JPS63303279A - Fiber-reinforced plastic valve body for check valve - Google Patents

Fiber-reinforced plastic valve body for check valve

Info

Publication number
JPS63303279A
JPS63303279A JP62139526A JP13952687A JPS63303279A JP S63303279 A JPS63303279 A JP S63303279A JP 62139526 A JP62139526 A JP 62139526A JP 13952687 A JP13952687 A JP 13952687A JP S63303279 A JPS63303279 A JP S63303279A
Authority
JP
Japan
Prior art keywords
fiber
valve body
matrix
plastic
whiskers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62139526A
Other languages
Japanese (ja)
Inventor
Tomoji Takahashi
知二 高橋
Noriaki Ide
昇明 井出
Shuji Yumitori
弓取 修二
Katsumi Inomata
猪股 克己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62139526A priority Critical patent/JPS63303279A/en
Publication of JPS63303279A publication Critical patent/JPS63303279A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the impact resistive fatigue strength and improve the operation efficiency and durability by constituting a valve body by dispersing whiskers into a matrix made of plastic. CONSTITUTION:A valve body made of the fiber-reinforced plastic which is formed by dispersing whiskers into the plastic which constitutes a matrix. As the reinforcing fiber, can be used all the reinforcing fiber such as glass fiber and carbon fiber. As the plastic which constitutes a matrix can be used all the well-known plastic including thermosetting resin and thermoplastic resin. As the whisker, can be used the needle-shaped crystal in single fiber form which consists of the carbides such as SiC, nitrides, oxides, and further the single crystal of carbon and metal and has a diameter of 0.1-severalmum.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は逆止弁用の繊維強化プラスチック製弁体に関し
、詳細には、マトリックスを構成するプラスチック材中
にウィスカーを分散せしめ、特に耐衝撃疲労強度を高め
た弁体(以下、特記しない限り逆上弁用の弁体な意味す
る)に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fiber-reinforced plastic valve body for a check valve. This invention relates to a valve body with increased fatigue strength (hereinafter referred to as a valve body for a reversal valve unless otherwise specified).

し従来の技術] 逆止弁とは、周知の通り一方々向への流体の通過を許し
反対方向への流れを阻止する機能を備えた弁であり、ば
ね式、フロート式、ダイアフラム式等様々の機構のもの
か色々の素イイによって作製され、逆止め弁、安全弁、
保圧弁等の名称で広く実用化されている。
[Prior art] As is well known, a check valve is a valve that has the function of allowing fluid to pass in one direction and blocking the flow in the opposite direction, and there are various types such as spring type, float type, diaphragm type, etc. They are manufactured by various mechanisms such as check valves, safety valves, etc.
It is widely put into practical use under the names such as pressure holding valves.

これらの逆止弁のうち、弁体を構成する素材自身の弾性
を活用したものとしては、コンプレッサー用、ポンプ用
、内燃機関用等の吸・排気弁や保圧弁があり、弁体構成
素材としては金属、ゴム、プラスチック、繊維強化プラ
スチックなどが用いられている。
Among these check valves, there are intake/exhaust valves and pressure holding valves for compressors, pumps, internal combustion engines, etc. that utilize the elasticity of the material that makes up the valve body. Materials used include metal, rubber, plastic, and fiber-reinforced plastic.

