JPS63304198A - Method for concentrating waste reprocessing liquid - Google Patents

Method for concentrating waste reprocessing liquid

Info

Publication number
JPS63304198A
JPS63304198A JP13977187A JP13977187A JPS63304198A JP S63304198 A JPS63304198 A JP S63304198A JP 13977187 A JP13977187 A JP 13977187A JP 13977187 A JP13977187 A JP 13977187A JP S63304198 A JPS63304198 A JP S63304198A
Authority
JP
Japan
Prior art keywords
waste liquid
nitric acid
concentration
liquid
metal salts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13977187A
Other languages
Japanese (ja)
Other versions
JPH07104433B2 (en
Inventor
Tatsuo Izumida
龍男 泉田
Masanori Takahashi
正典 高橋
Hisao Otsuka
久雄 大塚
Fumio Kawamura
河村 文雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62139771A priority Critical patent/JPH07104433B2/en
Publication of JPS63304198A publication Critical patent/JPS63304198A/en
Publication of JPH07104433B2 publication Critical patent/JPH07104433B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To greatly decrease the corrosion of equipment with the simplified equipment and operation by executing an enriching operation in such a manner as to maintain the concn. of an inorg. salt in a high-level waste liquid at >=5wt.%. CONSTITUTION:0.5wt.% aluminum nitrate is added to a waste nitric acid liquid 4 contg. the radioactive material in reprocessing of nuclear fuel at a high ratio to increase the concn. over the entire part of the inorg. salt in the waste liquid to >=5wt.%. While this waste liquid 4 is continuously supplied from a waste liquid tank 3 to an enriching vessel 5, the liquid is heated by a heater 15 under 50Torr pressure and is enriched by vacuum evaporation. The volume of the liquid in the vessel 5 is maintained constant in this case. Then, the inorg. salt in the waste liquid restrains the hydrated water and, therefore, the hydrated water hardly evaporates and the evaporation rate of the nitric acid eventually increase so that the concn. of the nitric acid of the liquid 6 in the vessel 5 is maintained low. RuO4 having strong oxidation power is prevented. In the figure 8, is a condenser and 13 is an enriched waste liquid tank.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は原子燃料の再処理における放射性物質を多量に
含んだ硝酸廃液の濃縮方法に係る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for concentrating nitric acid waste liquid containing a large amount of radioactive materials in the reprocessing of nuclear fuel.

〔従来の技術〕[Conventional technology]

放射性物質を多量に含んだ硝酸廃液(高レベル廃液)は
、通常さらに減容するため水及び硝酸を蒸発させること
により濃縮する。この濃縮方法として従来からの方法は
、■ギ酸等の還元性物質を回加して硝酸をNOxに分解
する方法(中村等。
Nitric acid waste liquid (high-level waste liquid) containing a large amount of radioactive materials is usually concentrated by evaporating water and nitric acid to further reduce its volume. Conventional methods for this concentration include: (1) decomposing nitric acid into NOx by adding a reducing substance such as formic acid (Nakamura et al.);

J、Nucl、5cie、Tech、 、 15,76
0(1978)、■硝酸を減圧下で蒸発させる方法の二
つが知られている。■は硝酸をN Oxに分解してガス
化し、それを回収するため、廃液の硝酸濃度は上昇せず
、かつ還元性のNOxが共存するため機器の腐食は大き
な開運にならない。しかし、NOXの回収機器が必要な
ことと、硝酸の分解反応の制御が難しいという問題があ
る。■は単純な減圧蒸発であり、機器及び操作が簡略化
される利点があるが、硝酸濃度が10判定程度まで上昇
し、減圧により温度を下げたとしても腐食環境が厳しい
ため、機器の内厚を厚くする等の措置が必要となり1重
厚でかつコスト高のものとなる。
J, Nucl, 5cie, Tech, , 15,76
0 (1978) and (1) evaporating nitric acid under reduced pressure. (2) decomposes nitric acid into NOx, gasifies it, and recovers it, so the concentration of nitric acid in the waste liquid does not increase, and since reducing NOx coexists, corrosion of equipment will not be a big problem. However, there are problems in that NOX recovery equipment is required and it is difficult to control the nitric acid decomposition reaction. ■ is simple vacuum evaporation, which has the advantage of simplifying the equipment and operation, but the nitric acid concentration rises to about 10, and even if the temperature is lowered by vacuum, the corrosive environment is severe, and the inner thickness of the equipment It is necessary to take measures such as making the material thicker, resulting in a heavy and expensive product.

