JPS63303885A - Method for growing compound semiconductor crystal - Google Patents

Method for growing compound semiconductor crystal

Info

Publication number
JPS63303885A
JPS63303885A JP14051287A JP14051287A JPS63303885A JP S63303885 A JPS63303885 A JP S63303885A JP 14051287 A JP14051287 A JP 14051287A JP 14051287 A JP14051287 A JP 14051287A JP S63303885 A JPS63303885 A JP S63303885A
Authority
JP
Japan
Prior art keywords
ampoule
crystal
alloy
compound semiconductor
forming material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14051287A
Other languages
Japanese (ja)
Inventor
Tetsuo Saito
哲男 齊藤
Michiharu Ito
伊藤 道春
Mitsuo Furukawa
古河 満男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP14051287A priority Critical patent/JPS63303885A/en
Publication of JPS63303885A publication Critical patent/JPS63303885A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To grow a large-area crystal having a large diameter by adding an easily evaporable element to an alloy from which the easily evaporable element is removed, packing the alloy into an ampoule, inserting an element for controlling a vapor pressure into the ampoule and heating the same to a co-existing state of a liquid phase and solid phase. CONSTITUTION:The material from which a part or the whole of easily evaporable Hg or the like of a compd. semiconductor crystal forming material 22 is removed is melted and solidified to preform the alloy. This alloy is ground and the easily evaporable element is added thereto, then the alloy is packed into the ampoule 21. The easily evaporable element material such as Hg for controlling the vapor pressure is installed in a receiving tray 25 provided in a capillary 23 of the ampoule 21. The inside of the ampoule 21 is evacuated and the end C of the capillary 23 is sealed. This ampoule 21 is inserted into a furnace core pipe 27 in a heating furnace 26 and is heated to the temp. profile of the temp. between the liquid phase temp. and solid phase temp. of the crystal, by which the material is put into the co-existing state of the liquid phase and the solid phase. The ampoule 1 is then cooled from the end and the single crystal is successively formed.

Description

【発明の詳細な説明】 〔概要〕 水i艮・カドミウム・テルル うな易蒸発性元素の水銀(Hg)を含む化合物半導体結
晶をブリッジマン法で形成する方法であって、易蒸発性
元素の水銀(Hg)を除いてカドミウム(Cd)とテル
ル(Te)を用いて予め両元素の合金を形成した後、こ
の合金と所定量の水銀および蒸気圧制御用の水銀とをア
ンプルに封入し、このアンプルを水銀・カドミウム・テ
ルルの合金状態図の固相線と液相線の中間の温度に加熱
してアンプル内にHg+−x CdえTeの固体および
液体の共存状態を実現させ、この状態の半導体結晶形成
材料をアンプルの一端より凝固させて単結晶を形成する
ことでアンプルの内圧が上昇せず、半径方向の寸法の大
きい大面積の化学量論的組成の化合物半導体結晶を容易
に得る方法。
[Detailed Description of the Invention] [Summary] A method for forming a compound semiconductor crystal containing mercury (Hg), an easily evaporable element such as water, cadmium, and tellurium, by the Bridgman method. After forming an alloy of both elements in advance using cadmium (Cd) and tellurium (Te), excluding (Hg), this alloy, a predetermined amount of mercury, and mercury for vapor pressure control are sealed in an ampoule. By heating the ampoule to a temperature between the solidus and liquidus lines of the alloy phase diagram of mercury, cadmium, and tellurium, a coexistence state of solid and liquid of Hg+-x Cde and Te is achieved within the ampoule. A method for easily obtaining a compound semiconductor crystal with a stoichiometric composition and a large area with a large radial dimension without increasing the internal pressure of the ampoule by solidifying a semiconductor crystal forming material from one end of the ampoule to form a single crystal. .

〔産業上の利用分野〕[Industrial application field]

本発明は化合物半導体結晶の製造に係り、特に水銀(H
g)等の易蒸発性元素を有する化合物半導体結晶の製造
方法に関する。
The present invention relates to the production of compound semiconductor crystals, particularly mercury (H
The present invention relates to a method for manufacturing a compound semiconductor crystal having an easily evaporable element such as g).

