JPS633030B2 - - Google Patents

Info

Publication number
JPS633030B2
JPS633030B2 JP60193042A JP19304285A JPS633030B2 JP S633030 B2 JPS633030 B2 JP S633030B2 JP 60193042 A JP60193042 A JP 60193042A JP 19304285 A JP19304285 A JP 19304285A JP S633030 B2 JPS633030 B2 JP S633030B2
Authority
JP
Japan
Prior art keywords
compound
compounds
polyfluorinated
perfluorinated
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60193042A
Other languages
Japanese (ja)
Other versions
JPS6254093A (en
Inventor
Shinsuke Morikawa
Mikio Sasabe
Hitoshi Matsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP60193042A priority Critical patent/JPS6254093A/en
Publication of JPS6254093A publication Critical patent/JPS6254093A/en
Publication of JPS633030B2 publication Critical patent/JPS633030B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明はパーフルオロ化合物の製造方法に関す
るものである。 [従来の技術及びその問題点] 従来、有機化合物から対応するパーフルオロ化
合物を製造する方法として電解フツ素化方法及び
フツ素ガスによる直接フツ素化方法が知られてい
る。しかし、前者の方法によりパーフルオロ化合
物を製造する場合、生成フルオロカーボン中には
一般に、目的化合物の他に原料分子中の水素原子
等が一部未反応のまま残存するポリフツ素化物や
原料の分解副生物等が存在する。特に目的物が人
工血液、酸素運搬輸液の酸素運搬成分として使用
される場合、ポリフツ素化物は生体に対する毒性
が高いため、完全に分離除去する必要がある。し
かしながら、ポリフツ素化物は目的物のパーフル
オロ化合物と分離し難いため、濃アルカリ中で煮
沸処理する(特開昭58−225013号公報、特開昭58
−194877号公報)等の手間を要し、大きな収率の
低下を招いていた。又、後者の方法においては、
原料分子の開裂分解が起こりやすく、パーフルオ
ロ体が得られにくいことが知られている。 [問題を解決するための手段] 本発明は前述の問題点を解決すべくなされたも
のであり、電気化学的にフツ素化する前段反応及
びフツ素ガスにより直接フツ素化する後段反応の
組み合せにより効率よくパーフルオロ化合物を得
る方法を提供するものである。 本発明の有機化合物としては、電解フツ素化し
得るものであれば、何ら限定されず、各種化合物
を採用可能である。すなわち、炭化水素類、ハロ
ゲン化炭化水素類(但し、パーフルオロ化合物は
除く)、窒素含有基を持つ化合物類、アルコール
類、エーテル類、アルデヒド類、ケトン類、カル
ボン酸類、フエノール類、脂環式化合物類、炭素
多環式化合物類、複素環式化合物類等である。こ
れら各種有機化合物のうち、電解フツ素化により
得られる目的のパーフルオロ化合物を与えるポリ
フツ素化物が、酸ハライドやスルホニルハライド
等の反応性の官能基を含むものは好ましくない。
このような、ポリフツ素化物は、フツ素ガスの直
接フツ素化により、分解しやすく、目的のパーフ
ルオロ化合物を収率よく得ることができないから
である。 有機化合物の電解フツ素化により、例えば以下
のごとき、パーフルオロ化合物が得られる。
[Industrial Field of Application] The present invention relates to a method for producing a perfluoro compound. [Prior Art and its Problems] Conventionally, electrolytic fluorination methods and direct fluorination methods using fluorine gas are known as methods for producing corresponding perfluorinated compounds from organic compounds. However, when producing perfluorocompounds by the former method, the produced fluorocarbon generally contains polyfluorinated products in which, in addition to the target compound, hydrogen atoms in the raw material molecules remain partially unreacted and by-products of the decomposition of the raw materials. Living things exist. Particularly when the target product is used as an oxygen-carrying component for artificial blood or oxygen-carrying infusions, polyfluorinated substances are highly toxic to living organisms and must be completely separated and removed. However, since polyfluorinated products are difficult to separate from the target perfluorinated compound, they are boiled in concentrated alkali (JP-A-58-225013, JP-A-58
194877), which required a lot of effort and resulted in a large decrease in yield. Also, in the latter method,
It is known that the raw material molecules tend to undergo cleavage and decomposition, making it difficult to obtain perfluorinated compounds. [Means for Solving the Problems] The present invention has been made to solve the above-mentioned problems, and is a combination of an early stage reaction of electrochemical fluorination and a latter stage reaction of direct fluorination with fluorine gas. The present invention provides a method for obtaining perfluorinated compounds more efficiently. The organic compound of the present invention is not limited in any way as long as it can be electrolytically fluorinated, and various compounds can be employed. That is, hydrocarbons, halogenated hydrocarbons (excluding perfluoro compounds), compounds with nitrogen-containing groups, alcohols, ethers, aldehydes, ketones, carboxylic acids, phenols, alicyclics. compounds, carbon polycyclic compounds, heterocyclic compounds, etc. Among these various organic compounds, polyfluorinated compounds that yield the desired perfluorinated compound obtained by electrolytic fluorination contain reactive functional groups such as acid halides and sulfonyl halides, which are not preferred.
This is because such polyfluorinated products are easily decomposed by direct fluorination of fluorine gas, making it impossible to obtain the desired perfluoro compound in good yield. By electrolytic fluorination of organic compounds, the following perfluorinated compounds can be obtained, for example.

