JP4630837B2 - High temperature steam electrolysis apparatus and electrolysis method thereof - Google Patents

High temperature steam electrolysis apparatus and electrolysis method thereof Download PDF

Info

Publication number
JP4630837B2
JP4630837B2 JP2006085170A JP2006085170A JP4630837B2 JP 4630837 B2 JP4630837 B2 JP 4630837B2 JP 2006085170 A JP2006085170 A JP 2006085170A JP 2006085170 A JP2006085170 A JP 2006085170A JP 4630837 B2 JP4630837 B2 JP 4630837B2
Authority
JP
Japan
Prior art keywords
oxygen
hydrogen
electrode
chamber
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006085170A
Other languages
Japanese (ja)
Other versions
JP2007262432A (en
Inventor
健太郎 松永
正人 吉野
斗 小川
清 小野
斉二 藤原
博之 山内
新一 牧野
重夫 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006085170A priority Critical patent/JP4630837B2/en
Publication of JP2007262432A publication Critical patent/JP2007262432A/en
Application granted granted Critical
Publication of JP4630837B2 publication Critical patent/JP4630837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

本発明は、円筒型水蒸気電解セルを用いた高温水蒸気電解装置及びその電解方法に関する。   The present invention relates to a high-temperature steam electrolysis apparatus using a cylindrical steam electrolysis cell and an electrolysis method thereof.

この種の高温水蒸気電解法として、約600〜900℃の作動温度において水蒸気を電気分解し水素と酸素とが得られる技術が知られている(例えば、特許文献1参照)。その動作原理は固体電解質燃料電池(SOFC:Solid Oxide Fuel Cell)の逆反応を利用するものである。   As this type of high temperature steam electrolysis method, a technique is known in which hydrogen and oxygen are obtained by electrolyzing water vapor at an operating temperature of about 600 to 900 ° C. (see, for example, Patent Document 1). The principle of operation uses the reverse reaction of a solid oxide fuel cell (SOFC).

この高温水蒸気電解を行うには、一般には、固体酸化物電解質材料を挟んで、水素極と酸素極とが設けられている電気化学セルが使用される。この電気化学セルの電解によって得られる水素と酸素とを隔てる構造が必要となる。通常、水素極側雰囲気は、燃料となる水蒸気と水素が主成分となり、一方、酸素極側雰囲気は、供給ガスを空気としたときは、窒素と酸素が主な成分となり、供給ガスを酸素としたときは、酸素が主な成分となる。このように、両極へ供給するガスの種類が全く異なり、それぞれの電極に対して、ガスの供給機構が必要となり、この構成が複雑となる。   In order to perform this high-temperature steam electrolysis, an electrochemical cell in which a hydrogen electrode and an oxygen electrode are provided with a solid oxide electrolyte material in between is generally used. A structure for separating hydrogen and oxygen obtained by electrolysis of the electrochemical cell is required. Normally, the hydrogen electrode side atmosphere is mainly composed of water vapor and hydrogen as fuel, while the oxygen electrode side atmosphere is mainly composed of nitrogen and oxygen when the supply gas is air, and the supply gas is oxygen. When it does, oxygen becomes the main component. In this way, the types of gas supplied to both electrodes are completely different, and a gas supply mechanism is required for each electrode, which complicates this configuration.

また、電気化学セルの構造は、平板型や円筒型等がある。この電気化学セルの水素極側雰囲気と酸素極側雰囲気は電気化学セルの構成部位である固体酸化物電解質の緻密構造とセル端部のガスシールにより分け隔てられている。このように隔離することにより、水素極側雰囲気及び酸素極側雰囲気の相互への雰囲気ガスのリークを最小限になるように構成されている。電気化学セル単体で使用する場合であれば、セル端部のガスシールは比較的容易である。しかし、これらを積層する等して集合体として使用するときは、セル端部のガスシール信頼性は低下すると考えられる。   The electrochemical cell structure includes a flat plate type and a cylindrical type. The hydrogen electrode side atmosphere and the oxygen electrode side atmosphere of the electrochemical cell are separated by a dense structure of a solid oxide electrolyte, which is a constituent part of the electrochemical cell, and a gas seal at the end of the cell. By separating in this way, the atmosphere gas leakage between the hydrogen electrode side atmosphere and the oxygen electrode side atmosphere is minimized. If the electrochemical cell is used alone, gas sealing at the cell edge is relatively easy. However, when these are stacked and used as an aggregate, it is considered that the gas seal reliability at the end of the cell is lowered.