赤外線検知素子の形成材料としては、エネルギーバンド
ギャップの狭い、光電変換効率の良い水銀・カドミウム
・テルル(Hgl−xcdXTe)のような化合物半導
体結晶が用いられている。
Compound semiconductor crystals such as mercury-cadmium-tellurium (Hgl-xcdXTe), which have a narrow energy band gap and high photoelectric conversion efficiency, are used as materials for forming infrared sensing elements.

このような化合物半導体結晶は素子形成上、都合が良い
ように大面積の結晶が必要で、かつng、Cd、 Te
のそれぞれの元素が所望の量だけ、成長した結晶に含有
されていることが必要である。
Such compound semiconductor crystals require crystals with a large area for convenience in device formation, and they also require crystals with large areas such as ng, Cd, Te, etc.
It is necessary that a desired amount of each element be contained in the grown crystal.

〔従来の技術〕[Conventional technology]

従来、このようなHgl−x Cd、 Teの結晶で例
えばx =0.2の結晶を形成するには、第3図に示す
ようにHg、 Cd、 Teをそれぞれ所定の重量秤量
した後、これらの材料1を一端が尖った石英製のアンプ
ル2内に封入し、このアンプル2を加熱炉3内に設けた
炉芯管4の中に導入する。次いでアンプル2内の材料1
を加熱炉3内で溶融する。
Conventionally, in order to form such Hgl-x Cd, Te crystals with x = 0.2, for example, as shown in Fig. 3, after weighing Hg, Cd, and Te to predetermined weights, these are The material 1 is sealed in a quartz ampoule 2 with one end pointed, and the ampoule 2 is introduced into a furnace core tube 4 provided in a heating furnace 3. Then material 1 in ampoule 2
is melted in the heating furnace 3.

次いでその後の動作について、第4図のHgl−xCd
、 Teの結晶の状態図を用いて説明する。
Next, regarding the subsequent operation, Hgl-xCd in FIG.
, will be explained using a phase diagram of a Te crystal.

図で横軸はHgl−x Cdx Teの結晶を構成する
水銀・テルル(HgTe)とカドミウム・テルル(Cd
Te)の組成を示し、縮軸はこのHgl−x CdxT
eの結晶の成長温度を示す。
In the figure, the horizontal axis shows mercury-tellurium (HgTe) and cadmium-tellurium (Cd), which constitute the Hgl-x Cdx Te crystal.
Te), and the contracted axis represents this Hgl-x CdxT
The growth temperature of the crystal of e is shown.

前記加熱炉3の温度をx =0.2に於ける液相線11
の温度796°Cより高温に保ち、アンプル2内の材料
を溶融して所定時間保持した後、該アンプルを、液相線
11と固相線12との中間の温度の720°C迄急冷し
て、Hgt−x Cd、 Teの結晶と、)Ig+−x
 CdxTeの融液が混在した状態よりアンプル2を矢
印へ方向に下降させ、アンプル2のの尖端部Bより徐々
に冷却して単結晶を形成することで、液相線11と固相
線12との距離りが大きく液相の組成と固相の組成との
差が大きいHgl−,1CdXTeの結晶に於いても、
偏析を生じない状態で均一な組成で結晶を形成すること
を本出願人は特開昭61−146783号公報に於いて
提案している。
The temperature of the heating furnace 3 is the liquidus line 11 at x = 0.2.
After melting the material in the ampoule 2 and holding it for a predetermined time, the ampoule is rapidly cooled to 720° C., which is an intermediate temperature between the liquidus line 11 and the solidus line 12. , Hgt-x Cd, Te crystal, )Ig+-x
The ampoule 2 is lowered in the direction of the arrow from the state where the CdxTe melt is mixed, and the ampoule 2 is gradually cooled from the tip B to form a single crystal, thereby forming a liquidus line 11 and a solidus line 12. Even in the crystal of Hgl-,1CdXTe, where the distance is large and the difference between the liquid phase composition and the solid phase composition is large,
The present applicant has proposed in JP-A-61-146783 that crystals can be formed with a uniform composition without segregation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然し、このような方法であるとアンプルの温度を液相線
以上の温度に上昇させることが必要で例えばx−0,2
のHgl−x Cdx Teの結晶(103m帯の検知
素子に適用)であると液相化温度は796°Cで、この
時のアンプルの内圧は約33気圧となりアンプルが破損
し易い。また断面積の大なる単結晶を得ようとすると、
アンプル径を大きくする必要があり、アンプルの耐圧限
界が低下し、アンプルが益々破損し易くなるため、断面
積の大きい結晶を得ることは困難である。更にX値が増
加するにつれて第4図の状態図より液相化温度は上昇し
、アンプルの内圧も増加するので、X値の大なるHgl
−xCd+c Teの結晶は得られない問題があり、短
い波長の赤外線を検出するための素子(x=0.3で3
〜5μm帯用)が得られない問題がある。このような従
来の方法ではx =0.2の値のlag、−、CdXT
eの結晶の直径は約22mmで、x =0.3の値のH
g + −x (: d xTeの結晶の直径は約18
閣程度のものしか得られない。
However, with such a method, it is necessary to raise the temperature of the ampoule to a temperature above the liquidus line, for example, x-0,2.
In the case of the Hgl-x Cdx Te crystal (applicable to a 103 m band sensing element), the liquid phase temperature is 796°C, and the internal pressure of the ampoule at this time is about 33 atmospheres, which makes the ampoule easy to break. Also, when trying to obtain a single crystal with a large cross-sectional area,
It is difficult to obtain crystals with a large cross-sectional area because it is necessary to increase the diameter of the ampoule, which lowers the withstand pressure limit of the ampoule and makes the ampoule more likely to break. Furthermore, as the X value increases, the liquidus temperature increases according to the phase diagram in Figure 4, and the internal pressure of the ampoule also increases.
-xCd+cTe crystals cannot be obtained, and elements for detecting short wavelength infrared rays (x=0.3 and 3
There is a problem in that it is not possible to obtain a 5 μm band). In such a conventional method, the value of x = 0.2 lag,−,CdXT
The diameter of the crystal of e is about 22 mm, and the value of H for x = 0.3
g + −x (: d xTe crystal diameter is approximately 18
You can only get something like a cabinet.

本発明は上記した問題点を解決し、アンプル内の内圧が
上昇しないようにして直径の大きい大面積の化合物半導
体結晶が得られる方法の提供を目的とする。
The present invention aims to solve the above-mentioned problems and provide a method for obtaining a compound semiconductor crystal having a large diameter and a large area without increasing the internal pressure within the ampoule.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するための本発明の化合物半導体結晶の
成長方法は、易1発性元素を含む複数の元素の化合物半
導体結晶形成材料を、一端が尖ったアンプル内に封入し
、該結晶形成材料を溶融後、該アンプルの一端部より前
記溶融した結晶形成材料を順次固化して結晶を形成する
方法に於いて、前記化合物半導体結晶形成材料のうち、
易蒸発性元素の少なくとも一部を除いた材料を溶融後固
化して合金を予め形成後、該合金に易蒸発性元素を添加
してアンプル内に封入し、該アンプルを前記形成される
結晶の固相線と液相線の中間の温度に加熱して前記アン
プル内の材料を固液平衡な状態とした後、該アンプルの
一端部より冷却して単結晶とする。
In order to achieve the above object, the compound semiconductor crystal growth method of the present invention includes sealing a compound semiconductor crystal-forming material of a plurality of elements including a monomerically active element in an ampoule with a pointed end; In the method of forming a crystal by sequentially solidifying the melted crystal forming material from one end of the ampoule after melting the compound semiconductor crystal forming material,
After preliminarily forming an alloy by melting and solidifying the material from which at least a part of the easily evaporable element has been removed, the easily evaporating element is added to the alloy and sealed in an ampoule, and the ampoule is filled with the formed crystal. After heating to a temperature between the solidus line and the liquidus line to bring the material in the ampoule into a solid-liquid equilibrium state, it is cooled from one end of the ampoule to form a single crystal.

〔作用〕[Effect]

本発明の方法は、化合物半導体結晶形成材料の内、易蒸
発性元素を除いた状態で均一にそれぞれの成分が混合し
た合金を予め形成する。この場合は易蒸発性元素が含有
されていないので液相線以上の高温で溶融し、互いの成
分を均一に混合できる。
In the method of the present invention, an alloy is formed in advance in which the respective components are uniformly mixed in a compound semiconductor crystal-forming material excluding easily evaporable elements. In this case, since no easily evaporable elements are contained, it melts at a high temperature above the liquidus line, and the components can be mixed uniformly.

次いで相互拡散を生じ易いHgと前記した合金を液相線
以下の温度で溶融する。するとアンプル内の内圧も上昇
せず、アンプルが破損する事故が無くなる。次いでアン
プル内に易蒸発性元素と前記した予め形成した合金を混
合した状態で固相線と液相線との中間の温度で溶融して
固体と液体とが共存した状態とする。この状態にすると
易蒸発性のHgの元素は、固相線と液相線の中間の温度
でも充分Cd、 Te結晶に拡散し、この結晶形成材料
を徐冷することで大面積で均一な化学量論的組成の化合
物半導体結晶が得られる。
Next, Hg, which tends to cause interdiffusion, and the above-mentioned alloy are melted at a temperature below the liquidus line. Then, the internal pressure inside the ampoule will not increase, and accidents such as damage to the ampoule will be eliminated. Next, the easily vaporizable element and the previously formed alloy are mixed in the ampoule and melted at a temperature between the solidus line and the liquidus line, resulting in a state in which solid and liquid coexist. In this state, the easily evaporable Hg element can diffuse into the Cd and Te crystals sufficiently even at temperatures between the solidus and liquidus lines, and by slowly cooling this crystal-forming material, uniform chemical chemistry can be achieved over a large area. A compound semiconductor crystal with a stoichiometric composition is obtained.

〔実施例〕〔Example〕

以下、図面を用いながら本発明の一実施例につき詳細に
説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

前記した直径が約30mmのアンプル1内に形成すべき
Hg+−x Cdx Teの結晶のうち、易蒸発性の元
素のHgを除いた状態でCdとTeとをそれぞれ所定重
量秤量して充填した後、内部を排気して一端部を封止す
る。次いでアンプルを加熱炉内に挿入し、Cd。
Among the Hg+-x Cdx Te crystals to be formed in the ampoule 1 having a diameter of about 30 mm, Cd and Te are each weighed and filled at predetermined weights with Hg, an easily evaporable element, removed. , evacuate the inside and seal one end. The ampoule is then inserted into a heating furnace and Cd.

Teの溶融温度以上に加熱炉の温度を上昇させ約24時
間加熱した後、アンプルの一端部より窒素ガスを吹きつ
けて急冷して溶融した材料を凝固させてCd、 Teの
合金を、CdとTeの元素が偏析しない状態で形成する
After raising the temperature of the heating furnace above the melting temperature of Te and heating it for about 24 hours, nitrogen gas is blown from one end of the ampoule to rapidly cool the molten material and solidify it to form an alloy of Cd and Te. It is formed in a state where the Te element does not segregate.

次いでこのCd、 Teよりなる合金をアンプルより取
り出して粉砕した後、第1図に示すアンプル21内にH
g+−x Cdl Teの組成となるようにHgも同様
に秤量して、Cd、 TeよりなるアロイとHgとの結
晶形成材料22を充填する。この時、同時にアンプル2
1の先端より延びる細管23に設けた、アンプル21内
に於ける結晶形成材料22の水銀の蒸気の蒸気圧制御用
の水銀24も同様に秤量して受は皿25に設置し、アン
プル21内を排気した後、細管23の一端部Cを封止す
る。
Next, this alloy consisting of Cd and Te was taken out from the ampoule and crushed, and then H was placed in the ampoule 21 shown in FIG.
Hg is similarly weighed so that the composition becomes g+-x Cdl Te, and a crystal forming material 22 of Hg and an alloy of Cd and Te is filled. At this time, ampoule 2
The mercury 24 provided in the thin tube 23 extending from the tip of the ampoule 21 for controlling the vapor pressure of the mercury vapor of the crystal forming material 22 in the ampoule 21 is similarly weighed, and the receiver is placed in the pan 25. After exhausting the air, one end C of the thin tube 23 is sealed.