【表】 しかしながら、電解フツ素化においては、生成
しつつあるパーフルオロ化合物中に、ポリフツ素
化物が溶解していき、パーフルオロ化合物中のポ
リフツ素化物は、電解フツ素化が起こりにくいた
め、パーフルオロ化合物の収率は低くならざるを
得ない。本発明は、このようなポリフツ素化物を
フツ素化ガスにより直接フツ素化し、パーフルオ
ロ化合物に変換し、収率を向上させることができ
る。パーフルオロ化合物中のポリフツ素化物が、
パーフルオロ化合物と充分な沸点差がある等の理
由で、容易に分離できる場合には、ポリフツ素化
物を分離した後、フツ素ガスにより直接フツ素化
してもよいが、パーフルオロ化合物、ポリフツ素
化物等を含む反応生成物中に直接フツ素ガスを導
入し、ポリフツ素化物の直接フツ素化を行なつて
もよい。この場合、反応生成物中のポリフツ素化
物は少なくとも50〜80wt%以下であることが好
ましい。 本発明により、有利に製造できるパーフルオロ
化合物としては、電解フツ素化で得られるポリフ
ツ素化物とパーフルオロ化合物の沸点が近い等の
理由で容易に分離できないもの、あるいはパーフ
ルオロ化合物中に不純物としてポリフツ素化物を
含有した場合、性能上望ましくないものである。
例えば、人工血液や脳こうそくの治療薬であるキ
ノリンやキノリジン系化合物等のビシクロ化合物
のパーフルオロ体は、毒性のあるポリフツ素化物
の混入をきらい、分離も容易ではなく、本発明方
法が有効である。又、潤滑油、作動油、絶縁油、
熱媒体等に使うパーフルオロアダマンタン類や、
パーフルオロアルキルアミン類等においては、ポ
リフツ素化物が混入すると、熱的化学的安定性が
悪くなるため、本発明方法を適用し、すべてパー
フルオロ体としておくことが有効である。 有機化合物の電解フツ素化は公知ないしは周知
の方法を採用すればよく、例えばニツケル製陽極
5枚、陰極4枚備えた容量約1の電解槽におい
て、無水フツ酸中、出発原料濃度2〜15wt%、
浴温−10〜15℃、陽極電流密度0.1〜3A/dm2
電圧4.5〜8Vで電解反応を行なうと、パーフルオ
ロ化合物、ポリフツ素化物、原料の分解フツ素化
物等を含む反応生成物がフツ酸層から分離してく
る。電解反応は、フツ素化能力を有する遷移金属
塩、例えば塩化コバルト、塩化銅、塩化鉛、塩化
セリウム、塩化ビスマス、塩化マンガン、塩化ク
ロム、塩化鉄、フツ化コバルト等の存在下に行な
うことにより、パーフルオロ化合物の収率は向上
する。 ポリフツ素化物のフツ素ガスによる直接フツ素
化は、電解反応生成物中へ、フツ素ガス又はチツ
素やヘリウム等の不活性ガスで1〜20倍(容量
部)に稀釈したフツ素ガスを、直接吹き込む方法
が好ましい。導入すべき、フツ素ガス量は、水素
原子や塩素原子等のフツ素置換に必要な反応理論
量の1〜10倍モル、好ましくは1〜3倍モルが適
当である。反応温度は、ポリフツ素化物の種類等
により異なるが、−20〜200℃、好ましくは−50〜
150℃である。これ以下の温度では反応速度が急
激に低下すること、又これ以上の温度では分解反
応等の副反応が起こりやすくなり、好ましくな
い。反応圧力としては、減圧、常圧、加圧いずれ
も採用可能であるが、通常は、常圧で実施するこ
とが好ましい。目的とするパーフルオロ化合物
は、抽出、蒸留等の通常の分離操作を経て、高純
度で効率良く得ることができる。 [実施例] 実施例 1 電解槽としてハステロイ製容量1で交互に配
列されたニツケル製の陽極5枚、陰極4枚を有
し、有効陽極面積6.3dm2で槽上部に還流冷却器を
備えたものを用いた。この電解槽にフツ化水素
800gを導入し水、硫酸などの微量の不純物を予
備電解により除去した。次いで、4−メチル−オ
クタヒドロキノリジン90g(0.59モル)をフツ化
水素中に溶解し、電解電圧が9Vに達するまで、
温度−10〜−5℃、陽極電流密度2A/dm2
700Ahr導電した。電解後、電解槽下部よりフル
オロカーボン(反応生成物)190gを採取した。
このフルオロカーボンは目的とするパーフルオロ
体56g、ポリフツ素化物30gおよび縮環、分解生
成物104gから成ることをガスクロマトグラフイ
ー及びp−クロルベンゾトリフライドを標準物質
として 1Hnmr、 19Fnmrにより分析した。この
フルオロカーボン中にN2ガスで40vol%に稀釈し
たF2ガスを130℃で0.6mmol/minの割合で合計
1.1モル導入した。この時、ポリフツ素化物分子
中に残存していた水素原子が完全にフツ素原子に
置換され、ポリフツ素化物がポリフルオロ体に転
化したことをnmrにより確認した。 さらに反応物を水洗後、精密蒸留し、パーフル
オロ−4−メチルオクタヒドロキノリジン80gを
得た。(総合収率27%) 比較例 1 電解フツ素化反応後、得られた実施例1と同様
の組成のフルオロカーボン190g中に等容量の70
%KOH水溶液とジイソブチルアミンを加え、還
流処理して水素原子残存分子を分解除去した。水
洗後、精密蒸留し得られたパーフルオロ−4−メ
チルオクタヒドロキノリジンは46gであつた。
(総合収率15.8%) 実施例 2 実施例1と同様にしてトリブチルアミン75g
(0.40モル)をフツ素化水素800g中に溶解し、電
解電圧が9Vに達するまで770Ahr通電した。電解
後、槽下部よりフルオロカーボン176gを採取し
た。このフルオロカーボン中にN2ガスで40vol%
に稀釈したF2ガスを100〜150℃で合計4.0mモル
導入した。 さらに、水洗後蒸留してパーフルオロトリブチ
ルアミン130gを得た。(総合収率48%) 比較例 2 電解フツ素化反応後、得られた実施例2と同様
の組成のフルオロカーボン180g中を等容量の70
%KOH水溶液とジイソブチルアミン中で120時間
還流した。 さらに、水洗後、蒸留して得られたパーフルオ
ロトリブチルアミンは68gであつた。(総合収率
25%) 実施例 3 実施例1と同様にして、テトロヒドロフルフリ
ルアミルエーテル85g(0.5モル)をフツ化水素
800g中に仕込み697Ahr通電した。電解後槽下部
より採取したフルオロカーボン146g中に、N2
スで40vol%に稀釈したF2ガスを100〜110℃で合
計4.5モル導入した。さらに、このフルオロカー
ボンを水洗後蒸留してパーフルオロテトラヒドロ
フルフリルパーフルオロアミルエーテル79.8g
(0.15モル)を得た。(総合収率30%) 比較例 3 実施例3と同様にして電解フツ素化反応後フル
オロカーボン153gをKOH水溶液で処理した後、
水洗し蒸留して得られたパーフルオロテトラヒド
ロフルフリルパーフルオロアミルエーテルは45g
(0.08モル)であつた。(総合収率16%) [発明の効果] 本発明に従えばパーフルオロ化合物の製造にお