一方、これらの問題を解決する方法として種々の防食法
が提案されている。たとえば、特開昭60−46380
号に記載のように硝酸中にNOxを吹き込んで腐食環境
を緩和する方法、また特開昭60−33370号に記載
のようにヒドラジン等の還元済を添加して同様に腐食を
緩和する方法がある。しかし、このいずれの方法も気相
中にNOxガスが発生するためこの回収機器が必要なこ
と、また高放射線置場で外部から添加物を一定量連続的
に供給する必要があり、その操作が難しいという問題点
があった。
On the other hand, various anticorrosion methods have been proposed to solve these problems. For example, JP-A-60-46380
There is a method of blowing NOx into nitric acid to alleviate the corrosive environment, as described in JP-A-60-33370, and a method of similarly mitigating corrosion by adding reduced hydrazine, etc., as described in JP-A-60-33370. be. However, both of these methods require recovery equipment because NOx gas is generated in the gas phase, and it is difficult to operate as it is necessary to continuously supply a certain amount of additives from the outside in a high radiation storage site. There was a problem.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これら上記従来技術は、腐食低減のために機器の運転が
複雑化するか、もしくは重厚な機器を使用することによ
り機器寿命を伸ばすかのいずれかであった。
These conventional techniques either complicate the operation of the equipment to reduce corrosion or extend the life of the equipment by using heavy equipment.

本発明の目的は、簡略化した機器および運転でも充分な
る耐久性を維持可能な運転方法を提供することにある。
An object of the present invention is to provide an operating method that can maintain sufficient durability even with simplified equipment and operation.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、高レベル廃液中に多量の無機塩が5重量%
以上溶解している状態で濃縮操作を実施することで達成
される。これはたとえば、高レベル廃液中にあらかじめ
無機塩類を投入しておき、これを濃縮するか、もしくは
、一度濃縮した濃縮液の一部を残留させておき、これに
高レベル廃液を加えて濃縮操作を実施することで達成さ
れる。
The above purpose is to contain a large amount of inorganic salts by 5% by weight in high-level waste liquid.
This is achieved by carrying out the concentration operation in a dissolved state. This can be done, for example, by adding inorganic salts to the high-level waste liquid in advance and concentrating it, or by leaving a part of the concentrated liquid remaining and adding the high-level waste liquid to it for concentration. This is achieved by implementing the following.

高レベル廃液の濃縮器の腐食の主原因は、濃縮操作時の
硝酸濃度が高くなることにある。これは、硝酸が高濃度
になるほど酸化力が増大すること、また高レベル廃液中
に含まれている原子分裂生成物(FP)核種の中の特に
ルテニウムが高濃度硝酸中では酸化力の強い四酸化ルテ
ニウム(RIJO4)に変化するため濃縮器の腐食が加
速される。また四酸化ルテニウムは揮発しやすいため、
濃縮器の液相部のみならず気相部も重大な腐食を受ける
可能性がある。このように、濃縮操作時の硝酸濃度を低
減させることは、腐食緩和策としてきわめて有用でかつ
根本的な対策と言える。このための手刀の一つがギ酸も
しくはヒドラジン等を添加して硝酸を分解することであ
るが、これは既に述べた如く操作が複雑で運転が難しい
という問題がある。
The main cause of corrosion in concentrators for high-level waste liquids is the high concentration of nitric acid during concentration operations. This is because the oxidizing power increases as the concentration of nitric acid increases, and among the fission product (FP) nuclides contained in high-level waste liquid, ruthenium in particular has a strong oxidizing power in nitric acid. Conversion to ruthenium oxide (RIJO4) accelerates corrosion of the concentrator. In addition, ruthenium tetroxide is easily volatile, so
Not only the liquid phase of the concentrator but also the gas phase can be subject to significant corrosion. Thus, reducing the nitric acid concentration during the concentration operation can be said to be an extremely useful and fundamental measure to alleviate corrosion. One approach to this end is to add formic acid or hydrazine to decompose nitric acid, but as already mentioned, this method has the problem of being complicated and difficult to operate.

