JPS63303088A - Apparatus for electrolyzing steam with solid electrolyte - Google Patents

Apparatus for electrolyzing steam with solid electrolyte

Info

Publication number
JPS63303088A
JPS63303088A JP62136252A JP13625287A JPS63303088A JP S63303088 A JPS63303088 A JP S63303088A JP 62136252 A JP62136252 A JP 62136252A JP 13625287 A JP13625287 A JP 13625287A JP S63303088 A JPS63303088 A JP S63303088A
Authority
JP
Japan
Prior art keywords
solid electrolyte
cell
electrolyte cell
tritium
lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62136252A
Other languages
Japanese (ja)
Inventor
Tetsuyuki Konishi
哲之 小西
Hiroshi Yoshida
浩 吉田
Kenji Muta
牟田 健次
Junzo Amano
天野 順造
Masaharu Nakamori
正治 中森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Mitsubishi Heavy Industries Ltd filed Critical Japan Atomic Energy Research Institute
Priority to JP62136252A priority Critical patent/JPS63303088A/en
Publication of JPS63303088A publication Critical patent/JPS63303088A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To provide elasticity to a solid electrolyte cell and to prevent the damage of the cell by suspending the cell from a lid on the body of an electrolyzing apparatus with bellows in-between. CONSTITUTION:A solid electrolyte cell 5 is joined to bellows 14 by brazing or other method and suspended from a lid 3 fixed on the top of the vessel 1 of an electrolyzing apparatus with the bellows 14 in-between. Elasticity to external force is provided to the cell 5 and the damage of the cell 5 can be prevented when a steam introducing pipe 6 is put in the cell 5. Especially in case where the cell 5 is composed of plural tubes so as to increase the capacity, the working accuracy and assembling accuracy of the cell 5 can be reduced. The apparatus is chiefly used to electrolyze tritium water.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、固体電解質セルを用いて水蒸気の電気分解を
行なう固体電解質水蒸気分解装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a solid electrolyte steam decomposition device that electrolyzes water vapor using a solid electrolyte cell.

[従来の技1fi ] 核融合炉システムにおいては、燃料としてのトリチウム
が種々の過程でトリチウム水に転換され、回収される。
[Conventional Technique 1fi] In a nuclear fusion reactor system, tritium as a fuel is converted into tritiated water through various processes and recovered.

例えば、ブランケット冷却ガスやスイープガス中に含ま
れる増殖トリチウム、プラズマ11[ガス中のトリチウ
ムを含む不純物は触媒酸化及び吸着、冷却操作により、
トリチウム水として分離、回収した後、適切な方法によ
りこれを水素の化学形に戻して燃料として使用すること
が必要である。
For example, breeding tritium contained in blanket cooling gas or sweep gas, plasma 11 [Impurities containing tritium in the gas are removed by catalytic oxidation and adsorption, and cooling
After separating and recovering tritiated water, it is necessary to convert it back to the chemical form of hydrogen using an appropriate method and use it as a fuel.

トリチウム水分解法としては、水成ガス転換反応法(触
媒還元法)、活性金属還元法等の気相分WI法と、固体
高分子電解買電解法等の湿式分解法の適用が考えられて
いる。前記気相分解法は、トリチウムのインベントリ−
が少なく、かつy1続操作が可能であり、操作温度が比
較的低い等の利点も多い。しかしながら、その水成ガス
転換反応法は還元ガスが副生成物として水素(トリチウ
ム)中に混入するという問題がある。また、活性金属還
元法は活性金属が金属酸化物を生成して消耗するため、
放射性固体廃棄物を生成する等の原理的欠点を有する。
As tritium water decomposition methods, gas phase WI methods such as hydrogas conversion reaction method (catalytic reduction method) and active metal reduction method, and wet decomposition methods such as solid polymer electrolytic buying method are being considered. . The gas-phase decomposition method uses a tritium inventory.
It has many advantages, such as a small amount of heat, continuous operation is possible, and the operating temperature is relatively low. However, the hydrogas conversion reaction method has a problem in that the reducing gas is mixed into the hydrogen (tritium) as a by-product. In addition, in the active metal reduction method, the active metal generates metal oxides and is consumed, so
It has fundamental drawbacks such as generating radioactive solid waste.