いて電解フツ素化反応で得られた反応生成物中に
残存する不完全フツ素化物を効率よく目的パーフ
ルオロ体に転化できる。 また、原料の有機化合物をそのまま直接フツ素
化反応に共した場合、原料分子の開裂、分解が起
こりやすく、パーフルオロ体は得られにくい有機
化合物であつても本発明に従えば原料分子骨格を
開裂することなく収率よくパーフルオロ体に変換
することができる。
[Table] However, in electrolytic fluorination, the polyfluorinated compound dissolves into the perfluorinated compound that is being generated, and polyfluorinated compounds in the perfluorinated compound are difficult to undergo electrolytic fluorination. The yield of perfluorinated compounds must be low. In the present invention, such a polyfluorinated product can be directly fluorinated with a fluorinating gas, converted into a perfluoro compound, and the yield can be improved. Polyfluorinated compounds in perfluorinated compounds are
If the polyfluorinated compound can be easily separated because it has a sufficient boiling point difference from the perfluorinated compound, it may be directly fluorinated with fluorine gas after separating the polyfluorinated compound. Direct fluorination of the polyfluorinated product may be carried out by directly introducing fluorine gas into the reaction product containing the polyfluorinated compound. In this case, it is preferable that the polyfluorinated product in the reaction product is at least 50 to 80 wt%. Perfluorinated compounds that can be advantageously produced by the present invention include those that cannot be easily separated because the boiling points of the polyfluorinated product obtained by electrolytic fluorination and the perfluorinated compound are close to each other, or those that cannot be easily separated as impurities in the perfluorinated compound. If a polyfluoride is contained, it is undesirable in terms of performance.
For example, perfluorinated bicyclo compounds such as quinoline and quinolidine compounds, which are used in artificial blood and therapeutic drugs for cerebral cancer, do not want to be contaminated with toxic polyfluorinated compounds and are not easy to separate, so the method of the present invention is effective. . Also, lubricating oil, hydraulic oil, insulating oil,
Perfluoroadamantanes used as heat carriers, etc.
When perfluoroalkylamines are mixed with polyfluorinated substances, their thermal and chemical stability deteriorates, so it is effective to apply the method of the present invention and keep all perfluorinated substances. Electrolytic fluorination of organic compounds may be carried out using known or well-known methods. For example, in an electrolytic cell with a capacity of about 1 and equipped with 5 nickel anodes and 4 cathodes, the starting material concentration is 2 to 15 wt in hydrofluoric anhydride. %,
Bath temperature -10~15℃, anode current density 0.1~3A/ dm2 ,