本発明は、この硝酸濃度の低減策として、多量の無機塩
が溶解された状態で、減圧蒸発による濃縮操作が効果的
であることを見出したことに基づいている。無機塩は、
あらかじめ投入しておくか、高レベル廃液中に存在する
原子分裂生成物イオンを用いる。
The present invention is based on the discovery that, as a measure to reduce the nitric acid concentration, it is effective to perform a concentration operation by evaporation under reduced pressure while a large amount of inorganic salt is dissolved. Inorganic salts are
Either pre-input or use atomic fission product ions present in high-level waste liquid.

以下に本発明を見出すに至った新しい実験的事実と、無
機塩の具体的な作用について説明する。
The new experimental facts that led to the discovery of the present invention and the specific effects of the inorganic salt will be explained below.

〔作用〕[Effect]

まず、高レベル廃液の減圧濃縮について述べる。 First, we will discuss vacuum concentration of high-level waste liquid.

再処理工程でウラン及びプルトニウムを分離した後の硝
酸廃液中には、原子分裂生成物である貴金属元素、希土
類元素、アルカリ金属元素、アルカリ土類金属元素等が
イオンとなって約0.5 重量パーセント溶解している
。この廃液をさらに′a縮工程で濃縮器によりこの原子
分裂生成物を約20倍に濃縮し、a給液は廃棄物とし、
回収硝酸は再使用する。第2図はこの濃縮操作を模擬廃
液で実施したときの濃縮度と濃縮缶中の硝酸濃度の関係
を示す。模擬廃液は連続供給で0.2  Q/h、1縮
缶の滞留’10.5 Q/h一定、圧力50Torrで
連続的にに減圧蒸発したものである。第2図の結果によ
ると硝酸濃度は初期に9〜10規定なで上昇し、その後
濃縮度の増大と共に除々に減少する。
In the nitric acid waste solution after uranium and plutonium are separated in the reprocessing process, atomic fission products such as noble metal elements, rare earth elements, alkali metal elements, alkaline earth metal elements, etc. are converted into ions and weigh approximately 0.5% by weight. percent dissolved. This waste liquid is further concentrated in a concentrator in the 'a condensation step to concentrate the atomic fission products approximately 20 times, and the supplied liquid a is treated as waste.
Recovered nitric acid will be reused. FIG. 2 shows the relationship between the degree of concentration and the concentration of nitric acid in the concentrator when this concentration operation was carried out using a simulated waste liquid. The simulated waste liquid was continuously evaporated under reduced pressure at a constant supply rate of 0.2 Q/h, a constant retention rate of 10.5 Q/h in one condenser, and a pressure of 50 Torr. According to the results shown in FIG. 2, the nitric acid concentration initially increases by 9 to 10 normal, and then gradually decreases as the concentration increases.

硝酸のみの溶液を用いた場合は、9〜10規定のままで
一定濃度となる。本発明は、この模擬廃液を濃縮した際
の濃縮度増加にともなう硝酸濃度の減少に着目したもの
である。この硝酸濃度の減少は、理論的な気液平衡解析
により原子分裂生成物イオンによる塩析効果であること
が判明した。すなわち、原子分裂生成物イオンは化学的
には通常の金属もしくは無機の陽イオンとして溶解して
おり、これは廃液中の水分子を1o個程度水和水として
束縛しており、この水和水は自由な水よりも蒸発しにく
い。そのため、濃縮度の増加と共に缶液中に占める水和
水の割合が増大し、水が全体として蒸発しにくくなる。
When a solution containing only nitric acid is used, the concentration remains constant at 9 to 10 normal. The present invention focuses on the decrease in nitric acid concentration as the degree of concentration increases when this simulated waste liquid is concentrated. A theoretical vapor-liquid equilibrium analysis revealed that this decrease in nitric acid concentration was due to the salting-out effect due to atomic fission product ions. In other words, atomic fission product ions are chemically dissolved as ordinary metal or inorganic cations, which bind about 10 water molecules in the waste liquid as hydration water, and this hydration water evaporates less easily than free water. Therefore, as the degree of concentration increases, the proportion of hydration water in the can liquid increases, making it difficult for water to evaporate as a whole.