次いでこのアンプル21を加熱炉26内の炉芯管27に
挿入し、この加熱炉26の温度プロフィールを第2図の
曲線28になるようにして、加熱炉26の温度制御を行
う。そしてこの状態でアンプル21を三日間加熱炉26
内に保持し、HgをCd、 Teに充分拡散させた後、
アンプル21を5 mm/24hrの速度で矢印り方向
に降下させて、707°Cの固相化温度近傍のアンプル
の温度勾配を2°C/cmとなるようにし、アンプル2
1の底部より単結晶を順次形成する。
Next, this ampoule 21 is inserted into the furnace core tube 27 in the heating furnace 26, and the temperature of the heating furnace 26 is controlled so that the temperature profile of the heating furnace 26 becomes the curve 28 in FIG. In this state, the ampoule 21 was heated in a heating furnace 26 for three days.
After holding the Hg inside and sufficiently diffusing the Hg into the Cd and Te,
Ampoule 21 was lowered in the direction of the arrow at a speed of 5 mm/24 hr so that the temperature gradient of the ampoule near the solidus temperature of 707°C was 2°C/cm.
Single crystals are sequentially formed from the bottom of 1.

その後、室温まで徐冷して単結晶を形成する。Thereafter, it is slowly cooled to room temperature to form a single crystal.

ここで結晶形成材料22が収容されている領域のアンプ
ル21の加熱温度Taは温度プロフィール曲線28に示
すように750 ”Cの温度に加熱し、蒸気圧制御用の
水銀24が収容されている細管23の加熱温度Tbは曲
線28に示すように615°Cの温度に加熱する。
Here, the heating temperature Ta of the ampoule 21 in the region containing the crystal forming material 22 is heated to a temperature of 750"C as shown in the temperature profile curve 28, and the thin tube containing the mercury 24 for vapor pressure control is heated to a temperature of 750"C as shown in the temperature profile curve 28. The heating temperature Tb of 23 is 615° C. as shown by curve 28.

尚、このように蒸気圧制御用の水銀を用いることで、ア
ンプル21の結晶形成材料22に充填するHgの量を減
少させることができ、その分アンプルの内圧の上昇を防
ぐことができる。
Note that by using mercury for vapor pressure control in this way, the amount of Hg filled in the crystal forming material 22 of the ampoule 21 can be reduced, and an increase in the internal pressure of the ampoule can be prevented accordingly.

尚、細管23が設置されている蒸気圧制御領域の温度を
Tbとし、結晶形成材料22が設置されている蒸気圧制
御 eI域の温度をTaとすると、TaとTbの関係は
第(1)式に示すような関係となる。
In addition, if the temperature of the vapor pressure control area where the thin tube 23 is installed is Tb, and the temperature of the vapor pressure control area eI where the crystal forming material 22 is installed is Ta, the relationship between Ta and Tb is expressed as (1). The relationship is as shown in the formula.

Ta≧Tb≧7149/(1,064+7149/Ta
)・・・・”(1)ここでCdo、 zTeの液相化温
度は約780°Cで、本発明のようにするとアンプルの
内圧は1気圧程度に低くなる。また)Igo、 mcd
o、 zTeの結晶成長時のアンプルの内部の温度を7
50°Cとすると、この時のアンプルの内圧は25気圧
で、Hgo、 5Cdo、 tTeを液相線温度以上に
加熱する従来の方法に於けるアンプルの内圧が35気圧
であるのに比して約10気圧低減でき、従って直径の大
きい大面積のHg+−x CdXTeの結晶を得ること
ができる。
Ta≧Tb≧7149/(1,064+7149/Ta
)..." (1) Here, the liquid phase temperature of Cdo, zTe is about 780 ° C, and if it is done as in the present invention, the internal pressure of the ampoule will be as low as about 1 atm. Also) Igo, mcd
o, the temperature inside the ampoule during crystal growth of zTe is 7
Assuming 50°C, the internal pressure of the ampoule at this time is 25 atm, compared to 35 atm in the conventional method of heating Hgo, 5Cdo, and tTe above the liquidus temperature. The pressure can be reduced by about 10 atmospheres, and therefore a large-area Hg+-x CdXTe crystal with a large diameter can be obtained.

またアンプルの内圧が上昇しないため、X値の大きいH
g+−x CdX Teの結晶を得ることができ、X値
を所望の値に制御した結晶を得ることができるので検知
すべき波長の範囲が拡がった高性能な赤外線検知素子が
得られる。また蒸気圧制御用の水銀の量を調節すること
で形成される結晶にTeが析出するのを除去できる。
Also, since the internal pressure of the ampoule does not increase, H
Since it is possible to obtain a crystal of g+-x CdX Te and a crystal whose X value is controlled to a desired value, a high-performance infrared detection element with a widened wavelength range to be detected can be obtained. Further, by adjusting the amount of mercury for vapor pressure control, it is possible to eliminate the precipitation of Te in the formed crystals.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の方法によれば、x値の大きい
、かつ断面積の大きい化学量論的組成の化合物半導体結
晶が得られ、この結晶を用いて赤外線検知素子を形成す
れば検知すべき波長の拡がった高性能の赤外線検知素子
が得られる効果がある。
As described above, according to the method of the present invention, a stoichiometric compound semiconductor crystal with a large x value and a large cross-sectional area can be obtained, and if this crystal is used to form an infrared sensing element, it can be detected. This has the effect of providing a high-performance infrared sensing element with a wide range of wavelengths.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明図、 第2図は本発明の方法に用いる加熱炉の温度プロフィー
ルを示す図、 第3図は従来の方法の説明図、 第4図は従来の方法に用いる加熱炉の温度プロフィール
を示す図である。 図に於いて、 21はアンプル、22は単結晶形成用材料、23は細管
、24は蒸気圧制御用水銀、25は受は皿、26は加熱
炉、27は炉芯管、28は温度プロフィールを示す曲線
、Taはアンプルの加熱領域、Tbは蒸気圧制御用水−
加熱領域、Cはアンプルの一端部、Dはアンプルの移動
方向を示す矢印である。 半溌ζ珂偽万罎め註明図      加咳が)バ【虐7
’0フィール第1図    第2図 従棄め尤トj!萌旦 第3図 Hyr−y:CdxTe  X→ 力l−XCdメ了c1丈゛態じσ 第4図
Fig. 1 is a detailed explanatory diagram of the present invention, Fig. 2 is a diagram showing the temperature profile of the heating furnace used in the method of the present invention, Fig. 3 is an explanatory diagram of the conventional method, and Fig. 4 is a diagram illustrating the conventional method. It is a figure which shows the temperature profile of the heating furnace used. In the figure, 21 is an ampoule, 22 is a single crystal forming material, 23 is a thin tube, 24 is mercury for vapor pressure control, 25 is a saucer, 26 is a heating furnace, 27 is a furnace core tube, and 28 is a temperature profile. , where Ta is the heating area of the ampoule and Tb is the water for controlling vapor pressure.
The heating area, C is one end of the ampoule, and D is an arrow indicating the direction of movement of the ampoule. Half-lived
'0 Feel Figure 1 Figure 2 I'll give up! Moetan Fig. 3Hyr-y:CdxTe

Claims (1)