この高温水蒸気電解法を実用化するに際しては、上記の水素と酸素とを隔てる部分のガスシール及び電解セルの電極に酸化/還元雰囲気において電解電流を均一かつ長期間にわたって安定に供給する構造等に注力されている。   In putting this high-temperature steam electrolysis method into practical use, it has a structure that supplies the electrolysis current uniformly and stably over a long period of time in an oxidizing / reducing atmosphere to the gas seal separating the hydrogen and oxygen and the electrode of the electrolysis cell. Has been focused.

この従来の高温水蒸気電解装置について、図3、図4を用いて説明する。図3は、従来の高温水蒸気電解装置の概略構成を示す縦断面図であり、図4は、図3の電流リード部の概略構造を示す縦断面図である。   This conventional high-temperature steam electrolysis apparatus will be described with reference to FIGS. FIG. 3 is a longitudinal sectional view showing a schematic configuration of a conventional high-temperature steam electrolysis apparatus, and FIG. 4 is a longitudinal sectional view showing a schematic structure of a current lead portion in FIG.

図3において、水蒸気電解装置は、円筒型の電解セル101、この電解セル101を収納したモジュールハウジング110とから構成される。このモジュールハウジング110は、水蒸気を供給する水蒸気供給室102、生成された水素を排出する生成水素排出室103及び酸素が生成される酸素生成室105に区切られている。この水蒸気供給室102からの水蒸気は、水蒸気注入管104を経由して電解セル101の内部に供給される。   In FIG. 3, the water vapor electrolysis apparatus includes a cylindrical electrolysis cell 101 and a module housing 110 that houses the electrolysis cell 101. The module housing 110 is divided into a water vapor supply chamber 102 for supplying water vapor, a generated hydrogen discharge chamber 103 for discharging generated hydrogen, and an oxygen generation chamber 105 for generating oxygen. The water vapor from the water vapor supply chamber 102 is supplied into the electrolysis cell 101 via the water vapor injection pipe 104.

図4に示すように、円筒型の電解セル101の片端には電流リード用金属キャップ106が取り付けられ、他端にはシールキャップ107が取り付けられ閉構造をなしている。この電解セル101での燃料の供給・排出を一方からのみで可能としている。また、管板111とのテーパ型のシール部108において電解セル101を支持することにより、電解セル101の着脱を可能とし、しかもガスシールできる構造としている。   As shown in FIG. 4, a current lead metal cap 106 is attached to one end of a cylindrical electrolytic cell 101, and a seal cap 107 is attached to the other end to form a closed structure. The supply and discharge of fuel in the electrolysis cell 101 can be performed only from one side. In addition, the electrolytic cell 101 is supported by the taper-type seal portion 108 with the tube plate 111, so that the electrolytic cell 101 can be attached and detached, and can be gas-sealed.

電流リードについて説明する。水素極側のリード部は、テーパ型シーリング108を経由して取り出される。酸素極側のリード部は、電解セル101の下端のセルリード部112を介してシールキャップ107を経由して電解セル101の内部に導入され、還元雰囲気を通って電流リード用金属キャップ106から取り出される。
特許第2930326号公報
The current lead will be described. The lead portion on the hydrogen electrode side is taken out via the taper type sealing 108. The lead portion on the oxygen electrode side is introduced into the inside of the electrolysis cell 101 via the seal cap 107 via the cell lead portion 112 at the lower end of the electrolysis cell 101, and is taken out from the current lead metal cap 106 through the reducing atmosphere. .
Japanese Patent No. 2930326

上述した従来の高温水蒸気電解装置は、高温の水蒸気を電気分解し水素ガスと酸素ガスとを得るもので、その動作原理は固体電解質燃料電池の逆反応を利用するものである。   The above-described conventional high-temperature steam electrolysis apparatus electrolyzes high-temperature steam to obtain hydrogen gas and oxygen gas, and its operation principle uses the reverse reaction of a solid electrolyte fuel cell.