前記湿式法は、工業的に広く応用されている技術である
が、高濃度トリチウム水分解法とび石トリチウムインベ
トリーが撞めて大きい回分的な操作となる。電解ガス(
水素及びll1素)中への水蒸気の混入防止並びに水素
と酸素との完全分離が容易でない等の問題が生じる。特
に、高分子分解法では放射線による材料の劣化が避けら
れない。
The wet method is a technology that is widely applied industrially, but the high-concentration tritium water decomposition method and the stone tritium inventory require a large batch operation. Electrolytic gas (
Problems arise, such as that it is not easy to prevent water vapor from entering the hydrogen and 11 elements) and that it is not easy to completely separate hydrogen and oxygen. In particular, in polymer decomposition methods, material deterioration due to radiation is unavoidable.

一方、固体電解質セルを用いたトリチウム水分解法は高
濃度トリチウム水分解法に求められる条件の全てを満た
すことが可能である。即ち、セルはセラミック及び貴金
属で構成されているため、放射a損傷、瘍蝕、劣化及び
トリチウム透過の恐れが少ない。また、水蒸気の電解で
あるため気相での連続処理が可能であり、トリチウムイ
ンベントリ−も極めて少ない。更に、電解生成物である
II!素は、電解質が酸素イオンのみを通す導笥体であ
るため、水素(トリチウム)及びトリチウム水蒸気とは
完全に分離されてトリチウム汚染の危険が少ないことも
他の方法に見られない特徴である。
On the other hand, a tritium water splitting method using a solid electrolyte cell can satisfy all the conditions required for a high concentration tritium water splitting method. That is, since the cell is constructed of ceramic and precious metals, there is little risk of radiation damage, erosion, deterioration, and tritium permeation. Furthermore, since it is water vapor electrolysis, continuous treatment in the gas phase is possible, and the tritium inventory is extremely small. Furthermore, II! which is an electrolysis product! Since the electrolyte is a conductor that allows only oxygen ions to pass through, it is completely separated from hydrogen (tritium) and tritium water vapor, reducing the risk of tritium contamination, which is a feature not found in other methods.

固体電解質セルを用いたトリチウム分解法の有効性につ
いては、発明者らは実ガス(粍トリチウム水:iA気T
20)を用いて単管式の44造のものについて実証済で
ある。
Regarding the effectiveness of the tritium decomposition method using a solid electrolyte cell, the inventors have investigated the effectiveness of the tritium decomposition method using a solid electrolyte cell.
20) has been verified for a single-tube type 44 structure.

ところで、固体電解質セルを使用した水蒸気電解装置と
しては、従来、第2図に示す構造のものが知られている
。即ち、図中の1は上部にフランジ2を有する装置本体
としての容器であり、この容器1のフランジ2には蓋体
3がボルト・ナラ1へ等により固定されている。前記容
器1の側壁外周には、真空断熱槽4が設けられている。
By the way, as a steam electrolyzer using a solid electrolyte cell, one having the structure shown in FIG. 2 is conventionally known. That is, 1 in the figure is a container as a main body of the apparatus having a flange 2 on the upper part, and a lid 3 is fixed to the flange 2 of this container 1 by bolts, nuts 1, etc. A vacuum insulation tank 4 is provided on the outer periphery of the side wall of the container 1 .

