth force method, the substrate must be taken out of each growth system, and the substrate surface treatment before each growth is easily affected, and the epitaxial layer as described above is Problems arise such as defects at the interface, interface states, thermal damage due to temperature rise, and precipitation of impurities.

本発明はかかる問題点を鑑みてなされたもので、気相エ
ピタキシャル成長において、良好な界面状態を安定かつ
簡便に形成できるエピタキシャル成長方法を提供するこ
とを目的としている。
The present invention has been made in view of these problems, and an object of the present invention is to provide an epitaxial growth method that can stably and easily form a good interface state in vapor phase epitaxial growth.

問題点を解決するための手段 前述の問題点を解決するために本発明は、エピタキシャ
ル成長同一系内に、基板を溶融もしくは液相エピタキシ
ャル可能な溶液を有する溶液槽を設け、同一系内での気
相エピタキシャル成長前後に基板表面の溶融によるエツ
チングもしくは液相エピタキシャル成長を行う事を特徴
としている。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a solution bath containing a solution capable of melting the substrate or performing liquid phase epitaxial growth within the same epitaxial growth system, and It is characterized by performing etching by melting the substrate surface or performing liquid phase epitaxial growth before and after phase epitaxial growth.

作  用 本発明の技術的手段による作用は次のようになる。エピ
タキシャル成長同一系内で、気相エピタキシャル成長前
に基板表面を溶融してエツチングする事により、基板表
面の残留不純物、昇温時の6ヘー、′ 熱損傷層、基板中不純物の表面析出等を除去する事がで
き、その後連続に気相エピタキシャル成長を行なう事が
可能である。また、気相エピタキシャル成長前後に、同
一成長系内の成長用溶液により、液相エピタキシャル成
長する事が可能である。
Effects The effects of the technical means of the present invention are as follows. By melting and etching the substrate surface before vapor phase epitaxial growth in the same epitaxial growth system, residual impurities on the substrate surface, heat damage layer during temperature rise, thermally damaged layer, surface precipitation of impurities in the substrate, etc. are removed. After that, it is possible to perform continuous vapor phase epitaxial growth. Further, before and after vapor phase epitaxial growth, liquid phase epitaxial growth can be performed using a growth solution in the same growth system.

実施例 本発明の実施例としてMOVPE法によりInP基板上
に■n1−XA5yP1−アをエピタキシャル成長する
場合について図面に従って説明する。
EXAMPLE As an example of the present invention, a case in which n1-XA5yP1-A is epitaxially grown on an InP substrate by MOVPE will be described with reference to the drawings.

InP基板表面を溶融するエツチング(以下メルトバッ
クと略する)後、気相エピタキシャル成長を行う方法の
概略図を第1図に示す。MOVPE法の成長用炉芯管3
内で、InP基板1をカーボン製サセプター2上に第1
図(a)に示す様に設置する。
FIG. 1 shows a schematic diagram of a method for performing vapor phase epitaxial growth after etching to melt the InP substrate surface (hereinafter referred to as meltback). Furnace tube for growth of MOVPE method 3
Inside, an InP substrate 1 is first placed on a carbon susceptor 2.
Install as shown in Figure (a).

このときサセプター2にはIn5のための溶液槽6と溶
液槽の隔壁板7を有し、下部に隔壁板用溝9と溶液槽1
oを有するスライダー8を設ける。成長前には、原料ガ
スは供給せずにH2ガスもしくはInP基板のP脱離防
止の為のPH3−H2の混合ガスを流しながら、成長温
度例えば650℃まで高7/、 7 周波コイル4より加熱する。このときIn5は溶液とな
り溶液槽6内に待機する。In5の温度及び基板1を含
むサセプタ2の温度が安定したら、スライダ8を第1図
(b)に示す様に移動させる。スライダ8の移動により
溶液槽の隔壁板子は隔壁用溝9に落下し、In5の溶液
は基板1上を通過しながら溶液槽1oに流れ込む。基板
1はIn5との接触により〜2μm程度溶メルトバック
され、その後連続して原料ガスの供給を始め表面上に気
相エビPH3を10cV袖、 A s H3を1.4c
c/mmの原料ガスを供給する。ここでTEIとTEG
は各々H2でバブリングして供給するH2ガスの流量を
示す。
At this time, the susceptor 2 has a solution tank 6 for In5 and a partition plate 7 for the solution tank, and a partition plate groove 9 and a solution tank 1 at the bottom.
A slider 8 having o is provided. Before the growth, the growth temperature is raised to, for example, 650° C. from the high 7/7 frequency coil 4 while flowing H2 gas or a mixed gas of PH3-H2 to prevent P desorption from the InP substrate without supplying the source gas. Heat. At this time, In5 becomes a solution and waits in the solution tank 6. When the temperature of In5 and the temperature of the susceptor 2 containing the substrate 1 are stabilized, the slider 8 is moved as shown in FIG. 1(b). As the slider 8 moves, the partition plate of the solution tank falls into the partition wall groove 9, and the In5 solution flows into the solution tank 1o while passing over the substrate 1. The substrate 1 is melted back by about 2 μm due to contact with In5, and then the raw material gas is continuously supplied, and 10 cV of vapor phase shrimp PH3 and 1.4 c of A s H3 are applied to the surface.
C/mm raw material gas is supplied. Here TEI and TEG
Each indicates the flow rate of H2 gas supplied by bubbling with H2.