しかし、水素極側雰囲気と酸素極側雰囲気とのガスシール部は電解セル101の上下の2箇所において必要となり、かつ、このガスシール部は、いずれの場合でもセルのリード部を含んだシール構造となっているため、確実で信頼性のあるシールの実現は困難である、という課題があった。   However, the gas seal portion between the hydrogen electrode side atmosphere and the oxygen electrode side atmosphere is required at two places above and below the electrolysis cell 101, and the gas seal portion includes a cell lead portion in any case. Therefore, there has been a problem that it is difficult to realize a reliable and reliable seal.

また、高温かつ酸化/還元雰囲気下で電解セルの電極に電解電流を均一かつ長期間にわたって安定に供給することが困難である、という課題があった。   In addition, there is a problem that it is difficult to supply an electrolytic current uniformly and stably over a long period of time to an electrode of an electrolytic cell under high temperature and in an oxidizing / reducing atmosphere.

さらに、組立の際の機械的衝撃や高温における構成部材の熱変形により、円筒型水蒸気電解セルが相互に接触したり周辺部材と接触したりすることにより、円筒型水蒸気電解セルが破損する恐れがある、という課題があった。   In addition, the cylindrical steam electrolysis cell may be damaged due to mechanical shocks during assembly or thermal deformation of components at high temperatures, causing the cylindrical steam electrolysis cells to contact each other or to contact peripheral members. There was a problem of being.

本発明は上記課題を解決するためになされたもので、簡易な構造で水素と酸素とのガスリークを防止し、セル破損を防ぎつつ高温かつ酸化/還元雰囲気下で長期間にわたって安定的に水蒸気電解反応を行う高温水蒸気電解装置及びその電解方法を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems. Steam electrolysis is stably performed at a high temperature and in an oxidizing / reducing atmosphere for a long period of time while preventing gas leakage between hydrogen and oxygen with a simple structure and preventing cell damage. It is an object of the present invention to provide a high-temperature steam electrolysis apparatus that performs a reaction and an electrolysis method thereof.

