JPS6330309A - Method for drying activated carbon compact - Google Patents

Method for drying activated carbon compact

Info

Publication number
JPS6330309A
JPS6330309A JP61171814A JP17181486A JPS6330309A JP S6330309 A JPS6330309 A JP S6330309A JP 61171814 A JP61171814 A JP 61171814A JP 17181486 A JP17181486 A JP 17181486A JP S6330309 A JPS6330309 A JP S6330309A
Authority
JP
Japan
Prior art keywords
activated carbon
compact
molded body
drying
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61171814A
Other languages
Japanese (ja)
Other versions
JPH0455123B2 (en
Inventor
Yasunari Mukai
向 康成
Masakazu Yokota
正和 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP61171814A priority Critical patent/JPS6330309A/en
Publication of JPS6330309A publication Critical patent/JPS6330309A/en
Publication of JPH0455123B2 publication Critical patent/JPH0455123B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Abstract

PURPOSE:To conserve energy and to safely obtain the title activated carbon compact having excellent strength, adsorptivity, and water resistance in a short time with one drying and baking stage by bringing a specified activated carbon compact into contact with supercritical CO2 at a temp. higher than the curing temp. of a sintering binder contained in the compact to dry the compact. CONSTITUTION:A composition consisting of activated carbon powder, water, an org. molding aid, and the sintering binder (e.g., colloidal silica) is molded to obtain the activated carbon compact. The compact is then brought into contact with supercritical CO2 at a temp. higher than the curing temp. of the sintering binder, hence the water and org. molding aid in the compact are extracted and removed simultaneously and efficiently without generating cracks in the compact to dry the compact, and the sintering binder remaining in the compact is completely cured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は活性炭成形体の乾燥方法に関し、更に詳しくは
超臨界二酸化炭素を使用する活性炭成形体の乾燥方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for drying an activated carbon compact, and more particularly to a method for drying an activated carbon compact using supercritical carbon dioxide.

〔従来の技術〕[Conventional technology]

成形後の活性炭成形体には、成形時の成形性を改良する
ために、粉末活性炭に水及び有機成形助剤が添加されて
おり、更に、焼成後の強度を保つために焼結バインダー
が添加されている。このような水分、有機成形助剤及び
焼結バインダーを含んだ成形後の活性炭成形体は強度が
十分ではなく、  、また吸着性能も劣る。このため、
該活性炭成形体をマイクロ波加熱、熱風加熱などにより
105〜110℃(378〜383 K )の温度で乾
燥することによって、該活性炭成形体中の大部分の水分
を除去している。しかし、この乾燥工程では有機成形助
剤を完全に除去することはできず、更に、該活性炭成形
体を高温加熱炉などにより非酸化性雰囲気中で400〜
1000℃(673〜1273K)の温度で焼成して該
活性炭成形体中に残存する水分及び有機成形助剤を除去
することが必要となる。また、これらの温度での処理後
には、該活性炭成形体は非酸化性雰囲気中で約100℃
(373K)まで冷却する冷却工程が必要となる。これ
ら一連の工程により、成形後の活性炭酸形体の強度及び
吸着性能が高められている。
In order to improve the formability during molding, water and an organic molding aid are added to the activated carbon powder after molding, and a sintering binder is also added to maintain strength after firing. has been done. A molded activated carbon molded body containing such water, an organic molding aid, and a sintering binder does not have sufficient strength and also has poor adsorption performance. For this reason,
Most of the moisture in the activated carbon molded body is removed by drying the activated carbon molded body at a temperature of 105 to 110°C (378 to 383 K) by microwave heating, hot air heating, or the like. However, this drying process cannot completely remove the organic forming aid, and furthermore, the activated carbon molded body is heated in a non-oxidizing atmosphere in a high-temperature heating furnace, etc.
It is necessary to remove moisture and organic forming aids remaining in the activated carbon compact by firing at a temperature of 1000° C. (673-1273 K). Further, after the treatment at these temperatures, the activated carbon compact is heated to about 100°C in a non-oxidizing atmosphere.
A cooling step is required to cool down to (373K). Through this series of steps, the strength and adsorption performance of the formed activated carbonate form are enhanced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、成形後の活性炭成形体を上述の従来法により乾
燥した場合、有機成形助剤が該活性炭成形体中に残存す
るため、該活性炭成形体の吸着性能は原料である粉末活
性炭のもつ吸着性能の半分程度に低下するという欠点を
有する。このため、乾燥後の活性炭成形体を400〜1
000℃(673〜1273K)の高温で焼成して有機
成形助剤を除去するが、多量の非酸化性雰囲気ガスを通
気しながら焼成するため、エネルギー消費量が大きくな
るという欠点がある。更に、乾燥条件によっては焼結段
階で活性炭成形体に割れが発生し、製品の歩留りが悪い
という欠点がある。また、製品とするには乾燥、焼成及
び冷却という工程を必要とするため、全工程にかなりの
時間を要するという欠点もある。
However, when the activated carbon molded body after molding is dried by the above-mentioned conventional method, the organic forming aid remains in the activated carbon molded body, so the adsorption performance of the activated carbon molded body is not as good as the adsorption performance of the raw material, powdered activated carbon. It has the disadvantage that it decreases to about half of the original value. For this reason, the activated carbon molded body after drying is 400 to 1
The organic molding aid is removed by firing at a high temperature of 000° C. (673 to 1273 K), but since the firing is performed while passing a large amount of non-oxidizing atmospheric gas, there is a drawback that energy consumption is large. Furthermore, depending on the drying conditions, cracks may occur in the activated carbon compact during the sintering stage, resulting in poor product yield. In addition, since it requires the steps of drying, firing, and cooling to produce a product, it also has the disadvantage that the entire process takes a considerable amount of time.