ところが従来から知られている逆止弁用弁体の素材は、
弾性率と耐衝撃疲労強度とのバランスに問題があり、殊
に逆止弁の入口側と出口側におりる流体の圧力差か小さ
く且つ作動頻度か高い場合は以下に示す様な問題が生じ
てくる。即ち弁体構成素材として弾性率の高い素材を使
用する場合において、弁開口時の有効開口面積を十分に
広くして必要流量を流すには、強い力て開口させる様な
使用条件の所に適用するか、あるいは弁体構成素材とし
て薄肉のものを選択する必要があるが、前者の場合は閉
鎖方向作動時に弁体が強い力で弁座に衝突することとな
り、当該衝突の繰り返しによって弁体が短期間のうちに
破損してしまう。一方後者の薄肉素材を使用した場合は
、弁体自体か強度不足となるため閉鎖時の衝突による破
損は更に起こり易くなる。また厚肉の弁体を使用した場
合は、剛性が高くなるため低流体圧側における弁の開閉
か不十分になるばかりでなく有効開口面積も小さくなり
、逆止弁全体として見れば作動効率か低下すると共に即
応性にも欠けることとなる。
However, the conventionally known materials for check valve discs are
There is a problem in the balance between elastic modulus and impact fatigue strength, and the following problems occur especially when the pressure difference between the fluid flowing on the inlet and outlet sides of the check valve is small and the check valve operates frequently. It's coming. In other words, when using a material with a high modulus of elasticity as the material for forming the valve body, in order to make the effective opening area sufficiently wide when the valve opens to allow the required flow rate to flow, it is necessary to apply it to locations where strong force is required to open the valve. Alternatively, it is necessary to select a thin material for the valve body, but in the former case, the valve body will collide with the valve seat with strong force during operation in the closing direction, and the repeated collisions will cause the valve body to become damaged. It will be damaged within a short period of time. On the other hand, if the latter thin-walled material is used, the valve body itself will be insufficient in strength, making it even more likely to be damaged by a collision during closing. In addition, when a thick valve body is used, its rigidity increases, which not only makes it insufficient to open and close the valve on the low fluid pressure side, but also reduces the effective opening area, reducing the operating efficiency of the check valve as a whole. At the same time, there is a lack of responsiveness.

他方弁体構成素材として弾性率の低い素材を使用した場
合は、比較的小さな流体圧力でも大きな有効開口面積を
確保することができ、また復元力もそれほど大きくない
ので閉鎖方向作動時における弁座への衝撃力も小さく、
弁体の衝撃破壊は起こり難い。しかしながら弾性不足は
圧力変化に対する応答の遅延となって直ちに表われ、即
応性に欠けるものとなる。
On the other hand, if a material with a low elastic modulus is used as the material for the valve body, a large effective opening area can be secured even with a relatively small fluid pressure, and the restoring force is not so large, so it is possible to reduce the impact on the valve seat when operating in the closing direction. The impact force is small,
Impact damage to the valve body is unlikely to occur. However, the lack of elasticity immediately appears as a delay in response to pressure changes, resulting in a lack of quick response.

こうした従来材の難点を克服すへく繊維強化プラスチッ
ク製の弁体が開発され注目を集めている。即ちこの弁体
の構成素材は、強化繊維とじてガラス繊維、炭素繊維、
アラミド繊維、金属繊維等の繊維を使用し、これを熱硬
化性樹脂や熱可塑性樹脂等のプラスチックと複合せしめ
たものであり、マトリックスを構成するプラスチックと
強化繊維の組合せや強化繊維の配向方向等を変えること
によって物性を様々に調整することができ、また引張強
度や曲げ強度にも優れたものであるところから、適用範
囲は急速に拡大していく傾向か見られる。
A valve body made of fiber-reinforced plastic has been developed and is attracting attention because it overcomes these drawbacks of conventional materials. That is, the constituent materials of this valve body include glass fiber, carbon fiber, and reinforcing fibers.
It uses fibers such as aramid fibers and metal fibers and composites them with plastics such as thermosetting resins and thermoplastic resins.The combination of the plastic and reinforcing fibers that make up the matrix, the orientation direction of the reinforcing fibers, etc. It is possible to adjust the physical properties in various ways by changing the material, and it also has excellent tensile strength and bending strength, so the range of applications seems to be rapidly expanding.

[発明が解決しようとする問題点] ところで繊維強化プラスチックよりなる弁体は、樹脂含
浸繊維布を複数枚積層し一体化することによって作製す
るのが通例であり、繊維の配向と積層効果によって卓越
した引張強度と曲げ強度を発揮するが、かかる積層構造
に基づく欠点として層間剥離強度がやや乏しく、その結
果開閉の繰り返しによる衝撃によって層間剥離を起こし
、ひいては弁体の破壊に進展していく傾向があり、耐衝
撃疲労強度が不足するという難点が指摘されている。
[Problems to be Solved by the Invention] By the way, valve bodies made of fiber-reinforced plastic are usually manufactured by laminating and integrating a plurality of resin-impregnated fiber cloths, and the fiber orientation and lamination effect produce excellent results. However, due to the laminated structure, the delamination strength is somewhat poor, and as a result, the impact caused by repeated opening and closing tends to cause delamination, which can lead to destruction of the valve body. However, it has been pointed out that it has insufficient impact fatigue strength.