When the electrolytic reaction is carried out at a voltage of 4.5 to 8 V, reaction products containing perfluorinated compounds, polyfluorinated products, decomposed fluorinated materials of raw materials, etc. are separated from the hydrofluoric acid layer. The electrolytic reaction is carried out in the presence of a transition metal salt having fluorination ability, such as cobalt chloride, copper chloride, lead chloride, cerium chloride, bismuth chloride, manganese chloride, chromium chloride, iron chloride, cobalt fluoride, etc. , the yield of perfluorinated compounds is improved. Direct fluorination of polyfluoride with fluorine gas involves adding fluorine gas diluted 1 to 20 times (by volume) with fluorine gas or an inert gas such as nitrogen or helium into the electrolytic reaction product. , a direct injection method is preferred. The amount of fluorine gas to be introduced is suitably 1 to 10 times the mol, preferably 1 to 3 times the stoichiometric reaction amount required for fluorine substitution of hydrogen atoms, chlorine atoms, etc. The reaction temperature varies depending on the type of polyfluoride, but is -20 to 200°C, preferably -50 to 200°C.
The temperature is 150℃. If the temperature is lower than this, the reaction rate will drop rapidly, and if the temperature is higher than this, side reactions such as decomposition reactions will easily occur, which is not preferable. As the reaction pressure, any of reduced pressure, normal pressure, and increased pressure can be employed, but it is usually preferable to carry out the reaction at normal pressure. The target perfluorinated compound can be efficiently obtained with high purity through conventional separation operations such as extraction and distillation. [Example] Example 1 An electrolytic cell had five nickel anodes and four cathodes arranged alternately with a capacity of 1 made of Hastelloy, with an effective anode area of 6.3 dm 2 and a reflux condenser at the top of the tank. I used something. Hydrogen fluoride is added to this electrolytic cell.
800g was introduced and trace amounts of impurities such as water and sulfuric acid were removed by preliminary electrolysis. Then, 90 g (0.59 mol) of 4-methyl-octahydroquinolidine was dissolved in hydrogen fluoride until the electrolysis voltage reached 9V.
At a temperature of -10 to -5℃ and an anode current density of 2A/ dm2.
Conducted 700Ahr. After electrolysis, 190 g of fluorocarbon (reaction product) was collected from the bottom of the electrolytic cell.
This fluorocarbon was analyzed by gas chromatography and 1 Hnmr and 19 Fnmr using p-chlorobenzotriflide as a standard substance, and was found to consist of 56 g of the desired perfluoro compound, 30 g of polyfluorinated product, and 104 g of condensed ring and decomposition products. F2 gas diluted to 40vol% with N2 gas was added to this fluorocarbon at a rate of 0.6 mmol/min at 130℃.
1.1 mol was introduced. At this time, it was confirmed by nmr that the hydrogen atoms remaining in the polyfluoride molecules were completely replaced with fluorine atoms, and the polyfluoride was converted into a polyfluoro compound. Further, the reaction product was washed with water and subjected to precise distillation to obtain 80 g of perfluoro-4-methyloctahydroquinolidine. (Overall yield 27%) Comparative Example 1 After electrolytic fluorination reaction, an equal volume of 70
