JPS63304194A - Construction of nuclear reactor building - Google Patents

Construction of nuclear reactor building

Info

Publication number
JPS63304194A
JPS63304194A JP62139496A JP13949687A JPS63304194A JP S63304194 A JPS63304194 A JP S63304194A JP 62139496 A JP62139496 A JP 62139496A JP 13949687 A JP13949687 A JP 13949687A JP S63304194 A JPS63304194 A JP S63304194A
Authority
JP
Japan
Prior art keywords
building
reactor
reinforced concrete
nuclear reactor
concrete construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62139496A
Other languages
Japanese (ja)
Other versions
JPH0447116B2 (en
Inventor
Katsuto Takabayashi
高林 勝人
Yasuaki Fukushima
泰明 福島
Takuji Kobori
小堀 鐸二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP62139496A priority Critical patent/JPS63304194A/en
Publication of JPS63304194A publication Critical patent/JPS63304194A/en
Publication of JPH0447116B2 publication Critical patent/JPH0447116B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Foundations (AREA)

Abstract

PURPOSE:To decrease floor response spectra by the effect of the oscillatory interference by connection of the peripheral part of a nuclear reactor made of a reinforced concrete construction and the outside circumferential part of a building made of steel work by connecting vibration control dampers and the oscillation energy absorbing effect of various dampers. CONSTITUTION:A nuclear reactor supporting wall 1a and fuel handling part 1b are made of the reinforced concrete construction and the outside circumferential part 2 of the building is made of the steel work. The connecting vibration control dampers 3 are installed at the contact points between the two constructions. The peripheral part 1 of the nuclear reactor made of the reinforced concrete construction and the outside circumferential part 2 of the building made of the steel work are respectively independently raised from a common foundation plate 5. The oscillation characteristics of the composite structure on the same foundation plate is thus greatly improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は高速増殖炉等の原子炉建屋の構造に関するも
ので、内部の機器および建物の耐震設計の合理化を図っ
たものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to the structure of a nuclear reactor building such as a fast breeder reactor, and is intended to rationalize the seismic design of internal equipment and buildings.

〔従来の技術〕[Conventional technology]

高速増殖炉では原子炉支持位置の床応答スペクトルを低
減することは、プラント合理化のため重要な課題となっ
ており、近年新しい開発テーマとしてその実現のために
様々な研究がされている。
In fast breeder reactors, reducing the floor response spectrum at the reactor support position is an important issue for plant rationalization, and in recent years various studies have been conducted to realize this as a new development theme.

例えば建物を支持岩盤中に埋め込む方法あるいは建物直
下に免震装置を設置し建物ごと免震構造にする方法など
が研究されている。
For example, research is being carried out on methods such as embedding buildings in supporting rock or installing seismic isolation devices directly beneath buildings to create a seismic isolation structure for the entire building.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述の建物免震構造を採用した場合、建物の地震力は大
幅に減少されるため、上部および外周建物構造を鉄骨造
とすることが可能となる。
When the above-mentioned building seismic isolation structure is adopted, the seismic force of the building is significantly reduced, so it becomes possible to use a steel frame structure for the upper and outer building structures.

それは構法選択の自由度が増大するとともに、従来の鉄
筋コンクリート造に比らべて工期短縮や、建物の軽量化
などの合理化要素となり得るものである。しかし、放射
性物質と係わる遮蔽要求部は鉄筋コンクリート造として
残ることになる。
This increases the degree of freedom in selecting construction methods, and can be a rationalizing factor, such as shortening the construction period and reducing the weight of the building compared to conventional reinforced concrete construction. However, the parts requiring shielding related to radioactive materials will remain as reinforced concrete structures.

そこで鉄骨造と鉄筋コンクリート造が一つの建物を構成
する場合、地震時の挙動と応力伝達の円滑化のために画
部分を分離して計画することになる。このように一つの
基礎版上に二つの構造が立上がる場合(第1図(a)参
照)の床応答スペクトルは、第2図に鉄筋コンクリート
造のみの一体型建物と比較して示すように十分な低減効
果が得られない。
Therefore, when a building is made of steel and reinforced concrete, the building sections must be separated to facilitate earthquake behavior and stress transmission. In this way, the floor response spectrum when two structures are erected on one foundation slab (see Figure 1 (a)) is sufficient, as shown in Figure 2 compared to a monolithic building made of reinforced concrete. No significant reduction effect can be obtained.