その結果として、硝酸の蒸発量が増加するため缶液中の
硝酸濃度が減少してくるものである。
As a result, the amount of evaporation of nitric acid increases, so the concentration of nitric acid in the can liquid decreases.

これらの実験および理論的な考察に鑑み、濃縮操作時に
、あらかじめ缶液中に多量の無機陽イオンが存在すれば
硝酸濃度の上昇が抑制されることは明らかである。この
陽イオンは、できるだけ多くの水分子を束縛できるもの
、すなわち水和数の大きなものほど効果的であり、また
実施に手段は硝酸に溶解可能な無機塩を添加すれば良い
。また、新たな無機塩を添加せずどもこの効果を実現す
る方法として、次のものがある6すなわち第2図に示す
ごとく、濃縮操作後の濃縮缶液は原子分裂生成物イオン
が濃縮前に比較して約20倍濃縮されており、その濃縮
は、10重量パーセントに達する。通常この濃縮液は、
高レベル濃縮廃液と呼ばれており、濃縮缶から取出した
後、専用のタンクに貯蔵した後、固化される。本発明で
は、この濃縮缶液を全て取出さずに一部を缶内に残した
まま、硝酸廃液を供給して次の濃縮操作を実施する。こ
のようにすれば、あらかじめ濃縮缶内に多量の無機陽イ
オンが存在したかたちであり、新たな無機塩添加と同一
の効果が得られ、運転操作がきわめて容易となる。次に
実施例にもとづいて本発明の有効性を述べる。
In view of these experiments and theoretical considerations, it is clear that the increase in nitric acid concentration can be suppressed if a large amount of inorganic cations are present in the can liquid in advance during the concentration operation. The cation is more effective if it can bind as many water molecules as possible, that is, if it has a large hydration number, and in practice, it is sufficient to add an inorganic salt that is soluble in nitric acid. In addition, as a method to achieve this effect without adding new inorganic salts, there is the following method6: As shown in Figure 2, the atomic fission product ions in the concentrated can liquid after the concentration operation are It is about 20 times more concentrated in comparison, and the concentration reaches 10 weight percent. This concentrate is usually
It is called high-level concentrated waste liquid, and after being removed from the concentrate can and stored in a special tank, it is solidified. In the present invention, the next concentration operation is carried out by supplying nitric acid waste liquid while leaving a part of the concentrated can liquid in the can without taking out all of it. In this way, a large amount of inorganic cations are already present in the concentrate can, and the same effect as adding a new inorganic salt can be obtained, making operation extremely easy. Next, the effectiveness of the present invention will be described based on Examples.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。実施
例1 第1図は高レベル硝酸廃液の減圧蒸発方式による濃縮シ
ステムを示している。4の高レベル硝酸廃液は3の高レ
ベル硝酸廃液から5の濃縮缶に連続的に供給される。そ
の際、2の水は5の濃縮缶には供給しない。5の濃縮缶
内は、9の減圧装置で約50 Torrまで減圧され、
また15の加熱器で沸とう状態に維持される。圧力50
Torrでは50〜60°Cとなる。5の濃縮缶に供給
された4の高レベル鑑酸廃液は減圧蒸発により濃縮され
る。ガス化した水蒸気および硝酸は7のミストセパレー
タを通って8の凝縮器下で液化され、11の回収酸とし
て12の回収酸タンクに入る。10の不凝縮ガスは再処
理工場内の排ガス処理系に送られる。
An embodiment of the present invention will be described below with reference to FIG. Embodiment 1 FIG. 1 shows a concentration system for high-level nitric acid waste liquid using a vacuum evaporation method. The high level nitric acid waste liquid 4 is continuously supplied from the high level nitric acid waste liquid 3 to the concentrator 5. At this time, the water in step 2 is not supplied to the concentrator in step 5. The pressure inside the concentrator 5 was reduced to about 50 Torr by the pressure reducing device 9.
The boiling state is maintained using 15 heaters. pressure 50
Torr is 50-60°C. The high-level acid waste liquid 4 supplied to the concentrator 5 is concentrated by evaporation under reduced pressure. The gasified water vapor and nitric acid pass through the mist separator 7 and are liquefied under the condenser 8 and enter the recovery acid tank 12 as recovered acid 11. The 10 non-condensable gases are sent to the exhaust gas treatment system within the reprocessing plant.