% KOH aqueous solution and diisobutylamine were added and refluxed to decompose and remove residual hydrogen atoms. After washing with water, precision distillation was performed to obtain 46 g of perfluoro-4-methyloctahydroquinolidine.
(Overall yield 15.8%) Example 2 75 g of tributylamine was prepared in the same manner as in Example 1.
(0.40 mol) was dissolved in 800 g of hydrogen fluoride, and electricity was applied for 770 Ahr until the electrolysis voltage reached 9V. After electrolysis, 176 g of fluorocarbon was collected from the bottom of the tank. 40vol% with N2 gas in this fluorocarbon
A total of 4.0 mmol of F 2 gas diluted to 100°C was introduced at 100 to 150°C. Furthermore, after washing with water, it was distilled to obtain 130 g of perfluorotributylamine. (Overall yield 48%) Comparative Example 2 After electrolytic fluorination reaction, an equal volume of 70 g of fluorocarbon with the same composition as in Example 2 was
% KOH aqueous solution and diisobutylamine for 120 hours. Furthermore, after washing with water, 68 g of perfluorotributylamine was obtained by distillation. (Total yield
25%) Example 3 In the same manner as in Example 1, 85 g (0.5 mol) of tetrahydrofurfuryl amyl ether was added to hydrogen fluoride.
It was charged in 800g and energized for 697Ahr. A total of 4.5 moles of F 2 gas diluted to 40 vol % with N 2 gas was introduced into 146 g of fluorocarbon collected from the bottom of the tank after electrolysis at 100 to 110°C. Furthermore, this fluorocarbon was washed with water and then distilled to give 79.8 g of perfluorotetrahydrofurfuryl perfluoroamyl ether.
(0.15 mol) was obtained. (Overall yield 30%) Comparative Example 3 After electrolytic fluorination reaction, 153 g of fluorocarbon was treated with KOH aqueous solution in the same manner as in Example 3.
45g of perfluorotetrahydrofurfuryl perfluoroamyl ether obtained by washing with water and distilling
(0.08 mol). (Total yield: 16%) [Effects of the invention] According to the present invention, in the production of perfluorinated compounds, incompletely fluorinated compounds remaining in the reaction product obtained by electrolytic fluorination reaction can be efficiently converted to the desired perfluorinated compound. It can be transformed into a body. Furthermore, if the raw material organic compound is directly subjected to the fluorination reaction, cleavage and decomposition of the raw material molecules easily occur, and even if the organic compound is difficult to obtain a perfluorinated compound, according to the present invention, the raw material molecular skeleton can be reduced. It can be converted into a perfluorinated compound in good yield without cleavage.