本発明はこの様な事情に着目してなされたものであって
、その目的は、繊維強化プラスチックの具備する特徴を
維持しつつ、その欠点である層間剥離性不足を改善して
耐衝撃疲労強度を高め、作動効率及び耐久性がいずれも
優れた逆止弁用の弁体を提供しようとするものである。
The present invention was made in view of these circumstances, and its purpose is to maintain the characteristics of fiber-reinforced plastics, improve the lack of delamination properties, and improve impact fatigue strength. The object of the present invention is to provide a valve body for a check valve that has improved operating efficiency and durability.

[問題点を解決するための手段] 上記の目的を達成することのできた本発明弁体の構成は
、プラスチックよりなるマトリックス中にウィスカーを
分散せしめてなるところに要旨を有するものである。
[Means for Solving the Problems] The structure of the valve body of the present invention, which can achieve the above-mentioned objects, has its gist in that whiskers are dispersed in a matrix made of plastic.

し作用コ 本発明に係る弁体な構成する繊維強化プラスチックは、
マトリックスを構成するプラスチック中にウィスカーを
分散せせることによってマトリックス相を強化し、マト
リックスの破壊に起因する層間!lJ離を防止したもの
てあり、強化繊維による補強効果とウィスカーによるマ
トリックス強化効果か相まって、弾性率と耐衝撃疲労特
性の均衡か保たれ、即応性および耐久性の共に優れた弁
体となる。
The fiber-reinforced plastic constituting the valve body according to the present invention has the following functions:
Strengthen the matrix phase by dispersing whiskers in the plastic that makes up the matrix, and the interlayers due to the destruction of the matrix! It prevents lJ separation, and the combination of the reinforcing effect of reinforcing fibers and the matrix reinforcing effect of whiskers maintains a balance between elastic modulus and impact fatigue resistance, resulting in a valve body with excellent quick response and durability.

本発明で使用する強化繊維としては、ガラス繊維;炭素
繊維;ポリアミド繊維等の有機繊維;スチール繊維等の
金属繊維;アルミナ繊維等のセラミック繊維;或はチタ
ン酸繊維:ロックウール等の無機繊維等の如〈従来から
知られたすべての強化Km維を使用することができ、こ
れらは単独で使用し得るほか、必要により2 fffi
以上を複合して使用することができる。これらの強化繊
維の中でも逆止弁用弁体としての重要な要求特性である
高度の弾性と耐衝撃疲労特性を確保するうえて最も好ま
しいのは炭素繊維である。
The reinforcing fibers used in the present invention include glass fibers; carbon fibers; organic fibers such as polyamide fibers; metal fibers such as steel fibers; ceramic fibers such as alumina fibers; or titanate fibers: inorganic fibers such as rock wool, etc. All conventionally known reinforced Km fibers can be used, and these can be used alone or, if necessary, in combination with 2 fffi.
The above can be used in combination. Among these reinforcing fibers, carbon fiber is most preferred in order to ensure high elasticity and impact fatigue resistance, which are important characteristics required for a valve body for a check valve.

またマトリックスを構成するプラスチックとしては、エ
ポキシ樹脂や不飽和ポリエステル樹脂の様な熱硬化性樹
脂、ポリアミド、ポリエチレン、ポリカーボネートの様
な熱可塑性樹脂を含めて公知のあらゆるプラスチックが
実用可能であり、中でも特にエンジニアリングプラスチ
ックとして賞月されているものが有用であって、使用さ
れる環境等により耐熱性等を合わせ考慮して適宜選択し
て決定ずれはよい。
In addition, all known plastics can be used as the plastic for the matrix, including thermosetting resins such as epoxy resins and unsaturated polyester resins, and thermoplastic resins such as polyamide, polyethylene, and polycarbonate. Those that have been praised as engineering plastics are useful, and should be selected appropriately depending on the environment in which they will be used, taking into account heat resistance and other factors.

次にマトリックスの強化に使用されるウィスカーとは、
SiCの如き炭化物や窒化物、酸化物さらには炭素や金
属などの単結晶からなる直径01〜数μmの単繊維状の
針状結晶であり、その種類については一切限定を受けな
いが繊維材の構造欠陥の1つである転移が極端に少なく
理論値に近い強度を有しているという共通の特性があっ
て、複合材料の強化材としての活用が期待されている。
Next, what are the whiskers used to strengthen the matrix?
It is a single fiber-like needle-like crystal with a diameter of 0.1 to several μm made of a single crystal of carbide, nitride, oxide, carbon, or metal such as SiC, and there are no restrictions on its type, but it can be used as a fiber material. They have common characteristics such as having extremely few dislocations, which are one of the structural defects, and having a strength close to the theoretical value, and are expected to be used as reinforcing materials for composite materials.

