JPS6330386B2 - - Google Patents

Info

Publication number
JPS6330386B2
JPS6330386B2 JP1478985A JP1478985A JPS6330386B2 JP S6330386 B2 JPS6330386 B2 JP S6330386B2 JP 1478985 A JP1478985 A JP 1478985A JP 1478985 A JP1478985 A JP 1478985A JP S6330386 B2 JPS6330386 B2 JP S6330386B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
porous
sintered
porosity
electrode potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1478985A
Other languages
Japanese (ja)
Other versions
JPS61174353A (en
Inventor
Katsuhiro Kishida
Kyoshi Nakanishi
Hiroyoshi Kikuchi
Toshio Ookawa
Toshihiko Hagiwara
Toshihisa Oogaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Original Assignee
NDC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd filed Critical NDC Co Ltd
Priority to JP1478985A priority Critical patent/JPS61174353A/en
Publication of JPS61174353A publication Critical patent/JPS61174353A/en
Publication of JPS6330386B2 publication Critical patent/JPS6330386B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<発明の目的> 産業上の利用分野 本発明は多孔性Al系焼結吸音材料に係り、詳
しくは、騒音、雑音等の吸音特性に優れ、かつ、
耐蝕性および曲げ加工性に優れた多孔性Al系焼
結吸音材料に係る。 なお、本発明において多孔性とはAl粒子を無
加圧焼結した場合、Al粒子間に孔隙を生ずるが、
その孔隙の多い構造のものをいう。 従来の技術 多孔性Al焼結材料はCuあるいはFe系の多孔性
焼結材料と比較して、 (1) 比重が軽い。 (2) 展延性が良好であるため、曲げ加工が比較的
容易である。 (3) 焼結温度が低く、比較的廉価で製造できる。 等の利点を有するため積極的に開発が進められて
きた。 しかし、初期においては特公昭43−20884号、
45−24206号、45−24007号、47−32163号の各公
報に示されているように、主として機械部品の含
油軸受を目的として開発が進められたため、多孔
性焼結材料の強度が要求され、必然的に焼結成分
として焼結性が良く、強度が得られ易いCuを含
有する焼結材料が多く、また、技術的には焼結を
阻害する表面酸化皮膜を押圧して破り焼結を進行
させる方法が一般的方法であつたため、焼結材料
の孔隙率はせいぜい10〜20%であつた。 その後、特公昭56−11373号公報によつて無加
圧、非酸化性雰囲気下で焼結し、孔隙率40〜50%
の多孔性Al系焼結材料を得る方法が開発され、
吸音材、濾過材等に広く応用されるようになつた
が、機械的強度、耐候性および吸音特性の点で
Al−Cu系の焼結材料が主に用いられてきた。 しかし、従来のCuを含有する多孔性Al系焼結
材料は、 (1) 耐蝕性を要求される用途、場所には、その使
用が限定されること。 (2) 引張強度はあるが曲げ強度において劣るた
め、曲げ加工が困難である。 等の欠点があり、耐蝕性や曲げ強度が要求される
用途における使用は問題があつた。 発明が解決しようとする問題点 本発明はこれらの問題点の解決を目的とし、具
体的には、吸音特性に優れ、耐蝕性に富み、曲げ
加工が容易な多孔性Al系焼結吸音材料を提供す
ることを目的とする。 <発明の構成> 問題点を解決するための手段ならびにその作用 本発明は、Alを主成分とし、添加成分として
Mn:0.5〜3.0重量%およびSi:0.5〜2.0重量%を
含み、孔隙率30〜60%を有する多孔性焼結材であ
つて、前記添加成分のAlとの固溶体あるいは金
属間化合物の電極電位が純Alの電極電位に近く、
−0.81〜−0.87vの範囲である吸音特性、耐蝕性、
曲げ加工性に優れて成ることを特徴とする。 以下、図面によつて本発明を説明する。 第1図は本発明による多孔性Al系焼結吸音材
料を製造する製造工程の一例の説明図であり、ま
た、第2図は各種Al系焼結材料の焼結温度と孔
隙率の関係を示すグラフである。 第1図においてAlを主成分とする原料粉末1
はホツパー2からAlと反応しない容器3(例え
ば、グラフアイト容器)中に所定厚みに均一に散
布される。この時の散布厚みは容器の深さによつ
て調整される。原料粉末が自然充填された容器3
は段積みされ、非酸化性ガス例えば、NH3分解
ガス、H2ガス、N2ガスなどの雰囲気に保たれた
焼結炉4中で焼結され、冷却ゾーン6で冷却され
た後、容器3から外すことによつて多孔性アルミ
焼結材料(焼結板)7が得られる。 以上のように本発明においては容器3中のAl
を主成分とする原料粉末1は自然充填された状態
にあり、通常の焼結方法においては焼結を阻害す
る表面酸化皮膜を押圧によつて破壊するのに対
し、焼結時のAl粉末粒子の内部と酸化皮膜との
熱膨張率の差によつて破壊され、この破壊部分を
通して焼結が進行する。この際に、破壊され露出
したメタリツクな部分および生成した液相部分は
酸化され易いので焼結炉の雰囲気は酸素の分圧を
低く制御する必要があり、露点が−30℃以下の雰
囲気で焼結される。また、焼結温度は添加成分粉
末の液相発生温度以上で、しかも、Alの融点以
下の温度で焼結される。得られる多孔性Al系焼
結材料の孔隙率は粒度の粗い粉末を使用し、添加
成分の液相量を小さく制御すると孔隙率60%を越
える焼結材料を得ることができるが、この焼結材
料は強度的に弱く、また、未焼結になり易いので
実用的でない。 また、焼結温度と添加成分量の制御によつて孔
隙率30%未満の焼結材料も得ることができるが、
孔隙率30%未満になると部分的に独立気孔が増加
すると共に温度制御の限界を越えてメタリツクな
焼結となり易い。従つて、孔隙率は30〜60%が好
ましい。 一般に、2相あるいはそれ以上の異相よりなる
合金は異相間の電気化学的作用により1相の合金
より腐蝕を受け易いのが普通であるが、特に、多
孔性金属材料においては通常の金属材料と比較し
て表面積が格段に大きく、また、強度は小さいの
で腐蝕の影響は非常に大きく耐蝕性の向上は重要
な課題である。耐蝕性を目的とする場合の重要な
因子となるのは電極電位であり、添加成分として
Alとの固溶体あるいは金属間化合物の電極電位
が純Alの電極電位に近いものを選択する必要が
ある。 第1表は各種金属Alとの固溶体および金属間
化合物の電極電位を示したものである。
<Purpose of the invention> Industrial application field The present invention relates to a porous Al-based sintered sound-absorbing material, and more specifically, it has excellent sound-absorbing properties for noise, noise, etc., and
This invention relates to a porous Al-based sintered sound absorbing material with excellent corrosion resistance and bending workability. In the present invention, porosity refers to the fact that when Al particles are sintered without pressure, pores are created between the Al particles.
It refers to a structure with many pores. Prior Art Compared to Cu- or Fe-based porous sintered materials, porous Al sintered materials (1) have a lower specific gravity; (2) Since it has good malleability, it is relatively easy to bend. (3) Sintering temperature is low and can be manufactured at relatively low cost. Since it has the following advantages, its development has been actively promoted. However, in the early days, Special Publication No. 43-20884,
As shown in publications No. 45-24206, No. 45-24007, and No. 47-32163, the development was mainly aimed at oil-impregnated bearings for mechanical parts, so the strength of porous sintered materials was required. , many sintered materials naturally contain Cu, which has good sinterability as a sintering component and is easy to obtain strength, and technically it is possible to press and break the surface oxide film that inhibits sintering. Since this was a common method, the porosity of the sintered material was at most 10 to 20%. After that, it was sintered in a non-pressure, non-oxidizing atmosphere according to Japanese Patent Publication No. 56-11373, with a porosity of 40 to 50%.