Claims (1)

【特許請求の範囲】[Claims] 1 有機化合物をフツ素化してパーフルオロ化合
物を得る方法において、有機化合物を電気化学的
にフツ素化し、ポリフツ素化物を含むパーフルオ
ロ化合物を得る前段反応及び得られるポリフツ素
化物をフツ素ガスにより直接フツ素化しパーフル
オロ化合物を得る後段反応の組み合せによりパー
フルオロ化合物を得ることを特徴とするパーフル
オロ化合物の製造方法。
1. In a method of obtaining a perfluoro compound by fluorinating an organic compound, the organic compound is electrochemically fluorinated to obtain a perfluoro compound containing a polyfluoride. 1. A method for producing a perfluoro compound, which comprises obtaining a perfluoro compound by a combination of direct fluorination and subsequent reactions to obtain a perfluoro compound.
JP60193042A 1985-09-03 1985-09-03 Production of perfluoro-compound Granted JPS6254093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60193042A JPS6254093A (en) 1985-09-03 1985-09-03 Production of perfluoro-compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60193042A JPS6254093A (en) 1985-09-03 1985-09-03 Production of perfluoro-compound

Publications (2)

Publication Number Publication Date
JPS6254093A JPS6254093A (en) 1987-03-09
JPS633030B2 true JPS633030B2 (en) 1988-01-21

Family

ID=16301202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60193042A Granted JPS6254093A (en) 1985-09-03 1985-09-03 Production of perfluoro-compound

Country Status (1)

Country Link
JP (1) JPS6254093A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0271272B1 (en) * 1986-12-01 1992-04-15 Tokuyama Corporation Process for preparation of perfluoro organic compounds
JPS63139154A (en) * 1986-12-01 1988-06-10 Tokuyama Soda Co Ltd Production of perfluorotrialkylamine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2831035A (en) * 1956-02-15 1958-04-15 Allied Chem & Dye Corp Manufacture of fluorocarbons
US3709800A (en) * 1971-03-19 1973-01-09 Phillips Petroleum Co Process for preparing perfluorocarbon compounds
US3840445A (en) * 1972-05-15 1974-10-08 Phillips Petroleum Co Two-stage electrochemical octafluoropropane production
US4035250A (en) * 1976-03-11 1977-07-12 Phillips Petroleum Company Production of perfluoro-n-heptane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2831035A (en) * 1956-02-15 1958-04-15 Allied Chem & Dye Corp Manufacture of fluorocarbons
US3709800A (en) * 1971-03-19 1973-01-09 Phillips Petroleum Co Process for preparing perfluorocarbon compounds
US3840445A (en) * 1972-05-15 1974-10-08 Phillips Petroleum Co Two-stage electrochemical octafluoropropane production
US4035250A (en) * 1976-03-11 1977-07-12 Phillips Petroleum Company Production of perfluoro-n-heptane

Also Published As

Publication number Publication date
JPS6254093A (en) 1987-03-09

Similar Documents

Publication Publication Date Title
EP0271272B1 (en) Process for preparation of perfluoro organic compounds
EP0062430B1 (en) Process for the preparation of (omega-fluorosulfonyl) haloaliphatic carboxylic acid fluorides
US4124456A (en) Method of tris(perfluoroalkyl)phosphine oxides
JPS633030B2 (en)
JPH0463055B2 (en)
JP4744356B2 (en) Electrolytic fluorination method
JP2006348381A (en) Method for producing organic compound by electrolytic fluoridation
EP0099652B1 (en) Perfluorotricyclic amine compound
EP0103358A1 (en) Perfluoro-1-azatricyclic amine compound
JPH0261081A (en) Method for electrolytically decarboxilating perfluorocarboxylic acid and its soluble salt and subsequently dimerizing generated free radicals
US4387007A (en) Process for the manufacture of an aldehyde
EP0219484B1 (en) Electrolytic preparation of perfluoroalkanoic acids and perfluoroalkanols
US3876515A (en) Method for manufacture of perfluorocyclohexane derivatives
US4120761A (en) Electrochemical process for the preparation of acetals of 2-haloaldehydes
JP3846778B2 (en) Method for electrolytic fluorination of organic ether compounds
EP0047947B1 (en) Omega-fluorosulphato-perfluoro-(2-methylalkane-3-ones) and process for the production of perfluoroisopropyl-keto-carboxylic-acid fluorides from the first mentioned compounds
JPH0230785A (en) Method for electrolytic fluorination
RU2107751C1 (en) Method of preparing higher perfluoromonocarboxylic acids
JPS6261116B2 (en)
EP0121614B1 (en) Perfluorotricyclic amine compounds
JPS5877891A (en) Oxidated tris(perfluoroalkyl)phosphine and manufacture
JPS5917119B2 (en) Tris(perfluoroalkyl)phosphine oxide and method for producing the same
JPH03240983A (en) Production of parafluorobenzaldehyde
DE2620086C3 (en) Tris (perfluoroalkyl) phosphine oxides and processes for their preparation
JPH0157108B2 (en)