この発明は上述のような問題点を解決することを目的と
したものである。
This invention aims to solve the above-mentioned problems.

〔問題点を解決するための手段〕[Means for solving problems]

以下、この発明の概要を図面の符号を用いて説明する。 Hereinafter, an outline of the present invention will be explained using the reference numerals in the drawings.

この発明は高速増殖炉等の原子炉建屋における機器およ
び建物の耐震設計合理化の観点から、共通の基礎板5上
にある原子炉支持壁1a、燃料取扱い部分1b等の原子
炉周辺部1の鉄筋コンクリート造部とその外側の屋根そ
の他の建屋外周部2の鉄骨造(鉄筋コンクリート造でも
よい。以下同じ)部間に連結制振ダンパー3を設置し、
両者の動きの差により地震時等の振動エネルギーを連結
制振ダンパー3で吸収するようにしている。
This invention is aimed at streamlining the seismic design of equipment and buildings in nuclear reactor buildings such as fast breeder reactors. A connected vibration damper 3 is installed between the steel frame structure (reinforced concrete structure may also be used; the same shall apply hereinafter) of the building part and the roof and other building outer peripheral parts 2,
Due to the difference in movement between the two, the vibration energy generated during an earthquake is absorbed by the connected vibration damper 3.

これを解析モデルとして、示したのが第1図(b)であ
る。
This is shown as an analytical model in FIG. 1(b).

〔作 用〕[For production]

鉄筋コンクリート造の原子炉周辺部1と鉄骨造の建屋外
周部2を連結制振ダンパー3で連結することにより、振
動的相互干渉の効果や、各種ダンパーの振動エネルギー
の吸収効果によって各々の構造の地震力が低減され、か
つ床応答スペクトルの低減が可能になる。
By connecting the reinforced concrete reactor periphery 1 and the steel frame building periphery 2 with a connecting vibration damper 3, the effects of mutual vibrational interference and the vibrational energy absorption effects of various dampers reduce earthquakes in each structure. Forces are reduced and a reduction in the floor response spectrum is possible.

第3図および第4図(a)、 (b)は高速増殖炉建屋
について、第1図(a)、 (blの仮想モデルを設定
し、動的解析によってその効果を確認したものである。
Figures 3 and 4 (a) and (b) show the virtual models of Figures 1 (a) and (bl) for the fast breeder reactor building, and their effects were confirmed through dynamic analysis.

第3図は連結制振ダンパーを設置した原子炉支持位置の
床の応答スペクトルを示したものであり、連結制振ダン
パーがない場合の0.50秒にみられたピークがなくな
り、はぼ全周3’J] 81域にわたり低減している。
Figure 3 shows the response spectrum of the floor at the reactor support position where the connected vibration control damper is installed, and the peak seen at 0.50 seconds when there is no connected vibration control damper disappears, and the response spectrum is almost completely reduced. Circumference 3'J] It is reduced over 81 areas.

また、建物の最大応答加速度についてみれば、第4図(
a)、 (b)に示されるように建物上層によく効果が
表われ、43%〜73%程度に低減していることがわか
る。
Also, if we look at the maximum response acceleration of the building, Figure 4 (
As shown in a) and (b), the effect is clearly visible on the upper floors of buildings, with reductions of approximately 43% to 73%.

〔実施例〕〔Example〕

第5図および第6図はこの発明を高速増殖炉に適用した
場合の原子炉建屋の構造の一例を示したものである。
5 and 6 show an example of the structure of a nuclear reactor building when the present invention is applied to a fast breeder reactor.

第5図は水平断面図であり、図中Xで指示される太線で
囲まれた原子炉支持壁1aおよび燃料取扱い部分1bが
鉄筋コンクリート造であり、これらの周辺は鉄骨造とな
っており、太′4fAX部の両構造の接点部に連結制振
ダンパー3が配置される。第6図は鉛直断面図であり、
共通の基礎板5より鉄筋コンクリート造の原子炉周辺部
1と鉄骨造の建屋外周部2が各々独立して立上っており
、図中逆三角形のマークで示される原子炉容器支持レベ
ルの位置に連結制振ダンパー3が設置される。
Figure 5 is a horizontal sectional view, in which the reactor support wall 1a and fuel handling section 1b surrounded by thick lines indicated by X in the figure are made of reinforced concrete, and the surrounding area is made of steel, A connected vibration damper 3 is arranged at the contact portion of both structures of the '4fAX section. Figure 6 is a vertical sectional view,
A reinforced concrete reactor peripheral part 1 and a steel frame building peripheral part 2 stand up independently from a common foundation plate 5, and are located at the reactor vessel support level indicated by the inverted triangle mark in the figure. A connected vibration damper 3 is installed.

なお、図中4は基礎部分を示し、基礎板5との間には例
えば積層ゴム支承やダンパーを設置した免震部6が形成
されている。また、第6図中の黒丸および太線は動的解
析用モデルを示したものである。
In addition, 4 in the figure indicates a foundation part, and a seismic isolation part 6 in which a laminated rubber bearing or a damper is installed, for example, is formed between it and the foundation plate 5. Moreover, the black circles and thick lines in FIG. 6 indicate a dynamic analysis model.

第7図〜第10図は鉄筋コンクリート造部分と鉄骨造部
分との間に設置される各種ダンパーを例示したもので、
図中1)は原子炉周辺部1例の床または梁、12は建屋
外周部側の鉄骨梁、12′はコンクリート床である。
Figures 7 to 10 illustrate various types of dampers installed between reinforced concrete parts and steel frame parts.
In the figure, 1) is an example of a floor or beam around the reactor, 12 is a steel beam on the outer periphery of the building, and 12' is a concrete floor.

第7図は履歴ダンパーとして鉛柱13を介在させた場合
であり、鉛柱13の塑性変形により振動エネルギーを吸
収する。この他、特殊形状の金物等も利用できる。
FIG. 7 shows a case where a lead column 13 is interposed as a hysteresis damper, and vibration energy is absorbed by plastic deformation of the lead column 13. In addition, special shaped hardware can also be used.

第8図は粘性体ダンパーの一例を示したもので、鉄筋コ
ンクリート造部分の床1)に張り出し部を設けて、粘性
流体槽15を設置し、鉄骨造部分の床12°の下面より
突出させた抵抗板14を粘性流体16中に水平に浸しで
ある。
Figure 8 shows an example of a viscous damper, in which an overhang is provided on the floor 1) of a reinforced concrete section, a viscous fluid tank 15 is installed, and it protrudes from the bottom surface of the floor 12° of a steel frame section. The resistance plate 14 is immersed horizontally in the viscous fluid 16.

第9図はシリンダー形状のオイルダンパー17を床1)
と鉄骨梁12間に介在させた場合であリ、鉄骨梁12側
に水平方向のスライド18を設けたものである。
Figure 9 shows the cylinder-shaped oil damper 17 on the floor 1).
This is a case in which a horizontal slide 18 is provided on the steel beam 12 side.

第10図(al、 (b)、 (clは摩擦ダンパーの
一例を示したもので、鉄骨梁12に取り付けたすべり板
19を鉄筋コンクリート造側の床1)および梁材20間
にステンレス板21.21’等を介して挟み込み、これ
らの間に生ずる摩擦力によって振動エネルギーを吸収す
ることができる。
10 (al, (b), (cl) shows an example of a friction damper, in which a sliding plate 19 attached to a steel beam 12 is placed between a reinforced concrete floor 1) and a stainless steel plate 21. 21' etc., and the vibration energy can be absorbed by the frictional force generated between them.

〔発明の効果〕〔Effect of the invention〕

同一基礎版上に鉄筋コンクリート造と鉄骨造というよう
に、異なる構造からなる複合構造物を構築する場合にお
いて、従来不利に作用していた振動特性を両者の間に設
けた連結制振ダンパーの作用によって大幅に改善するこ
とができる。従って高速増殖炉等の設計において、免震
構法を用いる場合、放射線遮蔽機能を必要とする部分の
み鉄筋コンクリート造、その他の部分を鉄骨造とする設
計が可能となり、合理的、経済的な建屋構造が得られる
When constructing a composite structure consisting of different structures, such as a reinforced concrete structure and a steel frame structure, on the same foundation slab, the vibration characteristics that previously had a disadvantageous effect can be overcome by the action of a connected vibration damper installed between the two. can be significantly improved. Therefore, when using the seismic isolation method in the design of fast breeder reactors, etc., it is possible to design only the parts that require radiation shielding functions to be constructed of reinforced concrete, and the other parts to be constructed of steel, resulting in a rational and economical building structure. can get.

【図面の簡単な説明】[Brief explanation of drawings]

第1図+a)、 (kllはそれぞれ比較例としての従
来の考え方による建屋構造とこの発明の建屋構造の解析
モデル図、第2図は従来例における鉄筋コンクリート造
一体型建物と鉄骨造と鉄筋コンクIJ −構造の複合構
造の建物を比較した原子炉支持位置の床の応答スペクト
ル図、第3図は上記従来例における複合構造の建物と、
この発明による建物を比較した原子炉支持位置の床の応
答スペクトル図、第4図(a)、 (b)は上記第3図
の比較例について建物多位置での最大応答加速度を示し
た図、第5図および第6図はこの発明の実施例における
連結制振ダンパー位置を示す水平断面図および鉛直断面
図、第7図、第8図および第9図は各種連結制振ダンパ
ーの例を示す鉛直断面図、第10図(a>は摩擦ダンパ
ーを用いる場合の平面図、第1O図(blおよび第10
図fclはそのA−A断面図およびB−B断面図である
。 1・・・原子炉周辺部、2・・・建屋外周部、3・・・
連結ダンパー、4・・・基礎、5・・・基礎板、6・・
・免震部。 第1図 (a)      (b) ′44 第2図 □鉄筋コンク1)−ト潰一体型 周期 第3図 周期 第4図 (a)        (b) 第5図 第6! 第7区      第8図 12・         16  12’¥J ’10
  L 第9図       (a) )’1′+9 乙
Figure 1 + a), (kll is an analysis model diagram of a building structure according to the conventional concept and a building structure of this invention as a comparative example, respectively. Figure 2 is a reinforced concrete integrated building, a steel frame structure, and a reinforced concrete IJ in the conventional example. -Response spectrum diagram of the floor at the reactor support position comparing buildings with composite structures, Figure 3 shows the buildings with composite structures in the above conventional example,
4(a) and 4(b) are diagrams showing the maximum response acceleration at multiple building positions for the comparative example of FIG. 5 and 6 are horizontal sectional views and vertical sectional views showing the positions of the connected vibration dampers in the embodiments of the present invention, and FIGS. 7, 8, and 9 are examples of various connected vibration dampers. Vertical sectional view, Fig. 10 (a> is a plan view when using a friction damper, Fig. 1O (bl and 10)
Figure fcl is its AA sectional view and BB sectional view. 1...Reactor periphery, 2...Building periphery, 3...
Connected damper, 4... Foundation, 5... Foundation plate, 6...
・Seismic isolation section. Fig. 1 (a) (b) '44 Fig. 2 □ Reinforced concrete 1) - To collapse integrated cycle Fig. 3 Period Fig. 4 (a) (b) Fig. 5 Fig. 6! District 7 Figure 8 12・16 12'¥J '10
L Figure 9 (a) )'1'+9 Otsu

Claims (5)

【特許請求の範囲】[Claims] (1)共通の基礎版上に設けた鉄筋コンクリート造の原
子炉周辺部と、その外側の建屋外周部との間に連結制振
ダンパーを介在させたことを特徴とする原子炉建屋構造
(1) A nuclear reactor building structure characterized in that a connected vibration damper is interposed between a reinforced concrete reactor peripheral area provided on a common foundation slab and the outer building peripheral area.
(2)原子炉周辺部は原子炉支持壁および燃料取扱い部
分である特許請求の範囲第1項記載の原子炉建屋構造。
(2) The reactor building structure according to claim 1, wherein the reactor peripheral area is a reactor support wall and a fuel handling area.
(3)原子炉は高速増殖炉である特許請求の範囲第1項
または第2項記載の原子炉建屋構造。
(3) The reactor building structure according to claim 1 or 2, wherein the nuclear reactor is a fast breeder reactor.
(4)建屋外周部は鉄骨造である特許請求の範囲第1項
記載の原子炉建屋構造。
(4) The reactor building structure according to claim 1, wherein the outer periphery of the building is a steel frame structure.
(5)建屋外周部は鉄筋コンクリート造である特許請求
の範囲第1項記載の原子炉建屋構造。
(5) The reactor building structure according to claim 1, wherein the outer periphery of the building is made of reinforced concrete.
JP62139496A 1987-06-03 1987-06-03 Construction of nuclear reactor building Granted JPS63304194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62139496A JPS63304194A (en) 1987-06-03 1987-06-03 Construction of nuclear reactor building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62139496A JPS63304194A (en) 1987-06-03 1987-06-03 Construction of nuclear reactor building