5の濃縮缶の運転は4の高レベル硝酸廃液の供給を連続
的に受けながら、濃縮缶内液6の核分裂生成物の濃度が
供給液の約20倍に達した時点まで連続して実施し、そ
の間缶内液量が一定値を保つように15の加熱器を制御
する。6の缶内液中の原子分裂生成物濃度が供給液の2
0倍に達すると、4の高レベル硝酸廃液の供給を停止し
、今度は1の水タンク内の2の水を5の濃縮缶に供給し
、同様の運転を実施する。この場合は、5の濃縮缶内液
の硝酸濃度が4規定になった時点で運転を停止し、6の
缶内液を13の高レベル廃液タンクに移送する。この1
4の液は高レベル濃縮廃液であり、しばらく貯蔵した後
、固化される。このシステムで、模擬廃液(原子分裂生
成物濃度0.5  wj%。
The operation of the concentrator 5 was continued while continuously receiving the high-level nitric acid waste liquid 4 until the concentration of fission products in the concentrator liquid 6 reached about 20 times that of the supplied liquid. During this time, the 15 heaters are controlled so that the amount of liquid in the can remains constant. The concentration of atomic fission products in the liquid in the tank of No. 6 is higher than that of the feed liquid.
When it reaches 0 times, the supply of the high-level nitric acid waste liquid No. 4 is stopped, and this time, the water No. 2 in the water tank No. 1 is supplied to the concentrator No. 5, and the same operation is carried out. In this case, the operation is stopped when the concentration of nitric acid in the liquid in the concentrated can No. 5 reaches 4N, and the liquid in the can No. 6 is transferred to the high-level waste liquid tank No. 13. This one
The liquid No. 4 is a high-level concentrated waste liquid, and after being stored for a while, it solidifies. In this system, a simulated waste liquid (atomic fission product concentration 0.5 wj%) was used.

硝酸濃度3規定)を処理した結果を第2図に示したが、
真綿缶内の硝酸濃度が最大10規定まで上昇し、その結
果、液中に含まれるルテニウムイオンの一部が高酸化性
の四酸化ルテニウム(Ru O、t )に変化し、濃縮
缶の腐食を大幅に加速すると共に、気相中にも四酸化ル
テニウムが揮発した。一方、四酸化ルテニウムが発生す
るのは缶内液の硝酸濃度が8規定以上のときであること
も明らかとなった。
The results of treatment with nitric acid concentration (3N) are shown in Figure 2.
The concentration of nitric acid in the cotton can increases to a maximum of 10N, and as a result, some of the ruthenium ions contained in the liquid change to highly oxidizing ruthenium tetroxide (RuO,t), causing corrosion of the concentration can. Along with the significant acceleration, ruthenium tetroxide also volatilized into the gas phase. On the other hand, it has also been revealed that ruthenium tetroxide is generated when the nitric acid concentration of the liquid in the can is 8N or more.

次に、4の高レベル硝酸廃液中に砧酸アルミニラムを0
.5  wt%添加した液で実施すると、缶内の硝酸濃
度は最大で7.5規定となり、四酸化ルテニウムの発生
もなく、腐食の加速も見られなかった。これは、添加し
た硝酸アルミニウムのうち、アルミニウムが陽イオンと
なって水を束縛する塩析効果により硝酸濃度が低下した
ものである。
Next, add 0% aluminum nitrate to the high-level nitric acid waste solution in Step 4.
.. When tested with a solution containing 5 wt%, the nitric acid concentration in the can reached a maximum of 7.5 normal, and no ruthenium tetroxide was generated and no acceleration of corrosion was observed. This is because the nitric acid concentration decreased due to the salting out effect in which the aluminum in the added aluminum nitrate becomes a cation and binds water.