InP基板1は、昇温中表面に熱による損傷すなわちP
の脱離やそれに伴う欠陥の生成が生じ易く、また不純物
を添加したものではその不純物が表面に析出もしくは表
面での濃度が異常に高くなる場合がある。
The InP substrate 1 suffers thermal damage, that is, P, on the surface during temperature rise.
Desorption and associated defects are likely to occur, and if impurities are added, the impurities may precipitate on the surface or the concentration at the surface may become abnormally high.

第2図に熱処理前後のFeを添加したInP基板のFe
の濃度の深さ分布を示す。熱処理前は深さ分布が一様な
Feの濃度が、熱処理後は表面で大きくなる。この状態
でエピタキシャル成長を施すと、基板との界面で高濃度
のFeによる欠陥、界面準位が生成され、著しく結晶性
が劣化する。しかし前述の本発明による方法によシ基板
表面から〜2μm程度メルトバックでエツチングされ、
Fe濃度が均一な表面を形成でき、その後連続にエピタ
キシャル成長を行う事によシ、良好な界面を有するエピ
タキシャル層を形成する事が可能となる。
Figure 2 shows the Fe-added InP substrate before and after heat treatment.
The depth distribution of the concentration of is shown. Before the heat treatment, the Fe concentration has a uniform depth distribution, but after the heat treatment, it becomes larger at the surface. If epitaxial growth is performed in this state, defects and interface states due to the high concentration of Fe will be generated at the interface with the substrate, and the crystallinity will be significantly deteriorated. However, by the method according to the present invention described above, the etching process is performed by melting back approximately 2 μm from the substrate surface.
By forming a surface with a uniform Fe concentration and subsequently performing epitaxial growth, it becomes possible to form an epitaxial layer having a good interface.

またMoVPE法では、有機金属を熱分解させる過程に
おいて、中間生成物やクラスタ状の粒子を形成する場合
があり、それがエピタキシャル層中に導入され欠陥を生
成するが、本発明の方法ではこれらの粒子が第1図(b
)の溶液槽10中のIn 5溶液によって基板到達前に
吸着され、欠陥の生成を抑制する事が可能である。
In addition, in the MoVPE method, intermediate products and cluster-like particles may be formed during the process of thermally decomposing the organometallic material, which are introduced into the epitaxial layer and generate defects, but the method of the present invention eliminates these. The particles are shown in Figure 1 (b
) is adsorbed by the In 5 solution in the solution tank 10 before it reaches the substrate, making it possible to suppress the generation of defects.