A method for obtaining porous Al-based sintered materials has been developed,
It has come to be widely applied to sound absorbing materials, filter materials, etc., but it is lacking in terms of mechanical strength, weather resistance, and sound absorbing properties.
Al-Cu based sintered materials have been mainly used. However, the conventional Cu-containing porous Al-based sintered materials are: (1) Usage is limited to applications and locations that require corrosion resistance. (2) Although it has tensile strength, it has poor bending strength, making it difficult to bend. Due to these drawbacks, it was difficult to use it in applications that required corrosion resistance and bending strength. Problems to be Solved by the Invention The present invention aims to solve these problems, and specifically provides a porous Al-based sintered sound-absorbing material that has excellent sound-absorbing properties, high corrosion resistance, and is easy to bend. The purpose is to provide. <Structure of the invention> Means for solving the problems and their effects The present invention has Al as a main component and an additive component.
A porous sintered material containing Mn: 0.5 to 3.0% by weight and Si: 0.5 to 2.0% by weight and having a porosity of 30 to 60%, the electrode potential of the solid solution or intermetallic compound with Al as the additive component. is close to the electrode potential of pure Al,
Sound absorption properties ranging from −0.81 to −0.87v, corrosion resistance,
It is characterized by excellent bending workability. The present invention will be explained below with reference to the drawings. Fig. 1 is an explanatory diagram of an example of the manufacturing process for manufacturing the porous Al-based sintered sound absorbing material according to the present invention, and Fig. 2 shows the relationship between sintering temperature and porosity of various Al-based sintered materials. This is a graph showing. In Figure 1, raw material powder 1 whose main component is Al.
is uniformly dispersed from the hopper 2 into a container 3 (for example, a graphite container) that does not react with Al to a predetermined thickness. The thickness of the spray at this time is adjusted depending on the depth of the container. Container 3 naturally filled with raw material powder
are stacked and sintered in a sintering furnace 4 maintained in an atmosphere of non-oxidizing gas, such as NH 3 cracked gas, H 2 gas, N 2 gas, etc., cooled in a cooling zone 6, and then placed in a container. 3, a porous aluminum sintered material (sintered plate) 7 is obtained. As described above, in the present invention, Al in the container 3
The raw material powder 1 mainly composed of It is destroyed due to the difference in thermal expansion coefficient between the inside of the oxide film and the oxide film, and sintering progresses through this destroyed portion. At this time, the destroyed and exposed metallic parts and the generated liquid phase parts are easily oxidized, so the atmosphere in the sintering furnace must be controlled to have a low oxygen partial pressure, and the sintering furnace must be sintered in an atmosphere with a dew point of -30°C or lower. tied. Further, the sintering temperature is higher than the liquid phase generation temperature of the additive component powder and lower than the melting point of Al. The porosity of the resulting porous Al-based sintered material exceeds 60% by using coarse-grained powder and controlling the liquid phase amount of the additive components to a small value. The material is not practical because it has low strength and tends to become unsintered. Furthermore, by controlling the sintering temperature and the amount of added ingredients, it is possible to obtain a sintered material with a porosity of less than 30%.
When the porosity is less than 30%, independent pores increase in some areas and the temperature control limit is exceeded, which tends to result in metallic sintering. Therefore, the porosity is preferably 30 to 60%. In general, alloys consisting of two or more different phases are more susceptible to corrosion than single-phase alloys due to electrochemical action between the different phases, but porous metal materials in particular are more susceptible to corrosion than normal metal materials. In comparison, the surface area is much larger and the strength is lower, so the influence of corrosion is very large, and improving corrosion resistance is an important issue. The important factor when aiming for corrosion resistance is the electrode potential, and as an additive component,
It is necessary to select a solid solution with Al or an intermetallic compound whose electrode potential is close to that of pure Al. Table 1 shows the electrode potentials of solid solutions and intermetallic compounds with various metals, Al.

【表】 を含む水溶液中で測定
第1表においてCuの場合はAlとの固溶体の電
極電位は−0.69vで純Alの−0.85vと比較的近い値
を示しているが、Cuの含有量が固溶度を越える
と電極電位−0.53vの金属間化合物CuAl2を析出
し耐蝕性を低下させる。 また、FeはAlとの金属間化合物FeAl3の電極
電位が−0.56vと小さく、また、Al中への固溶限
が小さいので少量のFeの存在が耐蝕性を低下さ
せる原因となる。 第1表において純Alの電極電位−0.85vに近い
電極電位を示すものをあげると、 Al−4%Mg固溶体 −0.87v MnAl6 −0.85v Al−Mg−Si(1%Mg2Si)固溶体 −0.83v Al−1%Si固溶体 −0.81v があり、Al−Mn系、Al−Mg系、Al−Si系が良
好な耐蝕性を示すことが推定される。 そこで、これらの系について耐蝕性および焼結
性について検討を行なつた。 第2図は各系における焼結温度と孔〓率の関係
を示した図であるが、Al−Mg系は焼結温度によ
る孔〓率の変化が他の系より大きく品質管理上に
問題がある。また、Mgは揮発し易く、細粉は非
常に反応性が強く危険があるため、量産化には安
全上の問題もある。更に、Mgは固溶限を越える
と電極電位−1.07vのMg5Al6を生じ、耐蝕性を低
下する。Al−Mn系およびAl−Si系の場合は、液
相の生成量が少なく焼結性に問題があり、また、
Siは固溶限を越えると微細なSi相が存在し、これ
が陰極的に作用して耐蝕性を阻害することが知ら
れている。 第2表はAl−Cu系、Al−Mg−Si系、Al−Mn
−Si系の焼結性(引張強度で示す)および耐蝕性
(塩水噴霧による白錆発生までの時間で示す)に
ついて検討したものである。
[Table] In Table 1, in the case of Cu, the electrode potential of the solid solution with Al is -0.69v, which is relatively close to -0.85v for pure Al. When the solid solubility is exceeded, an intermetallic compound CuAl 2 with an electrode potential of -0.53V is precipitated, reducing the corrosion resistance. Further, the electrode potential of FeAl 3 , an intermetallic compound with Al, is as low as -0.56V, and the solid solubility limit in Al is small, so the presence of a small amount of Fe causes a decrease in corrosion resistance. In Table 1, the electrode potentials close to the electrode potential of pure Al -0.85v are listed as follows: Al-4%Mg solid solution -0.87v MnAl 6 -0.85v Al-Mg-Si (1%Mg 2 Si) solid solution -0.83v Al-1%Si solid solution -0.81v It is estimated that Al-Mn system, Al-Mg system, and Al-Si system exhibit good corrosion resistance. Therefore, we investigated the corrosion resistance and sinterability of these systems. Figure 2 shows the relationship between sintering temperature and porosity for each system.The change in porosity due to sintering temperature for the Al-Mg system is larger than for other systems, which poses a quality control problem. be. In addition, Mg is easily volatile, and fine powder is extremely reactive and dangerous, so there are safety issues in mass production. Furthermore, when Mg exceeds its solid solubility limit, it produces Mg 5 Al 6 with an electrode potential of -1.07V, reducing corrosion resistance. In the case of Al-Mn and Al-Si systems, the amount of liquid phase produced is small and there are problems with sinterability, and
It is known that when Si exceeds its solid solubility limit, a fine Si phase exists, which acts as a cathode and impairs corrosion resistance. Table 2 shows Al-Cu system, Al-Mg-Si system, Al-Mn system.
This study investigated the sinterability (indicated by tensile strength) and corrosion resistance (indicated by the time until white rust appears due to salt spray) of the -Si system.