この塩析効果は、水和数の大きな陽イオンはど大きいの
で、硝酸アルミニウム以外にも、硝酸セシウムなどのア
ルカリ金属、硝酸バリウムなどのアルカリ土類金属、硝
酸セシウムなどの希土類、硝酸パラジウムなどの貴金属
等の無機塩であればなんでもよい。ただし、陰イオン側
が腐食性の高いハロゲンの塩は避けた方が良い。
This salting-out effect is stronger for cations with a large hydration number, so in addition to aluminum nitrate, alkali metals such as cesium nitrate, alkaline earth metals such as barium nitrate, rare earths such as cesium nitrate, palladium nitrate, etc. Any inorganic salt such as a noble metal may be used. However, it is best to avoid halogen salts, which are highly corrosive on the anion side.

ところで再処理廃液中には、もともとB a HCe、
Pd、Ru、Cs、Y、Rh、その他およそ30数種に
及ぶ原子分裂生成物の金属イオンが硝酸に溶解した形態
での塩として存在しており、これを利用する方法がある
。この実施例を以下に示す。
By the way, the reprocessing waste liquid originally contains B a HCe,
Pd, Ru, Cs, Y, Rh, and about 30 other metal ions of atomic fission products exist as salts dissolved in nitric acid, and there is a method of utilizing this. An example of this is shown below.

実施例2 原子分裂生成物の缶内液6の全量を13の高レベル濃縮
廃液タンクに移送せず、一部を残留したまま4の高レベ
ル硝酸廃液を5の濃縮缶に供給して運転を実施するもの
である。これにより、あらかじめ原子分裂生成物イオン
が多量に存在した状態で蒸発濃縮が可能となる。第3図
に残留率を変えて実施した場合の缶内硝酸最大濃度と残
留率の関係を示した。残留率を多くするに従って硝酸の
最大濃度が低下する。特に、残留率を50 (vo1%
)以下とす、ると、硝酸濃度が8規定以下となる。その
際の濃縮缶液原子分裂生成物濃度は5(wし%)以上で
あり、より一般的にはこの濃度以上で運転することによ
り、既に述べた塩析効果により硝酸濃度を8規定以下に
することが可能となった。
Example 2 The entire amount of the atomic fission product liquid 6 in the can was not transferred to the high-level concentrated waste liquid tank 13, and the high-level nitric acid waste liquid 4 was supplied to the concentrator 5 with a portion remaining, and the operation was started. It is to be implemented. This allows evaporation and concentration in a state where a large amount of atomic fission product ions already exist. Figure 3 shows the relationship between the maximum concentration of nitric acid in the can and the residual rate when the residual rate was varied. The maximum concentration of nitric acid decreases as the residual rate increases. In particular, the residual rate was set to 50 (vo1%
) or less, the nitric acid concentration will be 8N or less. At that time, the concentration of atomic fission products in the concentrated can liquid is 5 (w%) or more, and more generally, by operating at this concentration or more, the nitric acid concentration can be reduced to 8N or less due to the salting out effect mentioned above. It became possible to do so.