〔問題点を解決するための手段〕 本発明は粉末活性炭、水分、有機成形助剤及び焼結バイ
ンダーからなる成形後の活性炭成形体を超臨界二酸化炭
素と接触させ、該活性炭成形体から水分及び有機成形助
剤を同時に抽出し、それによって成形体として強度及び
吸着性能が優れた活性炭成形体を得ることを特徴とする
活性炭成形体の乾燥方法を提供するにある。
[Means for Solving the Problems] The present invention involves contacting a molded activated carbon body made of powdered activated carbon, moisture, an organic forming aid, and a sintering binder with supercritical carbon dioxide, and removing water and moisture from the activated carbon body. It is an object of the present invention to provide a method for drying an activated carbon molded body, which is characterized in that an organic forming aid is extracted at the same time, thereby obtaining an activated carbon molded body having excellent strength and adsorption performance as a molded body.

〔作 用〕[For production]

本発明による活性炭成形体の乾燥方法について、更に詳
しく説明する。
The method for drying an activated carbon molded body according to the present invention will be explained in more detail.

乾燥される活性炭成形体は粉末活性炭、水分、有機成形
助剤及び焼結バインダーからなる混合材料を成形したも
のである0本発明に従えば、二酸化炭素の臨界圧力(P
cm 7.38 MPa)及び臨界温度[7c=31−
2℃(304,2K)]を超える超臨界二酸化炭素、好
ましくは圧カフ、38超〜30MPa及び温度31.2
超〜207℃(304,2超〜480K)、更に好まし
くは圧力8〜15MPa及び温度37〜157℃(31
0〜430K)の超臨界二酸化炭素を成形後の活性炭成
形体と接触させることにより、該活性炭成形体中の水分
及び有機成形助剤を同時に効率的に抽出除去し、該活性
炭成形体中に焼結バインダーを残存させることができ、
これにより強度及び吸着性能の優れた活性炭成形体を得
ることができる。更に、活性炭成形体に耐水性が特に要
求される場合には、成形後の活性炭成形体と、該活性炭
成形体に含まれる焼結バインダーの硬化温度以上の温度
範囲[例えば、焼結バインダーがコロイダルシリカ系の
場合97’C(370K)前後、シリケート系の場合1
57℃(430K)前後など]にある超臨界二酸化炭素
とを接触させることにより、該活性炭成形体中の水分及
び有機成形助剤を同時に効率的に抽出除去するとともに
、該活性炭成形体中に残存する焼結バインダーを完全に
硬化させることができ、これにより強度及び吸着性能は
もとより耐水性に優れた活性炭成形体が得られる。この
ように、本発明によれば、従来の乾燥及び焼成の各工程
を1つの工程で行なうことができる。更に、本発明で利
用する超臨界二酸化炭素の温度が100℃(373K)
以下であれば、従来の非酸化性雰囲気ガス中での冷却も
省略することができる。
The activated carbon molded body to be dried is formed by molding a mixed material consisting of powdered activated carbon, water, an organic molding aid, and a sintering binder.According to the present invention, the critical pressure of carbon dioxide (P
cm 7.38 MPa) and critical temperature [7c=31-
2°C (304,2K)], preferably a pressure cuff, >38 to 30 MPa and a temperature of 31.2
More than 207°C (304.2 to 480K), more preferably a pressure of 8 to 15 MPa and a temperature of 37 to 157°C (31
By bringing supercritical carbon dioxide (0 to 430K) into contact with the activated carbon molded body after molding, water and organic molding aids in the activated carbon molded body are simultaneously extracted and removed efficiently, and sintered into the activated carbon molded body. The binder can remain,