本発明ではこうしたウィスカーの有する特性を、言わば
ミクロ的に見たマトリックスの強化材として有効に作用
させることによってマトリックス自体の強化を図り、マ
クロ的見地からの強化材として作用する強化繊1:ff
、の効果と相まって、全体として卓越した弾性と耐衝撃
疲労特性を発揮する逆止弁用弁体を得るものである。尚
ウィスカーを複合させるための手段は特に限定されない
が、最も一般的な方法を例示すると次の通りである。
In the present invention, the characteristics of the whiskers are used to effectively act as a reinforcing material for the matrix from a microscopic point of view, thereby strengthening the matrix itself, and reinforcing fibers 1:ff which act as a reinforcing material from a macroscopic point of view.
In combination with the effects of , it is possible to obtain a valve body for a check valve that exhibits excellent elasticity and impact fatigue resistance as a whole. The means for combining whiskers is not particularly limited, but the most common method is as follows.

■マトリックスを構成する樹脂中にウィスカーを混練し
てから強化繊維を含浸する方法。
■A method in which whiskers are kneaded into the resin that makes up the matrix and then impregnated with reinforcing fibers.

■強化繊維の層間にウィスカーを均一に散布しておぎ、
これをマトリックス構成樹脂に含浸する方法。
■Spread whiskers evenly between the reinforcing fiber layers,
A method of impregnating this into the matrix constituent resin.

■未硬化乃至半硬化状態の樹脂含浸強化繊維シートを作
製し、これを積層した後加熱圧着して弁体を作る方法を
採用する場合にあっては、積層前の層間にウィスカーを
万遍なく散布し、積層後加熱圧着する方法。
■When adopting the method of making a resin-impregnated reinforcing fiber sheet in an uncured or semi-cured state, laminating it and then heat-pressing it to make a valve body, make sure that whiskers are evenly distributed between the layers before lamination. A method of spraying, laminating, and then heating and pressing.

尚上記■の方法を採用すれば、ウィスカーをマトリック
ス全体に均一に分布させることができるので、マトリッ
クス強化効果から言えば最も好ましい方法と言える。こ
の場合、マトリックス中に占めるウィスカーの含有率は
0.2〜5重量%が好ましく、ウィスカーの使用量が少
ない場合は強化効果が十分に発揮されず、一方多過ぎる
場合は樹脂の流動性が悪くなって強化繊維の含浸が困難
となり、成形品中に樹脂枯れ(未含浸状態の空隙が残さ
れた状態)やボイド等が生じて強度特性をかえって阻害
する恐れが生じてくる。
It should be noted that if method ① above is adopted, the whiskers can be uniformly distributed throughout the matrix, so it can be said to be the most preferable method from the viewpoint of matrix reinforcement effect. In this case, the content of whiskers in the matrix is preferably 0.2 to 5% by weight; if the amount of whiskers used is small, the reinforcing effect will not be sufficiently exhibited, while if it is too large, the fluidity of the resin will be poor. This makes it difficult to impregnate the reinforcing fibers, and there is a risk that resin wilt (unimpregnated voids remain) or voids may occur in the molded product, which may actually impair the strength properties.

また上記■、■の方法を採用した場合は、繊維強化プラ
スチック同士の積層境界部にウィスカーか多量存在する
こととなって耐剥離性を高めるので、比較的少ないウィ
スカー量でも高レベルの耐衝撃疲労特性を得ることがで
きる。
In addition, when methods ① and ② above are adopted, a large amount of whiskers are present at the lamination boundary between fiber reinforced plastics, increasing peeling resistance, so even with a relatively small amount of whiskers, a high level of impact fatigue resistance is achieved. characteristics can be obtained.

もっとも、ウィスカー、強化繊維およびマトリックス構
成樹脂の複合方法は上記■〜■に限定される訳ではなく
、他の複合方法を採用することも勿論可能であり、必要
によっては2 fff1以上の複合法を組合せて実施す
ることもできる。
However, the method of combining the whiskers, reinforcing fibers, and matrix-constituting resin is not limited to the above ■ to ■, and it is of course possible to adopt other combining methods, and if necessary, combining methods of 2 fff1 or more It can also be implemented in combination.