また、前記運休3から前記容器1内には固体電解質セル
5が吊架されている。前記固体電解質セル5内には、水
蒸気導入管6が挿入されており、かつ該導入管6は前記
蓋体3に設けられた口字形のフランジ部7により固定さ
れている。このフランジ部7には、水素同位体ガスの排
気管8が連結されている。また、前記固体電解質セル5
の外周には筒状のヒータブロック9及び有底円筒状の熱
シールド体10が順次所定の間隔をあけて同心円状に配
回されている。この熱シールド体10の上部には環状の
熱シールド板11が配Uされている。これら熱シールド
体10、熱シールド板11及び前記真空断熱槽4は、前
記容器1の外壁及びフランジ部7の1度をトリチウムの
透過が顕著に起こる温度(100℃以下)に下げる機能
を持っている。更に、前記蓋体3には酸素排気1112
が連結されており、また前記真空断熱槽4には真空引き
管13が連結されている。なお、前記真空断熱槽4の代
わりに水冷ジャケットを用いてもよく。この場合、真空
引き管13に代わって冷水供給管が使用される。このよ
うな構造の電WI装置において、ヒータブロックに水蒸
気を供給すると、固体電解質セル5により水素同位体と
酸素に分解され、夫々排気管8.12より取出され、水
蒸気の分解がなされる。
Furthermore, a solid electrolyte cell 5 has been suspended in the container 1 since the suspension 3. A water vapor introduction pipe 6 is inserted into the solid electrolyte cell 5, and the introduction pipe 6 is fixed by a mouth-shaped flange portion 7 provided on the lid body 3. A hydrogen isotope gas exhaust pipe 8 is connected to this flange portion 7 . Further, the solid electrolyte cell 5
A cylindrical heater block 9 and a bottomed cylindrical heat shield body 10 are sequentially arranged concentrically at predetermined intervals on the outer periphery of the heater block 9 . An annular heat shield plate 11 is arranged above the heat shield body 10. The heat shield body 10, the heat shield plate 11, and the vacuum insulation tank 4 have the function of lowering the temperature of the outer wall and flange portion 7 of the container 1 to a temperature (100°C or less) at which tritium permeation occurs significantly. There is. Furthermore, the lid body 3 has an oxygen exhaust 1112.
are connected to the vacuum insulation tank 4, and a vacuum tube 13 is connected to the vacuum insulation tank 4. Note that a water cooling jacket may be used instead of the vacuum insulation tank 4. In this case, a cold water supply pipe is used instead of the evacuation pipe 13. In the electric WI device having such a structure, when water vapor is supplied to the heater block, it is decomposed into hydrogen isotopes and oxygen by the solid electrolyte cell 5, and each is taken out from the exhaust pipe 8.12, and the water vapor is decomposed.

[発明が解決しようとする問題点] 上述した従来の電解装置において、固体電解質セル5は
容器1の蓋体3に剛に接合されてヒータブロック9に挿
入されており、ヒータブロック9と固体電解質セル5間
の隙間はヒータ熱効率を前置して通常接触しない程度に
小さくとられており、しかも固体電解質セル5の水分解
は面積に比例するため、ある程度長尺にする必要がある
が、長尺の固体電解質5の肉厚を均一にするのは非常に
困難であり、ある程度の偏肉は止むえない。しかしなが
ら、偏肉のある固体電解質セル5に水蒸気導入管6を無
理に挿入した場合、固体電解質セル5を破損する可能性
があると共に、長尺の固体電解質セル5とヒータブロッ
ク9に巧みに挿入するには、当該装置の加工精度及び組
立て精度を高度にする必要がある。特に、水蒸気電解装
置が轟くなり、固体電解質セル5が多管になった場合に
は、より高度な加工精度及び組立て精度が要求されるこ
とになり、本数によっては製作が不可能、たとえ製作が
可能でも多大な製作期間と製作費用を要する問題があっ
た。
[Problems to be Solved by the Invention] In the conventional electrolytic device described above, the solid electrolyte cell 5 is rigidly joined to the lid 3 of the container 1 and inserted into the heater block 9, and the heater block 9 and the solid electrolyte The gaps between the cells 5 are set small enough that they do not normally touch each other in consideration of heater thermal efficiency, and since the water decomposition of the solid electrolyte cells 5 is proportional to the area, it is necessary to make them somewhat long. It is very difficult to make the wall thickness of the solid electrolyte 5 uniform in size, and some degree of thickness deviation is unavoidable. However, if the water vapor introduction pipe 6 is forcibly inserted into the solid electrolyte cell 5 with uneven thickness, there is a possibility that the solid electrolyte cell 5 will be damaged, and if it is inserted skillfully into the long solid electrolyte cell 5 and the heater block 9. In order to do so, it is necessary to improve the processing accuracy and assembly accuracy of the device. In particular, when the steam electrolyzer becomes loud and the solid electrolyte cell 5 becomes multi-tubular, a higher degree of processing precision and assembly precision will be required, and depending on the number of cells, it may be impossible to manufacture, or even if it is impossible to manufacture. Even if it were possible, there was a problem in that it would require a long production period and production cost.