上記目的を達成するため、本発明の高温水蒸気電解装置においては、一端を閉じ円筒状の内側を形成する水素極と、この水素極の外側に設けられた円筒状の酸素極と、この水素極と酸素極との間に設けられ電子絶縁性および酸素イオン導電性を持つ電解質層と、を有する少なくとも1個の円筒型水蒸気電解セルと、この円筒型水蒸気電解セルの水素極に水蒸気を供給する水蒸気供給室と、この水蒸気供給室の水蒸気を前記円筒型水蒸気電解セルの内側に供給する水蒸気供給管と、前記水蒸気供給室に隣接し前記水素極で生成された水素を系外に取り出すための生成水素排出室と、前記生成水素排出室に隣接し前記酸素極側で生成された酸素を系外に取り出すための酸素生成室と、前記円筒型水蒸気電解セルの内側および外側に電解電流を供給しかつ固定する弾性給電端子と、を備え、前記水蒸気供給室及び酸素生成室の壁面に導電性を持たせると共に、前記水蒸気供給室と酸素生成室との間に絶縁層を設けて、前記水蒸気供給室及び酸素生成室の壁面を介して前記円筒型水蒸気電解セルの水素極及び酸素極に電解電流を供給する電解電流供給手段を具備し、かつ生成水素排出室と酸素生成室とに隔離する隔壁と前記円筒型水蒸気電解セルとは、前記円筒型水蒸気電解セルと同等の熱膨張率を有する支持管を介して構造的および電気的に間接的に接合すること、を特徴とするものである。 In order to achieve the above object, in the high-temperature steam electrolysis apparatus of the present invention, a hydrogen electrode that is closed at one end to form a cylindrical inner side, a cylindrical oxygen electrode provided outside the hydrogen electrode, and the hydrogen electrode At least one cylindrical steam electrolysis cell having an electronic insulating property and an oxygen ion conductivity provided between the electrode and the oxygen electrode, and supplying water vapor to the hydrogen electrode of the cylindrical steam electrolysis cell A water vapor supply chamber, a water vapor supply pipe for supplying the water vapor in the water vapor supply chamber to the inside of the cylindrical water vapor electrolysis cell, and for taking out hydrogen generated at the hydrogen electrode adjacent to the water vapor supply chamber out of the system An electrolytic current is supplied to the inside and outside of the generated hydrogen discharge chamber, the oxygen generating chamber for taking out oxygen generated on the oxygen electrode side adjacent to the generated hydrogen discharge chamber, and the cylindrical steam electrolysis cell. And an elastic power supply terminal to be fixed, and to provide conductivity to the wall surfaces of the water vapor supply chamber and the oxygen generation chamber, and to provide the water vapor supply by providing an insulating layer between the water vapor supply chamber and the oxygen generation chamber. A partition wall having an electrolytic current supply means for supplying an electrolytic current to the hydrogen electrode and the oxygen electrode of the cylindrical steam electrolysis cell through the wall surfaces of the chamber and the oxygen generation chamber, and separating the generated hydrogen discharge chamber and the oxygen generation chamber and the said cylindrical steam electrolysis cell, to structurally and electrically indirectly joined through a support tube having a thermal expansion coefficient equivalent to that of the cylindrical steam electrolytic cell, and is characterized in.

また、上記目的を達成するため、本発明の高温水蒸気電解装置においては、一端を閉じ円筒状の内側を形成する酸素極と、この酸素極の外側に設けられた円筒状の水素極と、この酸素極と水素極との間に設けられ電子絶縁性および酸素イオン導電性を持つ電解質層と、を有する少なくとも1個の円筒型水蒸気電解セルと、この円筒型水蒸気電解セルの酸素極雰囲気を調整する酸素極雰囲気供給室と、この酸素極雰囲気供給室の酸素極雰囲気を前記円筒型水蒸気電解セルの内側に供給する酸素極雰囲気供給管と、前記酸素極雰囲気供給室に隣接し前記酸素極で生成された酸素を系外に取り出すための生成酸素排出室と、前記生成酸素排出室に隣接し前記水素極側で生成された水素を系外に取り出すための水素生成室と、前記円筒型水蒸気電解セルの内側および外側に電解電流を供給しかつ固定する弾性給電端子と、を備え、前記酸素雰囲気供給室及び水素生成室の壁面に導電性を持たせると共に、前記酸素雰囲気供給室と水素生成室との間に絶縁層を設けて、前記酸素雰囲気供給室及び水素生成室の壁面を介して前記円筒型水蒸気電解セルの酸素極及び水素極に電解電流を供給する電解電流供給手段を具備し、かつ生成酸素排出室と水素生成室とに隔離する隔壁と前記円筒型水蒸気電解セルとは、前記円筒型水蒸気電解セルと同等の熱膨張率を有する支持管を介して構造的および電気的に間接的に接合すること、を特徴とするものである。 In order to achieve the above object, in the high-temperature steam electrolysis apparatus of the present invention, an oxygen electrode which is closed at one end to form a cylindrical inner side, a cylindrical hydrogen electrode provided outside the oxygen electrode, At least one cylindrical steam electrolysis cell provided between an oxygen electrode and a hydrogen electrode and having an electronic insulating property and an oxygen ion conductivity, and adjusting an oxygen electrode atmosphere of the cylindrical steam electrolysis cell An oxygen electrode atmosphere supply chamber, an oxygen electrode atmosphere supply pipe for supplying the oxygen electrode atmosphere in the oxygen electrode atmosphere supply chamber to the inside of the cylindrical steam electrolysis cell, and an oxygen electrode atmosphere supply chamber adjacent to the oxygen electrode atmosphere supply chamber. A generated oxygen discharge chamber for extracting generated oxygen out of the system, a hydrogen generation chamber for extracting hydrogen generated on the hydrogen electrode side adjacent to the generated oxygen discharge chamber, and the cylindrical water vapor Electrolytic cell An elastic power supply terminal for supplying and fixing an electrolytic current to the inside and the outside of the battery, and providing conductivity to the walls of the oxygen atmosphere supply chamber and the hydrogen generation chamber, and the oxygen atmosphere supply chamber and the hydrogen generation chamber. Provided with an electrolysis current supply means for providing an electrolysis current to the oxygen electrode and the hydrogen electrode of the cylindrical steam electrolysis cell through the wall surfaces of the oxygen atmosphere supply chamber and the hydrogen generation chamber, and the partition wall isolating the generation oxygen discharge chamber and the hydrogen generation chamber the cylindrical steam electrolysis cell, structurally and electrically indirectly via a support tube having a thermal expansion coefficient equivalent to that of the cylindrical steam electrolytic cell It is characterized by joining to.