この様に本発明では、繊維強化プラスチックのマトリッ
クス構成材中に極めて微細で強靭なウィスカーを分散し
て強化することにより、機械的強度はもとより弾性や耐
衝撃疲労強度のいずれにおいても非常に優れた性能を発
揮する逆止弁用弁体を得ることができる。
As described above, in the present invention, by dispersing and reinforcing extremely fine and strong whiskers in the matrix constituent material of fiber-reinforced plastic, the material has excellent not only mechanical strength but also elasticity and impact fatigue strength. A valve body for a check valve that exhibits high performance can be obtained.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

[実施例] 実施例1 エポキシ樹脂(チハガイギー社製商品名:アラルダイト
6071)60重量部およびグリシジルアミン型エポキ
シ樹脂(チバガイギー社製商品名:アラルダイトMY7
20)25重量部と硬化剤(ジシアンジアミド)10重
量部および硬化促進剤(3−(p−クロロフェニル)−
1,1−ジメチル尿素)2重量部を、アセトン:メチル
エチルケトン−1:1の混合溶媒70重量部に溶解させ
る。
[Example] Example 1 60 parts by weight of epoxy resin (trade name: Araldite 6071 manufactured by Ciba Geigy) and glycidylamine type epoxy resin (trade name: Araldite MY7 manufactured by Ciba Geigy)
20) 25 parts by weight, 10 parts by weight of curing agent (dicyandiamide) and curing accelerator (3-(p-chlorophenyl)-
2 parts by weight of 1,1-dimethylurea) are dissolved in 70 parts by weight of a mixed solvent of acetone:methyl ethyl ketone-1:1.

他方、SiCウィスカー2重量部をエタノール30重量
部に分散させておき、この分散液を上記エポキシ樹脂溶
液中に攪拌しつつ徐々に添加し、全量を均一に混合する
On the other hand, 2 parts by weight of SiC whiskers are dispersed in 30 parts by weight of ethanol, and this dispersion is gradually added to the epoxy resin solution while stirring, and the entire amount is mixed uniformly.

この混合液を、炭素繊維IKのトウよりなる目付125
g/m2の平織り織布に塗布し、織布プリプレグを作製
した。この織布プリプレグを3枚積層して加熱圧着し、
厚さ0.5 mmの平板とした。この平板を用いて弁体
を作製し、下記の条件で繰り返し衝撃試験を行なったと
ころ、20時間以上の耐久試験においても弁体の損傷は
全く認められなかった。
This mixed solution was mixed with carbon fiber IK tow having a fabric weight of 125.
g/m2 of plain weave fabric to produce a woven fabric prepreg. Three sheets of this woven fabric prepreg are laminated and heat-pressed,
A flat plate with a thickness of 0.5 mm was used. A valve body was prepared using this flat plate and subjected to repeated impact tests under the following conditions. No damage to the valve body was observed even during a durability test of 20 hours or more.

(試験条件) 荷重モート :曲げ 衝撃力   : 15Kg−f 7cm2繰り返し頻度
:8000〜10000回/min比較例1 実施例1て使用したのと同じエポキシ樹脂溶液を、Si
Cウィスカー分散液と混合することなく単味て実施例1
と同じ炭素繊維織布プリプレグとした。
(Test conditions) Load mode: Bending impact force: 15Kg-f 7cm2 Repetition frequency: 8000 to 10000 times/min Comparative example 1 The same epoxy resin solution used in Example 1 was
Example 1 by itself without mixing with C whisker dispersion
The same carbon fiber woven prepreg was used.

このプリプレグ3枚を積層して加熱圧着し、得られた厚
さ5mmの平板を用いて逆止弁用弁体を作製した。次い
で実施例1と同様の繰り返し街!荷重試験を行なったと
ころ、この弁体は5時間以内で層間剥離を起こして弁座
への衝突部に割れや欠落か生じた。
Three sheets of this prepreg were laminated and heat-pressed, and a valve body for a check valve was produced using the resulting flat plate with a thickness of 5 mm. Next, a repeating town similar to Example 1! When a load test was carried out, this valve element suffered delamination within 5 hours, and cracks or chips appeared at the part where it collided with the valve seat.