本発明は、上記従来の問題点を解決するためになされた
もので、加工11度及び組立て精度を低くしても固体電
解質セルの破損等を防止し得る固体電解質水蒸気分解装
置を提供しようとするものである。
The present invention has been made in order to solve the above-mentioned conventional problems, and aims to provide a solid electrolyte steam decomposition device that can prevent damage to solid electrolyte cells even if the machining degree and assembly accuracy are reduced to 11 degrees. It is something.

[問題点を解決するための手段j 本発明は、装置本体内にVXV4された複数の固体電解
質セルを用いて水蒸気の分解を行なう多管式水蒸気電解
装置において、前記固体電解質セルを前記本体上部の蓋
体にベローを介して吊架したことを特徴とする固体電解
質水蒸気電解@置である。
[Means for Solving the Problems j] The present invention provides a multi-tube steam electrolysis device for decomposing water vapor using a plurality of solid electrolyte cells arranged VXV4 in the device main body. This is a solid electrolyte steam electrolysis device that is suspended from the lid of the device via a bellows.

[f¥用] 本発明によれば、固体電解質セルを前記本体上部の蓋体
にベローを介して吊架することによって、該セルに外力
に対して弾力性を持て破損等を防止できると共に、該固
体電解質セルの加工精度及び組立て精度を低くでき、製
作期間の短縮、製作費用の低減等のメリットを期待でき
る。
[For f\] According to the present invention, by suspending the solid electrolyte cell from the lid on the upper part of the main body via a bellows, the cell can have elasticity against external forces and can be prevented from being damaged. The processing accuracy and assembly accuracy of the solid electrolyte cell can be lowered, and benefits such as shortening of manufacturing period and reduction of manufacturing cost can be expected.

[発明の実施例] 以下、本発明の実施例を第1図を参照して詳細に説明す
る。なお、前述した第2図と同様な部材は同符号を付し
て説明を省略する。
[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described in detail with reference to FIG. Incidentally, the same members as those shown in FIG. 2 described above are given the same reference numerals and the explanation thereof will be omitted.

本実施例の電解装置は、固体電解質セル5を例えばロウ
付等で接合されたベロー14を介して容器1上部に固定
された蓋体3に吊架している。
In the electrolytic device of this embodiment, a solid electrolyte cell 5 is suspended from a lid 3 fixed to the upper part of a container 1 via a bellows 14 that is joined by, for example, brazing.

このような構成の分[置によれば、固体電解質セル5を
例えばOつ付等で接合されたベロー14を介して容器1
上部に固定された蓋体3に吊架されているため、該固体
電解質セル5に外力(特に衝撃力)に対して弾力性を持
たせることができ、水蒸気導入管6の挿入時での該セル
5破損等を防止できる。その結果、固体電解質セル5や
水蒸気導入管等の加工精度やそれらの組立て精度を低く
しても充分に信頼性の高い装置の組立てが可能になる。
According to such a structure, the solid electrolyte cell 5 is connected to the container 1 via the bellows 14, which is connected with an O-piece or the like.
Since the solid electrolyte cell 5 is suspended from the lid 3 fixed at the top, it is possible to make the solid electrolyte cell 5 resilient to external forces (particularly impact force), and to prevent the solid electrolyte cell 5 from being exposed to the force when the steam introduction pipe 6 is inserted. Damage to the cell 5 can be prevented. As a result, it is possible to assemble a device with sufficiently high reliability even if the processing accuracy of the solid electrolyte cell 5, the water vapor introduction pipe, etc. and the assembly accuracy thereof are reduced.