次に本発明の第2の実施例であるエピタキシャル成長方
法を第3図に示すMOVPE法成長用炉芯管3内にIn
P基板1を設置するスライダ8と、メルトバックのだめ
の溶液11と液相エピタキシャル成長(以下LPE成長
と略する)用溶液12を有する溶液ホルダ13を設ける
。高周波コイル4で成長温度例えば660℃iで昇温し
、LPE成長用溶液12が十分溶融したのち、InP基
板1はスライダ8を移動する事により、メルトバック用
溶液11とLPE成長用溶液12を順次通過し、基板表
面のメルトバックと、LPE成長によるエピタキシャル
層が形成され、さらに溶液ホルダ13から基板表面が露
出して、原料ガスの供給により気相エピタキシャル成長
が行なわれる。捷だ所望の気相エピタキシャル成長後、
基板1をスライダ8の移動によりLPE成長用溶液12
に接触させる事により、交互に液相と気相によるエピタ
キシャル成長が可能となるものである。成長条件として
は、昇温時初めはH2ガスを617mm供給し、660
℃lで60分間溶液の溶し込みを行う。
Next, the epitaxial growth method, which is the second embodiment of the present invention, is carried out in the MOVPE method growth furnace core tube 3 shown in FIG.
A slider 8 on which the P substrate 1 is placed, and a solution holder 13 having a melt-back reservoir solution 11 and a solution 12 for liquid phase epitaxial growth (hereinafter abbreviated as LPE growth) are provided. After the growth temperature is raised to, for example, 660°C i using the high-frequency coil 4 and the LPE growth solution 12 is sufficiently melted, the InP substrate 1 moves the slider 8 to melt the meltback solution 11 and the LPE growth solution 12. The substrate surface is melted back and an epitaxial layer is formed by LPE growth.The substrate surface is further exposed from the solution holder 13, and vapor phase epitaxial growth is performed by supplying source gas. After the desired vapor phase epitaxial growth,
The LPE growth solution 12 is applied to the substrate 1 by moving the slider 8.
By contacting the substrate, epitaxial growth can be performed alternately in a liquid phase and a gas phase. As for the growth conditions, 617 mm of H2 gas was supplied at the beginning of heating, and 660 mm of H2 gas was supplied at the beginning of the temperature rise.
Incorporation of the solution is carried out for 60 minutes at °C.

LPE成長でInPを6μm成長するためにIn IP
に対し9.8■のInPを溶し込んだ溶液12と、メル
トバック用In 12を用いる。640℃で5秒間10
7、−2 InP基板1をスライダ8を移動させて溶液11に接触
させメルトバックを行う。このとき16〜20μm程度
表面がエツチングされ、さらにスライダ8を移動させ溶
液12に400秒接触させ、6μm程InPをエピタキ
シャル成長を行う。次にスライダ8を移動させInP基
板1を露出させ、InGeAsP(発光波長1.3μm
)を気相エピタキシャル成長させるために、TEIを3
00 cc/mm、 T E Gを16occ、ymi
n、  PH3を1occ/mm、 AsH3を1.4
cc/m*供給し、300秒で0.1μm程成長を行う
In IP to grow InP to 6 μm by LPE growth
Solution 12 in which 9.8 μm of InP was dissolved and In 12 for meltback were used. 10 at 640℃ for 5 seconds
7, -2 Move the slider 8 to bring the InP substrate 1 into contact with the solution 11 to perform meltback. At this time, the surface is etched by about 16 to 20 μm, and the slider 8 is further moved to contact the solution 12 for 400 seconds to epitaxially grow InP to about 6 μm. Next, move the slider 8 to expose the InP substrate 1.
) in order to vapor phase epitaxially grow TEI of 3
00 cc/mm, T E G 16 occ, ymi
n, PH3 at 1occ/mm, AsH3 at 1.4
cc/m* is supplied, and the growth is performed by about 0.1 μm in 300 seconds.

さらにその上にInPの厚膜を形成する場合は、スライ
ダ8を移動し再度溶液12に接触させれば数μmのIn
Pを形成する事が可能である。
Furthermore, if you want to form a thick InP film on top of that, move the slider 8 and bring it into contact with the solution 12 again.
It is possible to form P.

次に本発明の第3の実施例である縦型のMOVPE法に
よる方法を第4図に示す。縦型の成長炉系では、サセプ
タ2上にInP基板1を、隔壁板7とサセプタ2から成
る溶液槽6にIn5を設置する。高周波コイル4で昇温
後、本発明の第1の実施例に記載した様に、スライダ8
を移動させ溶融したIn5がInP基板1を通過しメル
トバックを行い溶液11/、−7・ 槽10に流れ込み、同様の効果が得られる。縦型の場合
サセプタ2が多角錐状の形状で複数の基板を同時に処理
する事ができ、本発明によればこの様な場合にも容易に
実現可能なものである。また縦型の場合にも本発明の第
2の実施例に記載した様なLPE成長用の溶液ホルダを
設けLPE成長を行う事も可能である。この場合は、縦
型のサセプタに合せて円錐状もしくは円板状にして回転
によυスライドさせる事により可能となるものである。
Next, FIG. 4 shows a method using the vertical MOVPE method, which is a third embodiment of the present invention. In a vertical growth reactor system, an InP substrate 1 is placed on a susceptor 2, and In5 is placed in a solution bath 6 consisting of a partition plate 7 and the susceptor 2. After the temperature is raised by the high frequency coil 4, the slider 8 is heated as described in the first embodiment of the present invention.
The melted In5 passes through the InP substrate 1, undergoes meltback, and flows into the solution 11/, -7. tank 10, producing the same effect. In the case of a vertical type, the susceptor 2 has a polygonal pyramid shape and can process a plurality of substrates at the same time, and according to the present invention, such a case can be easily realized. Further, even in the case of a vertical type, it is possible to perform LPE growth by providing a solution holder for LPE growth as described in the second embodiment of the present invention. In this case, this can be achieved by making the susceptor into a conical or disk shape to fit the vertical susceptor and sliding it by rotation.