前記実施例の濃縮システムはすべて減圧下で実施されて
いるが、その圧力はl O0Torr以下で実施するの
が望しい。これは100Torrでの硝酸の沸点は60
℃付近にあり、この温度よりも高くなると硝酸が8規定
以下であっても四酸化ルテニウムが発生してくるためで
ある。したがって、圧力100Torr以下の条件下、
無機塩の添加もしくは濃縮廃液を一部残留させることに
より1機器の腐食を特に大幅に抑制できる。
Although all of the concentration systems in the above examples are carried out under reduced pressure, the pressure is preferably below 100 Torr. This means that the boiling point of nitric acid at 100 Torr is 60.
℃, and if the temperature rises above this temperature, ruthenium tetroxide will be generated even if the nitric acid is 8N or less. Therefore, under a pressure of 100 Torr or less,
Corrosion of one piece of equipment can be particularly significantly suppressed by adding an inorganic salt or by leaving a portion of the concentrated waste liquid.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高レベル硝酸廃液の濃縮工程を簡単な
手法でかつ、硝酸濃度の上昇を抑制できるため、濃縮缶
及びその接続機器の腐食を大幅に低減できる。
According to the present invention, the process of concentrating high-level nitric acid waste liquid can be performed in a simple manner and the increase in nitric acid concentration can be suppressed, so that corrosion of the concentrator and its connected equipment can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるシステムフロー図、
第2図は原子分裂生成物濃縮度と濃縮缶液硝酸濃度の関
係図、第3図は濃縮缶液残留率と濃縮缶液硝酸最大濃度
の関係である。 1・・・水タンク、2・・水、3・・・高レベル硝酸廃
液タンク、4・・高レベル硝酸廃液、5・・・濃縮缶、
6・・濃縮缶液、7・・・ミストセパレータ、8・・・
凝縮器、9・・・減圧装置、10・・不凝縮ガス、11
凝縮液、12・・・回収硝酸タンク、13・・・高レベ
ル濃縮廃液第Z図
FIG. 1 is a system flow diagram in an embodiment of the present invention.
FIG. 2 shows the relationship between the concentration of atomic fission products and the concentration of nitric acid in the concentrated bottom liquid, and FIG. 3 shows the relationship between the residual rate of the concentrated bottom liquid and the maximum concentration of nitric acid in the concentrated bottom liquid. 1...Water tank, 2...Water, 3...High level nitric acid waste liquid tank, 4...High level nitric acid waste liquid, 5...Concentrator can,
6... Concentrated can liquid, 7... Mist separator, 8...
Condenser, 9... Pressure reducing device, 10... Non-condensable gas, 11
Condensate, 12... Recovery nitric acid tank, 13... High level concentrated waste liquid Diagram Z

Claims (1)

【特許請求の範囲】 1、原子燃料再処理における原子分裂生成物を含む硝酸
廃液を、回分式により濃縮する方法において、処理対象
廃液中に含まれる無機塩全体の濃度を5重量%以上に保
つようにして濃縮操作を実施することを特徴とする再処
理廃液の濃縮方法。 2、前記無機塩は、アルカリ金属塩、アルカリ土類金属
塩、希土類金属塩、貴金属塩及び遷移金属塩から選ばれ
る少なくとも1種の金属塩であることを特徴とする特許
請求の範囲第1項記載の再処理廃液の濃縮方法。 3、濃縮操作を100Torr以下の減圧下で実施する
ことを特徴とする特許請求の範囲第1項又は第2項記載
の再処理廃液の濃縮方法。 4、原子燃料再処理における核分裂生成物を含む硝酸廃
液を、回分式により濃縮する方法において、濃縮済み廃
液の一部を次工程濃縮対象廃液中に残留又は帰還させて
混合することにより混合後の処理対象廃液中に含まれる
無機塩全体の濃度が5重量%以上に保つようにして次工
程の濃縮操作を実施することを特徴とする再処理廃液の
濃縮方法。 5、前記無機塩は、アルカリ金属塩、アルカリ土類金属
塩、希土類金属塩、貴金属塩及び遷移金属塩から選ばれ
る少なくとも1種の金属塩であることを特徴とする特許
請求の範囲第4項記載の再処理廃液の濃縮方法。 6、濃縮操作を100Torr以下の減圧下で実施する
ことを特徴とする特許請求の範囲第4項又は第5項記載
の再処理廃液の濃縮方法。
[Claims] 1. In a method for batchwise concentration of nitric acid waste liquid containing atomic fission products in nuclear fuel reprocessing, the concentration of all inorganic salts contained in the waste liquid to be treated is maintained at 5% by weight or more. A method for concentrating reprocessed waste liquid, characterized by carrying out a concentration operation in this manner. 2. Claim 1, wherein the inorganic salt is at least one metal salt selected from alkali metal salts, alkaline earth metal salts, rare earth metal salts, noble metal salts, and transition metal salts. The described method for concentrating reprocessed waste liquid. 3. The method for concentrating reprocessed waste liquid according to claim 1 or 2, wherein the concentration operation is carried out under reduced pressure of 100 Torr or less. 4. In the batch method of concentrating nitric acid waste liquid containing nuclear fission products in nuclear fuel reprocessing, a part of the concentrated waste liquid is left in or returned to the waste liquid to be concentrated in the next step and mixed. A method for concentrating a reprocessed waste liquid, which comprises carrying out the next step of concentration operation while maintaining the concentration of all inorganic salts contained in the waste liquid to be treated at 5% by weight or more. 5. Claim 4, wherein the inorganic salt is at least one metal salt selected from alkali metal salts, alkaline earth metal salts, rare earth metal salts, noble metal salts, and transition metal salts. The described method for concentrating reprocessed waste liquid. 6. The method for concentrating reprocessed waste liquid according to claim 4 or 5, wherein the concentration operation is carried out under reduced pressure of 100 Torr or less.
JP62139771A 1987-06-05 1987-06-05 Reprocessing waste liquid concentration method Expired - Fee Related JPH07104433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62139771A JPH07104433B2 (en) 1987-06-05 1987-06-05 Reprocessing waste liquid concentration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62139771A JPH07104433B2 (en) 1987-06-05 1987-06-05 Reprocessing waste liquid concentration method