【表】 第2表においてAl−Cu系(No.1)は焼結性は
良好であるが耐蝕性が劣ることを示し、Al−Mg
−Si系(No.2〜5)は焼結性および耐蝕性の何れ
も満足させることを示しているが、Mgは安全上
の問題があることは前述の通りである。Al−Mn
系(No.6)は耐蝕性は満足させるが液相量が少な
く焼結性が良くない。しかし、これにSiを添加す
ると耐蝕性および焼結性の何れも満足する多孔性
材料が得られることが分る(No.7〜10)。 すなわち、Al−Mn−Si系においてMn:0.5〜
3.0%、Si:0.5〜2.0%の範囲で好ましい結果が得
られるがMnが0.5%未満あるいは3.0%を越え添
加すると、Siの添加効果が薄れ焼結性の向上は期
待できない。また、Siの添加効果は0.5〜2.0%に
おいて顕著であるが、0.5%未満では液相量の増
加は期待できず、また、2.0%を越え添加すると
耐蝕性が阻害される。 なお、MnおよびSiの添加量はMnの添加量が
下限に近い場合にはSi添加量は上限に近い添加を
要し、またMn添加量が上限に近い場合にはSiの
添加量は下限に近い添加を必要とする傾向があ
る。 以上説明したように、Al−Mn−Si系多孔性焼
結材料は耐蝕性および焼結性に優れているが、こ
の焼結材料は更に丸め加工性に優れている材料で
ある。第3表は本発明のAl−1.5%Mn−1.0%Si
系多孔性焼結材料の諸特性を従来のプレス焼結お
よび無加圧焼結によるAl−Cu系多孔性焼結材料
と比較したものである。
[Table] In Table 2, Al-Cu type (No. 1) has good sinterability but poor corrosion resistance.
-Si series (Nos. 2 to 5) have been shown to satisfy both sinterability and corrosion resistance, but as mentioned above, Mg has safety problems. Al−Mn
Although the system (No. 6) satisfies the corrosion resistance, the amount of liquid phase is small and the sinterability is poor. However, it can be seen that when Si is added to this, porous materials satisfying both corrosion resistance and sinterability can be obtained (Nos. 7 to 10). That is, in the Al-Mn-Si system, Mn: 0.5~
3.0% and Si: 0.5 to 2.0%, favorable results can be obtained, but if Mn is added less than 0.5% or more than 3.0%, the effect of adding Si will be weakened and no improvement in sinterability can be expected. Further, the effect of adding Si is significant at 0.5 to 2.0%, but if it is less than 0.5%, no increase in the amount of liquid phase can be expected, and if it is added in excess of 2.0%, corrosion resistance will be impaired. Furthermore, when the amount of Mn and Si added is close to the lower limit, the amount of Si added must be close to the upper limit, and when the amount of Mn added is close to the upper limit, the amount of Si added must be near the lower limit. They tend to require close additions. As explained above, the Al-Mn-Si based porous sintered material has excellent corrosion resistance and sinterability, but this sintered material is also a material that has excellent rounding workability. Table 3 shows the Al-1.5%Mn-1.0%Si of the present invention.
The characteristics of the porous sintered material are compared with those of the porous sintered Al-Cu material produced by conventional press sintering and pressureless sintering.

【表】 表において曲げ加工性はロールベンダー法によ
る3mm厚板材の曲げ最小半径で示したものである
が、プレス焼結によるAl−Cu系焼結材料はクラ
ツクが発生して測定できず、また無加圧Al−Cu
系焼結材料の最小曲げ半径は30mmRであるのに対
し本発明による多孔性焼結材料の最小曲げ半径は
12mmRで非常に曲げ加工性に優れている。この特
性は音響制御等の用途、たとえば自動車の排気系
サイレンサーや空調ダクト、フイルター等に使用
する場合に極めて有用である。 <発明の効果> 以上詳しく説明したように、本発明は、Alを
主成分とし、添加成分としてMn:0.5〜3.0重量
%およびSi:0.5〜2.0重量%を含み、孔隙率30〜
60%を有する多孔性焼結材であつて、前記添加成
分のAlとの固溶体あるいは金属間化合物の電極
電位が純Alの電極電位に近く、−0.81〜−0.87vの
範囲である吸音特性、耐蝕性、曲げ加工性に優れ
た多孔性Al系焼結吸音材料であつて、Al−Cu系
焼結材料と比較して吸音特性は勿論のこと焼結性
および耐蝕性に優れているので、従来問題のあつ
た耐蝕性を要求される分野に使用が可能となり、
また丸め加工性に優れているので自動車排気系の
サイレンサーや空調ダクト、フイルター等に極め
て有用な材料である。
[Table] In the table, the bending workability is shown as the minimum bending radius of a 3 mm thick plate material made by the roll bender method, but the Al-Cu based sintered material made by press sintering cannot be measured due to cracks. No-pressure Al-Cu
The minimum bending radius of the porous sintered material according to the present invention is 30 mmR, while the minimum bending radius of the porous sintered material according to the present invention is
With a radius of 12mm, it has excellent bending workability. This characteristic is extremely useful for applications such as sound control, such as automobile exhaust system silencers, air conditioning ducts, filters, etc. <Effects of the Invention> As explained in detail above, the present invention has Al as the main component, Mn: 0.5 to 3.0% by weight and Si: 0.5 to 2.0% by weight as additional components, and a porosity of 30 to 30%.
60%, the electrode potential of the solid solution or intermetallic compound with Al as the additive component is close to the electrode potential of pure Al, and has sound absorption properties in the range of -0.81 to -0.87V; It is a porous Al-based sintered sound-absorbing material with excellent corrosion resistance and bending workability, and compared to Al-Cu-based sintered materials, it has not only sound absorption properties but also excellent sinterability and corrosion resistance. It can now be used in fields that require corrosion resistance, which was a problem in the past.
It also has excellent rounding properties, making it an extremely useful material for automobile exhaust system silencers, air conditioning ducts, filters, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の多孔性Al系焼結吸音材料の
製造工程の一例の説明図、第2図は各種Al系焼
結材料の焼結温度と孔隙率との関係を示すグラフ
である。 符号1……原料粉末、2……ホツパー、3……
容器、4……焼結炉、5……焼結ゾーン、6……
冷却ゾーン、7……多孔性アルミ焼結材料(焼結
板)。
FIG. 1 is an explanatory diagram of an example of the manufacturing process of the porous Al-based sintered sound absorbing material of the present invention, and FIG. 2 is a graph showing the relationship between sintering temperature and porosity of various Al-based sintered materials. Code 1...Raw material powder, 2...Hopper, 3...
Container, 4...Sintering furnace, 5...Sintering zone, 6...
Cooling zone, 7...porous aluminum sintered material (sintered plate).