発明の効果 本発明によれば、同一成長系内で気相エピタキシャル成
長前後にLPE法によるメルトバックやエピタキシャル
成長が可能となるものである。これによシ昇温や成長前
処理工程によって生じる基板表面の汚染や欠陥また、熱
損傷、基板内不純物の表面への析出等をメルトバックで
除去する事ができ、清浄な表面にエピタキシャル成長が
可能となる。従って界面の欠陥や界面準位を容易に低減
でき、良好な結晶性のエピタキシャル層が得られる。ま
た数μm以上の厚膜を形成する場合、気相エピタキシャ
ル成長では長時間の成長時間を必要とし、その間の熱に
より結晶中の不純物が移動したり、原料ガスが成長時間
中変動して結晶性が劣化しやすい。しかし本発明によれ
ばLPE法と交互の成長が可能であり、容易に所望の膜
厚のエピタキシャル成長が容易に可能となるものである
Effects of the Invention According to the present invention, it is possible to perform meltback and epitaxial growth using the LPE method before and after vapor phase epitaxial growth within the same growth system. This makes it possible to remove contamination and defects on the substrate surface caused by temperature rise and pre-growth treatment steps, thermal damage, and precipitation of impurities on the surface of the substrate through meltback, allowing epitaxial growth on a clean surface. becomes. Therefore, interface defects and interface states can be easily reduced, and an epitaxial layer with good crystallinity can be obtained. In addition, when forming a thick film of several μm or more, vapor phase epitaxial growth requires a long growth time, and the heat during this time may cause impurities in the crystal to move, or the raw material gas may fluctuate during the growth time, resulting in poor crystallinity. Easy to deteriorate. However, according to the present invention, growth can be performed alternately with the LPE method, and epitaxial growth to a desired thickness can be easily achieved.

また本発明では気相によるエツチングを用いないため、
例えばInPの場合に用いる様な、HC/やPCl3等
の腐蝕性の高いガスを用いない。従ってガス配管系や成
長炉系を汚染する事なく、容易に簡便に実験できるもの
である。
Furthermore, since the present invention does not use gas phase etching,
For example, highly corrosive gases such as HC/ and PCl3, which are used in the case of InP, are not used. Therefore, experiments can be easily and conveniently performed without contaminating the gas piping system or growth furnace system.

また従来LPE成長後の基板にMOVPE法によって成
長する場合や、その逆の場合があったが、それらの界面
には成長系から外へ取りだすため、汚染や欠陥を生成し
やすかったが、本発明では同一成長系内で連続して可能
であるため、エピタキシャル成長界面の欠陥等を著しく
低減できるものである。
Furthermore, conventionally, there have been cases in which growth is performed using the MOVPE method on a substrate after LPE growth, and vice versa, but contamination and defects are likely to be generated at these interfaces because they are taken out of the growth system. Since this can be done continuously in the same growth system, defects etc. at the epitaxial growth interface can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

13ヘーノ 第1図は本発明の第1の実施例であるエピタキシャル成
長方法を実施する装置を示す断面工程図、第2図は第1
の実施例のFe添加1nP基板のFeの濃度変化を示す
特性図、第3図、第4図は本発明の第2.第3の実施例
であるエピタキシャル成長方法を実施する装置を示す断
面図、第5図は従来の技術のInP系MOVPE法を実
施する装置を示す断面図である。 1・・・・・・InP基板、2・・・・・・サセプタ、
3・・・・・・炉芯管、6・・・・・・In、6・・・
・・・溶液槽、11・・・・・・メルトバック用溶液、
12・・・・・・成長用溶液。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名7−
−− 1nP基扱 /     ゾ   /         /U第2図
13 Henoh Fig. 1 is a cross-sectional process diagram showing an apparatus for carrying out the epitaxial growth method which is the first embodiment of the present invention, and Fig.
3 and 4 are characteristic diagrams showing changes in the Fe concentration of the Fe-doped 1nP substrate of Example 2 of the present invention. FIG. 5 is a sectional view showing an apparatus for carrying out the epitaxial growth method according to the third embodiment, and FIG. 5 is a sectional view showing an apparatus for carrying out the conventional InP-based MOVPE method. 1... InP substrate, 2... Susceptor,
3... Furnace core tube, 6... In, 6...
...Solution tank, 11...Meltback solution,
12...Growth solution. Name of agent: Patent attorney Toshio Nakao and 1 other person7-
-- 1nP base treatment / Zo / /U Figure 2

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に半導体の気相エピタキシャル成長を行う
同一成長系内に、前記半導体基板を溶融もしくは液相エ
ピタキシャル成長可能な溶液槽を有し、気相エピタキシ
ャル成長前後に、前記半導体基板表面の溶融によるエッ
チングもしくは液相エピタキシャル成長を行う事を特徴
とした半導体エピタキシャル成長方法。
In the same growth system that performs vapor phase epitaxial growth of a semiconductor on a semiconductor substrate, a solution bath capable of melting or liquid phase epitaxial growth of the semiconductor substrate is provided, and before and after the vapor phase epitaxial growth, etching by melting or liquid phase epitaxial growth of the semiconductor substrate surface is performed. A semiconductor epitaxial growth method characterized by phase epitaxial growth.
JP13921487A 1987-06-03 1987-06-03 Semiconductor epitaxy method Pending JPS63304614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13921487A JPS63304614A (en) 1987-06-03 1987-06-03 Semiconductor epitaxy method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13921487A JPS63304614A (en) 1987-06-03 1987-06-03 Semiconductor epitaxy method

Publications (1)

Publication Number Publication Date
JPS63304614A true JPS63304614A (en) 1988-12-12

Family

ID=15240178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13921487A Pending JPS63304614A (en) 1987-06-03 1987-06-03 Semiconductor epitaxy method

Country Status (1)

Country Link
JP (1) JPS63304614A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4921817A (en) * 1987-07-09 1990-05-01 Mitsubishi Monsanto Chemical Co. Substrate for high-intensity led, and method of epitaxially growing same
US5192710A (en) * 1990-05-02 1993-03-09 Alcatel N.V. Method of making a semiconductor laser with a liquid phase epitaxy layer and a plurality of gas phase or molecular beam epitaxy layers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4921817A (en) * 1987-07-09 1990-05-01 Mitsubishi Monsanto Chemical Co. Substrate for high-intensity led, and method of epitaxially growing same
US5192710A (en) * 1990-05-02 1993-03-09 Alcatel N.V. Method of making a semiconductor laser with a liquid phase epitaxy layer and a plurality of gas phase or molecular beam epitaxy layers

Similar Documents

Publication Publication Date Title
JPS63209122A (en) Method and apparatus for vapor phase thin film crystal growth
JPS63304614A (en) Semiconductor epitaxy method
JPS60112694A (en) Gas-phase growth method of compound semiconductor
JPS59148325A (en) Method and device for growing single crystal thin film of compound semiconductor
JPS63226919A (en) Vapor growth system
US5234534A (en) Liquid-phase growth process of compound semiconductor
JPH03236219A (en) Surface treating method for semiconductor substrate
JPS5922319A (en) Vapor growth of 3-5 group semiconductor
JPS63227007A (en) Vapor growth method
JP3101753B2 (en) Vapor growth method
JP2743970B2 (en) Molecular beam epitaxial growth of compound semiconductors.
SU1705425A1 (en) Method of producing epitaxial layers of gallium nitride
JPS63318731A (en) Vapor growth method of semiconductor
JP3448695B2 (en) Vapor growth method
JPH0536397B2 (en)
JP2805865B2 (en) Vapor phase growth method of phosphorus compound semiconductor crystal
JPH0218384A (en) Method for molecular beam epitaxial growth
JPS6163598A (en) Vapor growth process
JPS6389492A (en) Semiconductor crystal growth device
JPH0760795B2 (en) Vapor phase thin film forming equipment
JPH01286991A (en) Method for molecular-beam epitaxial growth and apparatus therefor
JPH03236220A (en) Vapor growth method for semiconductor
JPH01268115A (en) Device for gas-phase growth
JPS5846628A (en) Liquid phase epitaxial growth method of semiconductor
JPS628518A (en) Liquid phase growth method