Publications (2)

Publication Number Publication Date
JPS63304198A true JPS63304198A (en) 1988-12-12
JPH07104433B2 JPH07104433B2 (en) 1995-11-13

Family

ID=15253025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62139771A Expired - Fee Related JPH07104433B2 (en) 1987-06-05 1987-06-05 Reprocessing waste liquid concentration method

Country Status (1)

Country Link
JP (1) JPH07104433B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6219796A (en) * 1985-07-19 1987-01-28 東洋エンジニアリング株式会社 Method of solidifying and treating radioactive liquid
JPS6285899A (en) * 1985-08-22 1987-04-20 日本原子力研究所 Method of inhibiting boiloff of ruthenium
JPS6285898A (en) * 1985-03-18 1987-04-20 株式会社東芝 Waste-liquor concentrator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6285898A (en) * 1985-03-18 1987-04-20 株式会社東芝 Waste-liquor concentrator
JPS6219796A (en) * 1985-07-19 1987-01-28 東洋エンジニアリング株式会社 Method of solidifying and treating radioactive liquid
JPS6285899A (en) * 1985-08-22 1987-04-20 日本原子力研究所 Method of inhibiting boiloff of ruthenium

Also Published As

Publication number Publication date
JPH07104433B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
Shadrin et al. РH process as a technology for reprocessing mixed uranium–plutonium fuel from BREST-OD-300 reactor
US4275045A (en) Method of extraction, trapping and storage of radioactive iodine contained in irradiated nuclear fuels
Shadrin et al. Hydrometallurgical reprocessing of BREST-OD-300 mixed uranium-plutonium nuclear fuel
GB1361366A (en) Removal of organic and inorganic iodine from a gaseous atmosphere
US3120493A (en) Suppression of ruthenium volatilization in evaporation and calcination of radioactive waste solutions
US5135728A (en) Method for dissolving delta-phase plutonium
US3276850A (en) Method of selectively reducing plutonium values
US3954654A (en) Treatment of irradiated nuclear fuel
JPS63304198A (en) Method for concentrating waste reprocessing liquid
US3852407A (en) Method for removing alkyl iodides from air by mercuric nitrate solution
US3222125A (en) Dissolution of nuclear aluminum-base fuel
KR20220108818A (en) How to concentrate liquid radioactive waste
JPH0128920B2 (en)
JPH0213898A (en) Evaporation treatment of nitric acid solution containing ruthenium and device therefor
US4526658A (en) Method for improving ruthenium decontamination efficiency in nitric acid evaporation treatment
US20140234186A1 (en) Extraction Process
US3075826A (en) Separation of cesium values from aqueous solution
JP2610453B2 (en) Concentration method of nitric acid waste liquid
JP2002303694A (en) Decontamination method for uranium waste using supercritical carbon dioxide containing nitric acid tributyl phosphate(tbp) complex as medium
US4923639A (en) Method of processing plutonium and/or uranyl nitrate
Gray et al. Recovery of americium-241 from aged plutonium metal
JPS592360B2 (en) How to dispose of radioactive waste liquid
JPH07107560B2 (en) Method for cleaning organic solvent and apparatus using the same
Merz Overview on the Application of Denitration in the Nuclear Field
JP2776897B2 (en) Method and apparatus for treating radioactive ruthenium-containing waste liquid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees