JPS63304037A - Far infrared ray emitting foam - Google Patents

Far infrared ray emitting foam

Info

Publication number
JPS63304037A
JPS63304037A JP13930687A JP13930687A JPS63304037A JP S63304037 A JPS63304037 A JP S63304037A JP 13930687 A JP13930687 A JP 13930687A JP 13930687 A JP13930687 A JP 13930687A JP S63304037 A JPS63304037 A JP S63304037A
Authority
JP
Japan
Prior art keywords
foam
far
far infrared
infrared ray
ray emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13930687A
Other languages
Japanese (ja)
Inventor
Teruhiko Suzuki
輝彦 鈴木
Fumiaki Mieno
三重野 文明
Kiyoshi Ichikawa
市川 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Titanium Industry Co Ltd
Asahi Chemical Industry Co Ltd
Original Assignee
Fuji Titanium Industry Co Ltd
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Titanium Industry Co Ltd, Asahi Chemical Industry Co Ltd filed Critical Fuji Titanium Industry Co Ltd
Priority to JP13930687A priority Critical patent/JPS63304037A/en
Publication of JPS63304037A publication Critical patent/JPS63304037A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a porous far infrared ray emitting foam having excellent handleability and good thermogenic and heat insulating properties, by holding far infrared ray emitting ceramics powder in the material of a porous polymer constituting a three dimensional network structure. CONSTITUTION:The aimed foam obtained by holding far infrared ray emitting ceramics powder, preferably zirconia based ceramics powder emitting electromagnetic waves at about 4-50mu peak values of wavelength when heated at a temperature close to living body temperature in the material of a porous polymer (e.g. expanded polyurethane) having a three dimensional network structure. Furthermore, the amount of the filled ceramics powder is preferably 5-80% based on the high polymer matrix constituting the foam.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、遠赤外線放射体、特に遠赤外線放射性のフオ
ームに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to far-infrared emitters, particularly far-infrared emissive foams.

[従来の技術] 近年、遠赤外線放射性のセラミックスを利用した種々の
発熱体が知られている。これらの発熱体の使用態様は、
構造上の見地から次の三種に大別できる。
[Prior Art] In recent years, various heating elements using far-infrared emitting ceramics have been known. The usage of these heating elements is as follows:
From a structural standpoint, they can be broadly classified into the following three types.

■セラミックス粉末を、そのままあるいは任意の形状に
焼成等により成型して使用する(特公昭47−2501
0号、特開昭、61−217112号)。
■ Ceramic powder is used as it is or after being molded into any shape by firing etc. (Special Publication No. 47-2501
No. 0, JP-A-Sho, No. 61-217112).

■セラミツクス粉末を、樹脂板、繊維、織物等の基質表
面上に、樹脂、接着剤等でコーティングして使用する(
特開昭59−232560号、特開昭60−23954
3号、特開昭61−227389号)。
■ Ceramics powder is used by coating the surface of substrates such as resin plates, fibers, and textiles with resin, adhesive, etc. (
JP-A-59-232560, JP-A-60-23954
No. 3, Japanese Patent Publication No. 61-227389).

■セラミツクス粉末を、繊維実質内に保有させて使用す
る(特開昭61−12908号)。
(2) Ceramic powder is used by being held within the fiber substance (Japanese Patent Application Laid-Open No. 12908/1983).

しかしながら、前記■のごとくセラミックス粉末を焼成
し、錠剤状、鱗片状に成型したものでは、取扱い、使用
態様に自ずと限界がある。例えば、特開昭61−217
112号のように寝具に使用する場合は、錠剤状の発熱
体を布団の任意の箇所に複数個配設しても、均一な面状
発熱体とはなり得ない。一方、■の繊維、織物のような
基質上にセラミックス粉末をコーティングしたものは、
面状発熱体として一応前記■のごとき問題点は解消され
るものの、繊維あるいは織物自体の風1合いを損うとい
う致命的な欠点がある外、反復屈曲使用では剥離の虞れ
がある。また、■の繊維内部にセラミックス粉末を含有
させたものでは、前記■■の問題点は解消されるが、細
い繊維に含有させるためには、特開昭61−12908
号からも明らかなように、セラミックス粉末を染色原料
相当に微粉化しなければ紡糸できない。また仮に微粉化
しても、多量の充填は前記同様の曳糸性の観点から制限
があるので、充填量が少なく、十分な発熱効果が期待で
きない。このため、用途も著しく制限される。
However, when ceramic powder is fired and molded into tablets or scales as described in (2) above, there are limits to how it can be handled and used. For example, JP-A-61-217
When used in bedding as in No. 112, even if a plurality of tablet-shaped heating elements are placed at arbitrary locations on the futon, a uniform planar heating element cannot be obtained. On the other hand, the ceramic powder coated on a substrate such as fiber or fabric (■)
Although the above-mentioned problem (2) can be solved as a planar heating element, it has the fatal disadvantage of impairing the air quality of the fibers or fabric itself, and there is a risk of peeling when repeatedly bent. In addition, in the case of containing ceramic powder inside the fibers described in (1), the above-mentioned problems of (2) and (2) are solved, but in order to incorporate the ceramic powder into thin fibers, it is necessary to
As is clear from the issue, spinning is not possible unless the ceramic powder is pulverized into a powder equivalent to the raw material for dyeing. Furthermore, even if it is pulverized, filling a large amount is limited from the viewpoint of spinnability as described above, so the amount of filling is small and a sufficient heat generating effect cannot be expected. Therefore, the applications are also significantly limited.

[発明が解決しようとする問題点] 本発明は、前記のごとき問題点を解決した取扱性に優れ
、しかも発熱保温性のよい多孔性の遠赤外線放射性フオ
ームを提供することを目的としている。
[Problems to be Solved by the Invention] An object of the present invention is to provide a porous far-infrared emitting foam that solves the above-mentioned problems and is easy to handle and has good heat-generating and heat-retaining properties.

[問題点を解決する手段] 前記目的を達成した本発明の遠赤外線放射性フオームは
、三次元網目状組織を構成する多孔性樹脂実質内に、遠
赤外線放射性セラミックス粉末を保有することを特徴と
している。
[Means for Solving the Problems] The far-infrared emissive foam of the present invention that achieves the above object is characterized by containing far-infrared emissive ceramic powder within the porous resin substance constituting a three-dimensional network structure. .

本発明で多孔性樹脂とは、主として発泡ポリウレタンの
ような柔軟多孔性、あるいは多隙性フオームをいうが、
例えば発泡ポリスチレンのような非柔軟性のフオームで
あってもよい。
In the present invention, porous resin mainly refers to flexible porous or porous foam such as foamed polyurethane.
For example, it may be a non-flexible foam such as expanded polystyrene.

本発明で使用する遠赤外線放射性セラミックス粉末とし
ては、チタン、ジルコニウム、マンガン、ニッケル、コ
バルト、リチウム、マグネシウム、カルシウム、鉄、亜
鉛等の金属の酸化物と、珪酸、アルミナの混合物等を主
原料とするジルコニア系セラミックス、チタン系セラミ
ックス、マグネシア系セラミックス、その他の遠赤外線
放射性セラミックスを用いることができる。特に、本発
明の遠赤外線放射性フオームを生体に当接して保温用に
使う場合は、体温に近い温度、例えば30〜37℃に加
温された時、波長ピーク値が4〜50ミクロンの電磁波
を放射するようなジルコニア系のセラミックスを用いる
のが望ましい。セラミックス粉末の粒度は、細かい方が
好ましいが、繊維内に充填する場合のように染色原料同
等程度まで微細化しなくても、フオーム自体の物性が損
われることはない。セラミックス粉体の充填量は、フオ
ーム使用目的によって異なるので特定できないが、フオ
ームを構成する高分子マトリックスに対し、約5〜80
%の範囲が実用的である。
The far-infrared emitting ceramic powder used in the present invention is mainly made of a mixture of metal oxides such as titanium, zirconium, manganese, nickel, cobalt, lithium, magnesium, calcium, iron, and zinc, silicic acid, and alumina. Zirconia ceramics, titanium ceramics, magnesia ceramics, and other far-infrared emitting ceramics can be used. In particular, when the far-infrared emitting foam of the present invention is used for heat retention by contacting a living body, it emits electromagnetic waves with a peak wavelength of 4 to 50 microns when heated to a temperature close to body temperature, for example, 30 to 37 degrees Celsius. It is desirable to use zirconia-based ceramics that emit radiation. Although it is preferable that the particle size of the ceramic powder be fine, the physical properties of the foam itself will not be impaired even if it is not made as fine as the dyeing raw material as in the case of filling it into fibers. The amount of ceramic powder to be filled cannot be specified because it varies depending on the purpose of use of the foam, but it is approximately 5 to 80
% range is practical.

本発明の遠赤外線放射性フオームは、例えば次のような
方法で製造できる。
The far-infrared emitting foam of the present invention can be manufactured, for example, by the following method.

ポリウレタンの場合、先ずポリオールまたはプレポリマ
ーに、所望の量の遠赤外線放射性セラミックス粉末を予
め良く混合しておき、約50〜80℃に加温するか常温
で発泡剤を加えて、激しく攪拌し、発泡させると、セラ
ミックス粉末が三次元網目状組織を構成する樹脂実質内
部に保有された多孔性の遠赤外線放射性フオームが得ら
れる。
In the case of polyurethane, first, the desired amount of far-infrared emissive ceramic powder is well mixed with the polyol or prepolymer, heated to about 50 to 80 ° C. or added with a foaming agent at room temperature, and stirred vigorously. When foamed, a porous far-infrared emitting foam is obtained in which the ceramic powder is contained within a resin substance forming a three-dimensional network.

充填量にもよるが、セラミックス粉末は、樹脂実質内部
に略連続した筋状に均一に保有される。
Although it depends on the filling amount, the ceramic powder is held uniformly in a substantially continuous streak inside the resin substance.

[作用] 本発明の遠赤外線放射性フオームは、三次元の網目状組
織を構成する樹脂実質内部に保有されているセラミック
ス粉末が、遠赤外線を放射するので、均一で高密度の面
状発熱作用を奏する。この発熱作用にもとづく加温効果
、に加えて、フオーム自体の断熱保温効果との相乗的作
用により、用途によっては、単なる織物とは異なる優れ
た保温効果が得られるものと推定される。
[Function] The far-infrared emitting foam of the present invention has a uniform and high-density planar heating effect because the ceramic powder held inside the resin substance constituting the three-dimensional network emits far-infrared rays. play. In addition to the warming effect based on this exothermic action, it is presumed that the synergistic effect with the heat insulation and heat retention effect of the foam itself provides an excellent heat retention effect that is different from that of simple textiles, depending on the application.

[実施例 1] 分子量1.000のポリプロピレンエーテルグリコール
 100.Og、シリコーンオイル 0゜3g1ジブチ
ル錫ジラウレート 0.2g、粒径120μ以下の遠赤
外放射性ジルコニア系セラミックス粉末 100.0g
の混合物を均一に分散するように十分攪拌する。ジルコ
ニア系セラミックスには、ジルコン、酸化鉄、マンガン
酸化物、粘土を主成分として焼成されたものを用いる。
[Example 1] Polypropylene ether glycol with a molecular weight of 1.000 100. Og, silicone oil 0゜3g1 dibutyltin dilaurate 0.2g, far infrared emissive zirconia ceramic powder with a particle size of 120μ or less 100.0g
Stir thoroughly to evenly disperse the mixture. The zirconia-based ceramics used are fired products whose main components are zircon, iron oxide, manganese oxide, and clay.

これに、トリレンジイソシアネート(2,4−異性体、
2.6−異性体重量比8:2の混合物) 37.5gを
混入攪拌し、温度を約60〜80℃に保つ。最後にトリ
エチレンジアミン 0.1gを水 2gに溶かした水溶
液を加えて、約20秒間高速攪拌して発泡させ、遠赤外
線放射性フオーム材料を得る。
To this, tolylene diisocyanate (2,4-isomer,
2.6-Mixture of isomer weight ratio 8:2) 37.5 g are mixed in and stirred, maintaining the temperature at about 60-80°C. Finally, an aqueous solution of 0.1 g of triethylenediamine dissolved in 2 g of water is added and stirred at high speed for about 20 seconds to foam, thereby obtaining a far-infrared emitting foam material.

このようにして得られたフオーム材料の密度は約88k
g/n’f!であり、電子顕微鏡による考察によれば、
フオームを形成する薄膜中にセラミックス粉末が密に分
散しているのが分る。
The density of the foam material thus obtained is approximately 88k.
g/n'f! According to the observation using an electron microscope,
It can be seen that the ceramic powder is densely dispersed in the thin film that forms the foam.

このフオーム材料を人肌に接しておけば、体温を良く吸
収した上に遠赤外線を輻射し、特別な加熱機等を用いる
ことなく遠赤外線を身体深部にまで照射するので、特に
寒冷期には心地良い温かさを感じる他ミ照射部分は熱刺
激を受けて血液の循環が良くなり、細胞に活性を付与す
ることができるなど、治療的効果もある。
When this foam material comes in contact with human skin, it absorbs body heat well and radiates far-infrared rays, irradiating far-infrared rays deep into the body without using a special heating device, especially during cold seasons. In addition to feeling a comfortable warmth, the irradiated area receives thermal stimulation, which improves blood circulation and activates cells, which also has therapeutic effects.

し実施例 2〕 実施例1のジルコニア系セラミックスの代りにチタン酸
バリウム、アルミナ、マンガン酸化物を焼成して得られ
たチタン系セラミックスを使用した。他は実施例1と全
く同一の方法を用いて、遠赤外線放射性フオーム材料を
得た。
Example 2 Instead of the zirconia ceramic of Example 1, titanium ceramic obtained by firing barium titanate, alumina, and manganese oxide was used. A far-infrared emissive foam material was obtained using the same method as in Example 1 except for the above.

このようにして得られたフオーム材料の密度は65kg
/rrPであり、保温効果が顕著なため、家庭の壁材料
として有効に用いることができる。
The density of the foam material thus obtained is 65 kg.
/rrP and has a remarkable heat-retaining effect, so it can be effectively used as a wall material in the home.

[効果] 本発明の遠赤外線放射性フオームによれば、以下の実用
上の効果がある。
[Effects] The far-infrared emitting foam of the present invention has the following practical effects.

■粉末成形体に比べ、材料としての取扱性及び面状発熱
体としての均一性において優れている。
■Compared to powder compacts, it is superior in handling as a material and uniformity as a sheet heating element.

特に柔軟多孔性フオームの場合は、寝具マット等で優れ
た保温性を示す。
Particularly in the case of flexible porous foam, it exhibits excellent heat retention properties in bedding mats and the like.

■外部コーティングによる面状発熱体に比べると、耐久
性に優れ、また外観、手触り等が損われない。
■Compared to planar heating elements with external coatings, they are more durable and do not impair their appearance or feel.

■繊維内部に充填したものに比べ、セラミックス粉末粒
径が制限されない。また多世に充填でき、製法も簡単で
ある。
■Compared to those filled inside fibers, the particle size of ceramic powder is not limited. In addition, it can be filled for many generations, and the manufacturing method is simple.

以上の基本的利点から、本発明の遠赤外線放射性フオー
ムは、比較的広い面積に亘る発熱体、例えばカーペット
のバッキングのごとき床敷き、壁材料等構造材料として
の面状発熱体に有効であるが、特に、柔軟多孔性フオー
ムに人体体温で遠赤外線を放射するセラミックス粉末を
充填した場合には、人体に直接間接に当接する発熱体、
例えば寝具用マット、靴底敷き、貼付式局所加温シート
等の健康、医療分野で有用である。
Due to the above basic advantages, the far-infrared emitting foam of the present invention is effective for heating elements over a relatively wide area, for example, floor coverings such as carpet backings, planar heating elements as structural materials such as wall materials, etc. In particular, when a flexible porous foam is filled with ceramic powder that emits far-infrared rays at human body temperature, a heating element that comes into direct or indirect contact with the human body,
For example, it is useful in the health and medical fields, such as bedding mats, shoe sole pads, and adhesive local heating sheets.

Claims (2)

【特許請求の範囲】[Claims] (1)三次元網目状組織を構成する多孔性樹脂実質内に
、遠赤外線放射性セラミックス粉末を保有してなる遠赤
外線放射性フォーム。
(1) A far-infrared emissive foam containing far-infrared emissive ceramic powder within a porous resin substance constituting a three-dimensional network structure.
(2)遠赤外線放射性セラミックス粉末が、生体体温に
近い温度で加熱された時、波長ピーク値約4〜50ミク
ロンの電磁波を放射するジルコニア系セラミックスであ
る特許請求の範囲第1項記載の遠赤外線放射性フォーム
(2) The far infrared radiation according to claim 1, wherein the far infrared radiation emitting ceramic powder is a zirconia ceramic that emits electromagnetic waves with a peak wavelength of about 4 to 50 microns when heated at a temperature close to body temperature. radioactive foam.
JP13930687A 1987-06-03 1987-06-03 Far infrared ray emitting foam Pending JPS63304037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13930687A JPS63304037A (en) 1987-06-03 1987-06-03 Far infrared ray emitting foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13930687A JPS63304037A (en) 1987-06-03 1987-06-03 Far infrared ray emitting foam