[発明の効果] 本発明は以上の様に構成されており、la維強化プラス
チックのマトリックス構成材中にウィスカーを分散して
マトリックス層全体を強化することにより、強化繊維、
プラスチックおよびライスカーからなる3種の複合効果
によって高レベルの弾性と耐衝撃疲労特性を発揮し得る
ものとなり、逆止弁用弁体としての性能および耐久性を
著しく改善することかできた。
[Effects of the Invention] The present invention is configured as described above, and by reinforcing the entire matrix layer by dispersing whiskers in the matrix constituent material of LA fiber-reinforced plastic, reinforcing fibers,
Due to the combined effect of the three types of plastic and rice car, it was possible to exhibit a high level of elasticity and impact fatigue resistance, and the performance and durability as a valve body for a check valve were significantly improved.

Claims (1)

【特許請求の範囲】[Claims] プラスチックよりなるマトリックス中にウィスカーを分
散せしめてなる逆止弁用繊維強化プラスチック製弁体。
A fiber-reinforced plastic valve body for check valves that has whiskers dispersed in a plastic matrix.
JP62139526A 1987-06-03 1987-06-03 Fiber-reinforced plastic valve body for check valve Pending JPS63303279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62139526A JPS63303279A (en) 1987-06-03 1987-06-03 Fiber-reinforced plastic valve body for check valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62139526A JPS63303279A (en) 1987-06-03 1987-06-03 Fiber-reinforced plastic valve body for check valve

Publications (1)

Publication Number Publication Date
JPS63303279A true JPS63303279A (en) 1988-12-09

Family

ID=15247337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62139526A Pending JPS63303279A (en) 1987-06-03 1987-06-03 Fiber-reinforced plastic valve body for check valve

Country Status (1)

Country Link
JP (1) JPS63303279A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370248U (en) * 1989-11-13 1991-07-15
US8366073B2 (en) 2003-10-10 2013-02-05 Asahi Organic Chemicals Industry Co., Ltd. Resin member for valve
JP2014159256A (en) * 2013-02-20 2014-09-04 Asteer Co Ltd Check valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0370248U (en) * 1989-11-13 1991-07-15
US8366073B2 (en) 2003-10-10 2013-02-05 Asahi Organic Chemicals Industry Co., Ltd. Resin member for valve
JP2014159256A (en) * 2013-02-20 2014-09-04 Asteer Co Ltd Check valve

Similar Documents

Publication Publication Date Title
CA2779040C (en) Polymer composite structure reinforced with shape memory alloy and method of manufacturing same
US8298656B2 (en) Polymer composite structure reinforced with shape memory alloy and method of manufacturing same
US4229473A (en) Partial interlaminar separation system for composites
EP2208595B1 (en) Carbon fiber reinforced preform and composite material comprising the same
US4274901A (en) Method of making a partial interlaminar separation composite system
KR900018225A (en) Fiber-reinforced resin matrix prepregs and laminated composites prepared therefrom
JPH04312237A (en) Laminated damping material, fiber reinforced composite material having the material in inner layer and its manufacture
EP2376280A1 (en) Improved composite materials
JPS63303279A (en) Fiber-reinforced plastic valve body for check valve
JPH0232843A (en) Intermediate body of molded product and molded product
JP2001114915A (en) Prepreg and fiber-reinforced composite material
JP4576895B2 (en) Reinforced fiber base material for fiber reinforced composite material and fiber reinforced composite material
JP4655329B2 (en) Unidirectional prepreg and fiber reinforced composites
US6153687A (en) Honeycomb dip resin
JPH04267139A (en) Carbon fiber reinforced composite material prepreg sheet
Tanimoto Interleaving methodology for property tailoring of CFRP laminates
JP2004277955A (en) Unidirectionally reinforced cloth, preform and composite material
US20040086706A1 (en) Polymer composite structure reinforced with shape memory alloy and method of manufacturing same
JPH01104625A (en) Composite material
US20040086705A1 (en) Polymer composite structure reinforced with shape memory alloy and method of manufacturing same
Kamae et al. Advanced-VaRTM System for Aircraft Structures Material Technologies
JPH08176325A (en) Prepreg and fiber-reinforced composite material
Hahn et al. Fatigue failure mechanisms in composite laminates
JPH02235631A (en) Preparation of fiber reinforced composite material
Atique et al. Polymer composites: a blessing to modern aerospace engineering