【特許請求の範囲】 易蒸発性元素を含む複数の元素の化合物半導体結晶形成
材料(22)をアンプル(21)内に封入し、該結晶形
成材料(22)を溶融後、該アンプル(21)の一端部
より前記溶融した結晶形成材料(22)を順次固化して
結晶を形成する方法に於いて、 前記化合物半導体結晶形成材料(22)のうち、易蒸発
性元素の一部、または全てを除いた材料を溶融後固化し
て合金を予め形成後、該合金に易蒸発性元素を添加して
アンプル(21)内に充填すると共に、該アンプルに連
なった細管(23)に蒸気圧制御用の易蒸発性元素の材
料を充填して封入し、該アンプルを形成すべき結晶の液
相線(11)と、固相線(12)の中間の温度に加熱し
て前記アンプル内の材料を液相と固相が共存する状態と
した後、該結晶形成材料(22)をアンプル(21)の
一端部より冷却して単結晶とすることを特徴とする化合
物半導体結晶の成長方法。
[Claims] A compound semiconductor crystal forming material (22) of a plurality of elements including an easily evaporable element is sealed in an ampoule (21), and after melting the crystal forming material (22), the ampoule (21) is sealed. In the method of forming a crystal by sequentially solidifying the molten crystal forming material (22) from one end, part or all of the easily vaporizable element in the compound semiconductor crystal forming material (22) is After the removed material is melted and solidified to form an alloy in advance, an easily evaporable element is added to the alloy and filled into an ampoule (21), and a thin tube (23) connected to the ampoule is filled with a material for vapor pressure control. The ampoule is filled and sealed with a material of an easily evaporable element, and the material in the ampoule is heated to a temperature between the liquidus line (11) and the solidus line (12) of the crystal to be formed. A method for growing a compound semiconductor crystal, which comprises bringing the crystal forming material (22) into a state in which a liquid phase and a solid phase coexist, and then cooling the crystal forming material (22) from one end of an ampoule (21) to form a single crystal.
JP14051287A 1987-06-03 1987-06-03 Method for growing compound semiconductor crystal Pending JPS63303885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14051287A JPS63303885A (en) 1987-06-03 1987-06-03 Method for growing compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14051287A JPS63303885A (en) 1987-06-03 1987-06-03 Method for growing compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JPS63303885A true JPS63303885A (en) 1988-12-12

Family

ID=15270371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14051287A Pending JPS63303885A (en) 1987-06-03 1987-06-03 Method for growing compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS63303885A (en)

Similar Documents

Publication Publication Date Title
CA1301034C (en) Process for growing a multi-component crystal
KR20040089713A (en) CdTe SINGLE CRYSTAL AND CdTe POLYCRYSTAL, AND METHOD FOR PREPARATION THEREOF
US4652332A (en) Method of synthesizing and growing copper-indium-diselenide (CuInSe2) crystals
JPS5938190B2 (en) Method for manufacturing Hg↓1-↓xCd↓xTe crystal
JPS63303885A (en) Method for growing compound semiconductor crystal
US4545848A (en) HCT Crystal growth method
JPS58135626A (en) Manufacture of compound semiconductor single crystal and manufacturing device thereof
US3933990A (en) Synthesization method of ternary chalcogenides
CN1737221A (en) Process for preparing lead sulfur family compound semiconductor single crystal
JPS5983915A (en) Method of growing poly crystal and single crystal of volatile compound
Kanellis et al. Preparation and dta of some AIBIIICVI2 compounds
JPS60264390A (en) Growing method for single crystal
US4765863A (en) Method of preparing a crystalline ingot of Hg1-x.sbsb.o Cdx.sbsb.o Te
JP2517803B2 (en) Method for synthesizing II-VI compound semiconductor polycrystal
Steininger High pressure reflux technique for growth of Hg1-xCdxTe crystals
SU1611999A1 (en) Method of growing single crystals
WO2024027072A1 (en) Method for preparing compound crystal via melt migration under supergravity
US4654196A (en) Process for producing a polycrystalline alloy
JP3030584B2 (en) Method and apparatus for producing compound semiconductor single crystal
JP3200204B2 (en) Method for producing group III-V single crystal
JP2576239B2 (en) Compound semiconductor crystal growth equipment
JPH08259399A (en) Production of cdte crystal
JPS63310787A (en) Crystal growing method of semiconductor compound
JPH04295100A (en) Production of single crystal
JPS6065800A (en) Production of hgcdte crystal