Publications (1)

Publication Number Publication Date
JPS63304037A true JPS63304037A (en) 1988-12-12

Family

ID=15242221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13930687A Pending JPS63304037A (en) 1987-06-03 1987-06-03 Far infrared ray emitting foam

Country Status (1)

Country Link
JP (1) JPS63304037A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150527A (en) * 1987-12-08 1989-06-13 Seiji Asai Far infrared radiation resin molding
JPH01182030A (en) * 1988-01-14 1989-07-19 Yuji Oku Synthetic rubber foam
JPH02132638U (en) * 1989-04-04 1990-11-05
JPH0873639A (en) * 1994-09-09 1996-03-19 Koichi Nishikawa Foamed product of natural stone-containing plastic or rubber and product using the same
US6590135B1 (en) * 2000-05-30 2003-07-08 Pao-Yu Lin Sanitary napkin having far-infrared effects
EP1302588A3 (en) * 2001-10-09 2004-09-22 Hiroaki Morimoto Water-impermeable carpet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150527A (en) * 1987-12-08 1989-06-13 Seiji Asai Far infrared radiation resin molding
JPH01182030A (en) * 1988-01-14 1989-07-19 Yuji Oku Synthetic rubber foam
JPH02132638U (en) * 1989-04-04 1990-11-05
JPH0873639A (en) * 1994-09-09 1996-03-19 Koichi Nishikawa Foamed product of natural stone-containing plastic or rubber and product using the same
US6590135B1 (en) * 2000-05-30 2003-07-08 Pao-Yu Lin Sanitary napkin having far-infrared effects
EP1302588A3 (en) * 2001-10-09 2004-09-22 Hiroaki Morimoto Water-impermeable carpet

Similar Documents

Publication Publication Date Title
US4680822A (en) Bedding incorporating far infrared radiator
US20060266979A1 (en) Ceramic powder emitting far infrared ray, high-density bio-stone manufactured by using the same and manufacturing method thereof
BRPI0807263B1 (en) Composite Structure
KR102122050B1 (en) Water heating mat and manufacturing method of red clay block thereof
WO1991009088A1 (en) Powder which radiates feeble-energy infrared rays, synthetic fiber containing the same, and textile products produced therefrom
JPS63304037A (en) Far infrared ray emitting foam
CN113526948A (en) Terahertz source emitting material, terahertz emitter and terahertz bedding
KR102221862B1 (en) Bio-ceramics material and manufacturing method thereof
CN1131704C (en) Cover for keeping temperature of nose
KR19980087573A (en) Polyurethane foam that emits far infrared rays and its manufacturing method
JPS6292841A (en) Flexible heat-insualting sheet
JPS63110250A (en) Soft polyurethane foam radiating far infrared radiation
KR102107344B1 (en) A glass decoration panel radiating far-infrared and manufacturing method thereof
JP2843510B2 (en) Plastic or rubber antibacterial foam containing natural stone and products using the same
KR20230067304A (en) Black Alumina Ceramic Mattress With Far-infrared Radiation Function
KR20190005531A (en) Sheet using germanium layer for massage, and manufacturing method for the same
JP4115631B2 (en) Gel material-containing leather
KR20220016374A (en) A dome type sauna apparatus using ceramic compositionl for radiating far infrared ray
JPH0741800A (en) Leather for health and sanitation
JPH10314580A (en) Flexible bamboo charcoal sheet and its manufacture
JP3007972U (en) Far infrared radiation health equipment
US11883265B2 (en) Portable thermoshapable fabric composite heating device kit
CN106063668B (en) A kind of multilayer carpet
KR102546727B1 (en) Black Alumina Ceramic Mattress With Far-infrared Radiation Function And Method For Manufacturing Thereof
JPH01144433A (en) Far infrared ray emitting urethane foam and production thereof