Publications (2)

Publication Number Publication Date
JPS63304194A true JPS63304194A (en) 1988-12-12
JPH0447116B2 JPH0447116B2 (en) 1992-08-03

Family

ID=15246626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62139496A Granted JPS63304194A (en) 1987-06-03 1987-06-03 Construction of nuclear reactor building

Country Status (1)

Country Link
JP (1) JPS63304194A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718915A (en) * 1993-07-06 1995-01-20 Kajima Corp Damping structure where part of main structure division is a dynamic absorber
JPH0734722A (en) * 1993-07-26 1995-02-03 Kajima Corp Active damping structure using variable damping device
JP2001193311A (en) * 1999-10-19 2001-07-17 Shimizu Corp Base isolation building
JP2002081222A (en) * 2000-09-11 2002-03-22 Taisei Corp Base isolation structure
JP2011122327A (en) * 2009-12-09 2011-06-23 Shimizu Corp Method for constructing base-isolated building
JP2015184138A (en) * 2014-03-24 2015-10-22 大成建設株式会社 Nuclear reactor building

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180487A (en) * 1983-03-31 1984-10-13 清水建設株式会社 Vibration-proof structure in hard structure building of atomic power plant building and the like
JPS61117844U (en) * 1985-01-09 1986-07-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180487A (en) * 1983-03-31 1984-10-13 清水建設株式会社 Vibration-proof structure in hard structure building of atomic power plant building and the like
JPS61117844U (en) * 1985-01-09 1986-07-25

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718915A (en) * 1993-07-06 1995-01-20 Kajima Corp Damping structure where part of main structure division is a dynamic absorber
JPH0734722A (en) * 1993-07-26 1995-02-03 Kajima Corp Active damping structure using variable damping device
JP2001193311A (en) * 1999-10-19 2001-07-17 Shimizu Corp Base isolation building
JP2002081222A (en) * 2000-09-11 2002-03-22 Taisei Corp Base isolation structure
JP2011122327A (en) * 2009-12-09 2011-06-23 Shimizu Corp Method for constructing base-isolated building
JP2015184138A (en) * 2014-03-24 2015-10-22 大成建設株式会社 Nuclear reactor building

Also Published As

Publication number Publication date
JPH0447116B2 (en) 1992-08-03

Similar Documents

Publication Publication Date Title
Mayes et al. Design of structures with seismic isolation
JPS63304194A (en) Construction of nuclear reactor building
JPH09235894A (en) Aseismatic reinforcing structure for existing building
US4587779A (en) System for protecting a body from motions transmitted through the ground
JPH0826688B2 (en) Seismic isolation support method for general housing
Sahoo et al. Base isolation of residential building using lead rubber bearing technique
JPH0449632B2 (en)
JP3114602B2 (en) Seismic isolation device
JP3677706B2 (en) Seismic isolation and control structure
JPH0660538B2 (en) Dynamic vibration control method and apparatus using weight of building body
Melkumyan et al. Application of base isolation to multifunctional multistory buildings in Yerevan, Armenia
JPH10169241A (en) Base-isolated building
JP3074572B2 (en) Seismic isolation support structure for low-load structures
JPH04111810A (en) Underwater earthquake-isolating method and structure
JP3028081B2 (en) Dynamic rigid structure
JP3713646B2 (en) Seismic isolation structure
Tallapalem et al. Analysis of Multi-Storey Building in Different Seismic Zones of India
JP2740881B2 (en) Pedestal for base isolation device and base isolation structure
JPH0344920Y2 (en)
JP2002349090A (en) Method for computing spring rigidity in design of base isolation building
Kumar Earthquake-Resistant Design of RC Structures
RU1807205C (en) Earthquake-proof multistory building
JPS6367369A (en) Structure having earthquake damping function in building
JP2000204790A (en) Vibration damping building
Li et al. Vibration Control Design Method of Building Structure