As a result, an activated carbon molded body having excellent strength and adsorption performance can be obtained. Furthermore, if the activated carbon molded body is particularly required to have water resistance, the temperature range of the activated carbon molded body after molding and the sintered binder contained in the activated carbon molded body or higher [for example, if the sintered binder is a colloidal Around 97'C (370K) for silica type, 1 for silicate type
By contacting with supercritical carbon dioxide at a temperature of around 57°C (430K, etc.), moisture and organic forming aids in the activated carbon molded body are simultaneously extracted and removed efficiently, and any remaining residue in the activated carbon molded body is removed. The sintered binder can be completely cured, thereby producing an activated carbon molded body with excellent strength and adsorption performance as well as excellent water resistance. As described above, according to the present invention, the conventional drying and baking steps can be performed in one step. Furthermore, the temperature of supercritical carbon dioxide used in the present invention is 100°C (373K).
If it is below, the conventional cooling in a non-oxidizing atmospheric gas can also be omitted.

また、成形後の活性炭成形体中から水分及び有機成形助
剤を抽出した超臨界二酸化炭素は抽出装置から抜き出さ
れ、その後シリカゲル、活性炭あるいはモレキュラーシ
ーブなどの吸着剤に抽出された水分及び有機成形助剤を
吸着させることにより、あるいは超臨界二酸化炭素の圧
力及び/または温度を変化させ、抽出された水分及び有
機成形助剤の二酸化炭素ガス中への溶解度を減少させる
ことにより、抽出された水分及び有機成形助剤と二酸化
炭素ガスとを分離し、二酸化炭素ガスは圧縮機などによ
り再加圧し、超臨界二酸化炭素とし、成形後の活性炭成
形体中の水分及び有機成形助剤の抽出溶媒として再循環
使用することができる。
In addition, the supercritical carbon dioxide that has extracted water and organic molding aids from the activated carbon molded body after molding is extracted from an extraction device, and then transferred to an adsorbent such as silica gel, activated carbon, or molecular sieve to absorb the extracted water and organic molding agent. extracted moisture by adsorbing the auxiliaries or by changing the pressure and/or temperature of the supercritical carbon dioxide to reduce the solubility of the extracted moisture and organic forming aids in the carbon dioxide gas. The organic forming aid and carbon dioxide gas are separated, and the carbon dioxide gas is re-pressurized using a compressor etc. to become supercritical carbon dioxide, which is used as an extraction solvent for the moisture and organic forming aid in the activated carbon compact after forming. Can be used for recirculation.

〔実施例〕〔Example〕

次に、実施例について本発明を説明する。尚、本発明に
おいて%は特記しない限り重量%を表す。
Next, the present invention will be explained with reference to examples. In the present invention, % represents weight % unless otherwise specified.