上述した分解装置において、トリチウム水蒸気は水蒸気
導入管6を通って該導入管6下端で反転し、外側に配置
したヒータブロック9により加熱され、肉厚方向に電圧
の付加(図面中では省略されているが固体電解質セル5
と蓋体3は絶縁がとられている)された固体電解質セル
5の内部を上昇し、上昇する間に水素と11索に分解さ
れる。分解されたガスは、各々水素同位体ガスの排気管
8、酸素排気管12より回収される。
In the decomposition device described above, tritium steam passes through the steam introduction pipe 6 and is reversed at the lower end of the introduction pipe 6, heated by the heater block 9 disposed outside, and applied with voltage in the thickness direction (not shown in the drawing). Iruga solid electrolyte cell 5
The hydrogen rises inside the solid electrolyte cell 5 (the lid 3 is insulated), and is decomposed into hydrogen and 11 molecules while rising. The decomposed gas is recovered from a hydrogen isotope gas exhaust pipe 8 and an oxygen exhaust pipe 12, respectively.

なお、上記実施例ではトリチウム水の電気分解について
説明したが、これに限定されず、不活性ガス等の混合ガ
ス中の水蒸気分解及び純水な水蒸気の分解に際しては、
^純度の水素を得るための反応装置としての応用が可能
である。
In addition, although the above-mentioned example explained electrolysis of tritium water, it is not limited to this, and when decomposing water vapor in a mixed gas such as an inert gas and decomposing pure water vapor,
^ It can be applied as a reaction device to obtain pure hydrogen.

また、上記実施例では酸素導電型電解セルを用いた電解
装置について説明したが、水素導電型電解セル等の同種
の機能を持った電解装置にも同様に適用できる。
Further, in the above embodiment, an electrolytic device using an oxygen conductive electrolytic cell was described, but the present invention can be similarly applied to an electrolytic device having the same type of function such as a hydrogen conductive electrolytic cell.

[発明の効果] 以上詳述した如く、本発明によれば固体電解質セルに外
力に対して弾力性を持たせて破損を防止する共に、特に
水蒸気容−の増大に伴って固体電解質セルを多管にした
場合、各固体電解質セルの加工精度及び組立て精度を低
くでき、ひいては製作期間の短縮、製作費用の低減等を
達成し得る固体電解質水蒸気分解装置を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, solid electrolyte cells are made resilient to external forces to prevent breakage, and in particular, as the water vapor capacity increases, the number of solid electrolyte cells increases. When made into a tube, the processing accuracy and assembly accuracy of each solid electrolyte cell can be lowered, and a solid electrolyte steam decomposition device can be provided that can shorten the manufacturing period and reduce manufacturing costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す固体電解質水蒸気分解
装置の概略図、第2図は従来の固体電解質水蒸気分解装
置を示す概略図である。 1・・・容器(装置本体)、3・・・蓋体、5・・・固
体電解質セル、6・・・水蒸気導入管、8・・・水素同
位体ガスの排気管、9・・・ヒータブロック、10・・
・熱シールド体、12・・・酸素排気管、14・・・ベ
ロー。
FIG. 1 is a schematic diagram of a solid electrolyte steam decomposition device showing an embodiment of the present invention, and FIG. 2 is a schematic diagram of a conventional solid electrolyte steam decomposition device. DESCRIPTION OF SYMBOLS 1... Container (apparatus body), 3... Lid, 5... Solid electrolyte cell, 6... Water vapor introduction pipe, 8... Hydrogen isotope gas exhaust pipe, 9... Heater Block, 10...
・Heat shield body, 12...Oxygen exhaust pipe, 14...Bello.

Claims (1)

【特許請求の範囲】[Claims] 装置本体内に装填された固体電解質セルを用いて水蒸気
の分解を行なう固体電解質水蒸気電解装置において、前
記固体電解質セルを前記本体上部の蓋体にベローを介し
て吊架したことを特徴とする固体電解質水蒸気電解装置
A solid electrolyte steam electrolysis device for decomposing water vapor using a solid electrolyte cell loaded into the device main body, characterized in that the solid electrolyte cell is suspended from a lid at the top of the main body via a bellows. Electrolyte steam electrolyzer.
JP62136252A 1987-05-30 1987-05-30 Apparatus for electrolyzing steam with solid electrolyte Pending JPS63303088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62136252A JPS63303088A (en) 1987-05-30 1987-05-30 Apparatus for electrolyzing steam with solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62136252A JPS63303088A (en) 1987-05-30 1987-05-30 Apparatus for electrolyzing steam with solid electrolyte