Claims (1)

【特許請求の範囲】[Claims] 1 Alを主成分とし、添加成分としてMn:0.5〜
3.0重量%およびSi:0.5〜2.0重量%を含み、孔隙
率30〜60%を有する多孔性焼結材であつて、前記
添加成分のAlとの固溶体あるいは金属間化合物
の電極電位が純Alの電極電位に近く、−0.81〜−
0.87vの範囲である吸音特性、耐蝕性、曲げ加工
性に優れた多孔性Al系焼結吸音材料。
1 Al as the main component, Mn as an additional component: 0.5~
3.0% by weight and Si: 0.5 to 2.0% by weight, and has a porosity of 30 to 60%, and the electrode potential of the solid solution or intermetallic compound with Al as the additive component is that of pure Al. Close to electrode potential, −0.81 to −
Porous Al-based sintered sound absorbing material with excellent sound absorbing properties in the 0.87v range, corrosion resistance, and bending workability.
JP1478985A 1985-01-29 1985-01-29 Porous al-type sintered material Granted JPS61174353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1478985A JPS61174353A (en) 1985-01-29 1985-01-29 Porous al-type sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1478985A JPS61174353A (en) 1985-01-29 1985-01-29 Porous al-type sintered material

Publications (2)

Publication Number Publication Date
JPS61174353A JPS61174353A (en) 1986-08-06
JPS6330386B2 true JPS6330386B2 (en) 1988-06-17

Family

ID=11870820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1478985A Granted JPS61174353A (en) 1985-01-29 1985-01-29 Porous al-type sintered material

Country Status (1)

Country Link
JP (1) JPS61174353A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3809345A1 (en) * 1988-03-19 1989-10-05 Bayerische Motoren Werke Ag METHOD FOR PRODUCING POROUS COMPONENTS
KR100472922B1 (en) * 2002-05-22 2005-03-08 일진나노텍 주식회사 Porous aluminum for sound absorbing plate and fabrication method therefor

Also Published As

Publication number Publication date
JPS61174353A (en) 1986-08-06

Similar Documents

Publication Publication Date Title
US5304343A (en) Aluminum-alloy powder, sintered aluminum-alloy, and method for producing the sintered aluminum-alloy
US5902943A (en) Aluminium alloy powder blends and sintered aluminium alloys
US4711823A (en) High strength structural member made of Al-alloy
JP2001271129A (en) Sintering material and composite sintered sliding part
US4552719A (en) Method of sintering stainless steel powder
JP2614732B2 (en) Low friction structure and manufacturing method thereof
EP0256555A2 (en) Dispersion strengthened alloys
CA1176490A (en) Method for the manufacture of a sintered porous body of aluminum or an aluminum-base alloy
US4788037A (en) High strength, corrosion-resistant aluminum alloys for brazing
JPS6330386B2 (en)
JPS6142761B2 (en)
Raman Uses of rare earth metals and alloys in metallurgy
Belk et al. Deformation behaviour of tungsten-copper composites
JPS6248743B2 (en)
JPH06330263A (en) Production of high toughness al-si series alloy
JPS6047322B2 (en) Manufacturing method of porous sintered body
JPH0210842B2 (en)
JP3057468B2 (en) Wear-resistant aluminum-based sintered alloy and method for producing the same
US3990861A (en) Strong, high purity nickel
JPH02173224A (en) Manufacture of sintered aluminum bronze alloy
US5864071A (en) Powder ferrous metal compositions containing aluminum
JP2574274B2 (en) Aluminum bearing alloy
GB2088414A (en) Sintering Stainless Steel Powder
JPH04131339A (en) Sintered copper-base alloy excellent in wear resistance
JPH0551668A (en) Seacost high corrosion resistance weather resistant steel