及1匠り 圧力8MPa、温度75℃(348K)の超臨界二酸化
炭素を50kg/時間で流しつつ、水分及び有機成形助
剤を合計で40%含み、焼結バインダーとして適当量の
コロイダルシリカを含む活性炭成形体1kgと接触させ
、2時間でほとんど全部の水分及び有機成形助剤を抽出
した。吸着性能及び強度などについては第1表に示す。
and 1. While flowing supercritical carbon dioxide at a pressure of 8 MPa and a temperature of 75°C (348 K) at a rate of 50 kg/hour, it contains a total of 40% of water and an organic molding aid, and contains an appropriate amount of colloidal silica as a sintering binder. It was brought into contact with 1 kg of activated carbon molded body, and almost all the water and organic molding aids were extracted in 2 hours. The adsorption performance, strength, etc. are shown in Table 1.

去」1嵐」− 圧力8MPa、温度110℃(383K)の超臨界二酸
化炭素を50kg/時間で流しつつ、実施例1と同様の
組成をもつ活性炭成形体1kyと接触させ、1時間でほ
とんど全部の水分及び有機成形助剤を抽出するとともに
、焼結バインダーとしてのコロイダルシリカを硬化させ
た。吸着性能及び強度などについては第1表に示す。
``1 Arashi'' - While flowing supercritical carbon dioxide at a pressure of 8 MPa and a temperature of 110° C. (383 K) at a rate of 50 kg/hour, it was brought into contact with 1 ky of activated carbon compacts having the same composition as in Example 1, and almost all of the carbon dioxide was removed in 1 hour. The water and organic molding aids were extracted, and the colloidal silica as a sintering binder was cured. The adsorption performance, strength, etc. are shown in Table 1.

第1表に実施例1、実施例2、従来の乾燥方法及び従来
の乾燥・焼成方法によって得られた活性炭成形体の性能
の比較を示す、但し、原料の粉末活性炭の吸着性能は、
メチレンブルー脱色力220 m1/ g(JIS K
14)Q)、ヨウ素吸着11340〔発明の効果〕 本発明によれば、第1表に示すように、従来の乾燥及び
/または焼成により得られる活性炭成形体に比較して、
強度及び吸着性能の優れた活性炭成形体が得られる。ま
た、本発明によれば、焼結バインダーの硬化温度以下の
温度の超臨界二酸化炭素で処理しても、ある程度の耐水
性のある活性炭成形体が得られ、焼−結バインダーの硬
化温度以上の超臨界二酸化炭素で処理すれば、完全に耐
水性のある活性炭成形体が得られる。このため、従来の
乾燥及び焼成の各工程が、一つの工程でしがも低温で行
えるという利点があり、更に、従来の焼成及び冷却の工
程に必要とされていた非酸化性雰囲気ガスが不要となる
ため、省エネルギーが図られるとともに、活性炭成形体
の製造に要する時間の短縮が可能となる。また、二酸化
炭素ガス自体が非酸化性雰囲気ガスのため、活性炭成形
体の発火の心配がない。
Table 1 shows a comparison of the performance of the activated carbon compacts obtained by Example 1, Example 2, the conventional drying method, and the conventional drying/calcination method. However, the adsorption performance of the powdered activated carbon as the raw material is
Methylene blue decolorizing power 220 m1/g (JIS K
14) Q), Iodine adsorption 11340 [Effects of the invention] According to the present invention, as shown in Table 1, compared to the activated carbon molded body obtained by conventional drying and/or calcination,
An activated carbon molded body with excellent strength and adsorption performance can be obtained. Furthermore, according to the present invention, even when treated with supercritical carbon dioxide at a temperature below the curing temperature of the sintered binder, an activated carbon molded body having a certain degree of water resistance can be obtained; Treatment with supercritical carbon dioxide yields completely water-resistant activated carbon compacts. This has the advantage that the conventional drying and firing processes can be performed in a single process at low temperatures, and there is no need for the non-oxidizing atmospheric gas required in the conventional firing and cooling processes. Therefore, it is possible to save energy and shorten the time required to produce an activated carbon molded body. Furthermore, since carbon dioxide gas itself is a non-oxidizing atmospheric gas, there is no fear that the activated carbon compact will catch fire.