Publications (1)

Publication Number Publication Date
JPS63303088A true JPS63303088A (en) 1988-12-09

Family

ID=15170838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62136252A Pending JPS63303088A (en) 1987-05-30 1987-05-30 Apparatus for electrolyzing steam with solid electrolyte

Country Status (1)

Country Link
JP (1) JPS63303088A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262432A (en) * 2006-03-27 2007-10-11 Toshiba Corp High-temperature steam electrolyzing apparatus and its electrolyzing method
JP2022152445A (en) * 2021-03-29 2022-10-12 本田技研工業株式会社 Electrolysis system and operation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5198683A (en) * 1974-12-31 1976-08-31
JPS61101971A (en) * 1984-10-23 1986-05-20 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell
JPS61225778A (en) * 1985-03-28 1986-10-07 ウエスチングハウス エレクトリツク コ−ポレ−シヨン Manufacture of electrode
JPS6264070A (en) * 1985-09-17 1987-03-20 Agency Of Ind Science & Technol Solid electrolyte fuel battery stack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5198683A (en) * 1974-12-31 1976-08-31
JPS61101971A (en) * 1984-10-23 1986-05-20 Mitsubishi Heavy Ind Ltd Solid electrolyte fuel cell
JPS61225778A (en) * 1985-03-28 1986-10-07 ウエスチングハウス エレクトリツク コ−ポレ−シヨン Manufacture of electrode
JPS6264070A (en) * 1985-09-17 1987-03-20 Agency Of Ind Science & Technol Solid electrolyte fuel battery stack

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262432A (en) * 2006-03-27 2007-10-11 Toshiba Corp High-temperature steam electrolyzing apparatus and its electrolyzing method
JP4630837B2 (en) * 2006-03-27 2011-02-09 株式会社東芝 High temperature steam electrolysis apparatus and electrolysis method thereof
JP2022152445A (en) * 2021-03-29 2022-10-12 本田技研工業株式会社 Electrolysis system and operation method thereof

Similar Documents

Publication Publication Date Title
US4798715A (en) Producing chlorine dioxide from chlorate salt
JPS60224097A (en) Method of recovering plutonium in solid waste
RU2242059C2 (en) Method for separating rare nuclear fission products and their extraction from spent nuclear fuel, application of these products (alternatives)
JP2019508703A (en) Conversion of spent uranium oxide fuel to molten salt reactor fuel
WO1989010981A1 (en) Apparatus and method for dissolving hazardous waste materials by catalyzed electrochemical dissolution
JP2690896B2 (en) Multi-tube steam electrolyzer
Manji et al. Electrosynthesis of propylene oxide in a bipolar trickle-bed reactor
JPS63303088A (en) Apparatus for electrolyzing steam with solid electrolyte
CA1231669A (en) Recovery method of tritium from tritiated water
Spagnolo et al. Enrichment and volume reduction of tritiated water using combined electrolysis catalytic exchange
JPS6129770B2 (en)
US5093302A (en) Radioactive catalyst and oxidation-reduction method and apparatus using same
JP2601821B2 (en) Steam electrolysis equipment
JPS5838207B2 (en) Method for removing impurities such as helium from a mixture containing deuterium and tritium
Wada et al. Decomposition of water and production of H2 using semiconductor-photocatalytic effect induced by gamma ray from high radioactive waste
US3445292A (en) Thermally regenerable hydrogen halide fuel cell
Johnson et al. Electrochemical membrane separation of chlorine from gaseous hydrogen chloride waste
Otsuka et al. Selective synthesis of acetaldehyde using a fuel cell system in the gas phase
Steinberg et al. The utilization of fission fragment energy for the fixation of nitrogen
JPH0559463A (en) Production of metallic actinoid
Caracciolo et al. Electrolytic dissolver for power fuels
JP3621824B2 (en) Electrolytic cell and method for purifying tritium water using the same
JP2002339091A (en) Method for removing cesium in metallic sodium and apparatus therefor
Goodridge Some aspects of electrochemical engineering
JPH0563201B2 (en)