Claims (1)

【特許請求の範囲】 1、粉末活性炭、水分、有機成形助剤及び焼結バインダ
ーからなる成形後の活性炭成形体を超臨界二酸化炭素と
接触させ、該活性炭成形体から水分及び有機成形助剤を
同時に抽出し、それによって成形体としての強度及び吸
着性能が優れた活性炭成形体を得ることを特徴とする活
性炭成形体の乾燥方法。 2、超臨界二酸化炭素の温度範囲を活性炭成形体に含ま
れる焼結バインダーの硬化温度以上とする特許請求の範
囲第1項記載の乾燥方法。
[Scope of Claims] 1. A molded activated carbon body consisting of powdered activated carbon, water, an organic forming aid, and a sintering binder is brought into contact with supercritical carbon dioxide to remove moisture and the organic forming aid from the activated carbon formed body. A method for drying an activated carbon molded body, which comprises simultaneously extracting and thereby obtaining an activated carbon molded body having excellent strength and adsorption performance as a molded body. 2. The drying method according to claim 1, wherein the temperature range of the supercritical carbon dioxide is equal to or higher than the curing temperature of the sintered binder contained in the activated carbon compact.
JP61171814A 1986-07-23 1986-07-23 Method for drying activated carbon compact Granted JPS6330309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61171814A JPS6330309A (en) 1986-07-23 1986-07-23 Method for drying activated carbon compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61171814A JPS6330309A (en) 1986-07-23 1986-07-23 Method for drying activated carbon compact

Publications (2)

Publication Number Publication Date
JPS6330309A true JPS6330309A (en) 1988-02-09
JPH0455123B2 JPH0455123B2 (en) 1992-09-02

Family

ID=15930224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61171814A Granted JPS6330309A (en) 1986-07-23 1986-07-23 Method for drying activated carbon compact

Country Status (1)

Country Link
JP (1) JPS6330309A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0974553A1 (en) * 1998-07-23 2000-01-26 Universidad De Salamanca Process and apparatus for the production of activated carbon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0974553A1 (en) * 1998-07-23 2000-01-26 Universidad De Salamanca Process and apparatus for the production of activated carbon
ES2155746A1 (en) * 1998-07-23 2001-05-16 Univ Salamanca Process and apparatus for the production of activated carbon

Also Published As

Publication number Publication date
JPH0455123B2 (en) 1992-09-02

Similar Documents

Publication Publication Date Title
US5321223A (en) Method of sintering materials with microwave radiation
CN109553419A (en) A kind of air pressure solid-phase sintering boron carbide complex phase ceramic and preparation method thereof
CN113213892B (en) Method for preparing sintered brick from aluminum ash
CN107319627A (en) A kind of heating non-combustion-type tobacco article substrate and preparation method thereof using carborundum as composition
JP2657838B2 (en) Manufacturing method of silicon nitride products
JP2003528985A (en) Method for producing components from powdery starting materials and extractors suitable therefor
JPS6330309A (en) Method for drying activated carbon compact
CN110394168A (en) A kind of hot recycling and reuse method of waste active carbon
JP2007223137A (en) Casting mold to be heated by microwave and manufacturing method for ceramic sintered compact
RU2009126840A (en) GRANULATED NANOSORBENT AND METHOD FOR PRODUCING IT
CN110903081A (en) Low-expansion porous cordierite and preparation method thereof
CN113620297A (en) Preparation method of silicon carbide aerogel
JPS5849509B2 (en) Manufacturing method of silicon nitride sintered body
CN1793051A (en) Process for heating foam ceramic
CN110922205A (en) Porous cordierite and preparation method thereof
CN107098678A (en) Low thermal coefficient of expansion porous ceramics and preparation method thereof
CN106747560A (en) A kind of porous thermal insulating composite ceramic material
JP3282238B2 (en) Method for producing chemical activated carbon
KR102144386B1 (en) Exothermic material for microwave susceptor and manufacturing method thereof
NL72707C (en)
JPS61275112A (en) Recovering method for superfine aluminium nitride particle
JPH0772082B2 (en) How to make plant charcoal
SU662527A1 (en) Method of making claydite
SU1087489A1 (en) Refractory composition
CN108033791A (en) The preparation method of microwave material under a kind of high temperature reducing atmospheres