本発明の高温水蒸気電解装置及びその電解方法によれば、円筒型水蒸気電解セルの内側の極には容器壁面からシール機能を維持した状態で、また外側の極には絶縁した別の容器壁面から給電端子を介して電解電流を流すことにより、簡易な構造で水素と酸素とのガスリークを防止し、しかも高温かつ酸化/還元雰囲気の下でセル電極に均一かつ長期間にわたって安定的に電解電流を供給することができる。   According to the high-temperature steam electrolysis apparatus and the electrolysis method of the present invention, the inner pole of the cylindrical steam electrolysis cell is maintained in a sealed state from the container wall surface, and the outer electrode is insulated from another insulated container wall surface. By flowing an electrolysis current through the power supply terminal, gas leakage between hydrogen and oxygen can be prevented with a simple structure, and the electrolysis current can be stably and stably applied to the cell electrode over a long period of time under high temperature and in an oxidizing / reducing atmosphere. Can be supplied.

以下、本発明に係る高温水蒸気電解装置及びその電解方法の実施の形態について、図面を参照して説明する。ここで、同一又は類似の部分には共通の符号を付すことにより、重複説明を省略する。   Embodiments of a high-temperature steam electrolysis apparatus and an electrolysis method thereof according to the present invention will be described below with reference to the drawings. Here, the same or similar parts are denoted by common reference numerals, and redundant description is omitted.

図1は、本発明の第1の実施の形態の高温水蒸気電解装置の概略構成を示す縦断面図である。   FIG. 1 is a longitudinal sectional view showing a schematic configuration of a high-temperature steam electrolysis apparatus according to a first embodiment of the present invention.

本図に示すように、水蒸気電解装置は、少なくとも1個の円筒型水蒸気電解セル1と、この円筒型水蒸気電解セル1を格納する容器40とを有する。   As shown in this figure, the water vapor electrolysis apparatus has at least one cylindrical water vapor electrolysis cell 1 and a container 40 for storing the cylindrical water vapor electrolysis cell 1.

この円筒型水蒸気電解セル1は、一端を閉じ、他端を開放した円筒型セルより構成される。このセルの内側は、水素極21より形成される。このセルの外側は酸素極31より形成される。この水素極21と酸素極31との間には、電子絶縁性および酸素イオン導電性を持つ電解質層45が介在している。   The cylindrical steam electrolysis cell 1 is composed of a cylindrical cell having one end closed and the other end open. The inside of this cell is formed from the hydrogen electrode 21. The outside of the cell is formed from the oxygen electrode 31. An electrolyte layer 45 having electronic insulation and oxygen ion conductivity is interposed between the hydrogen electrode 21 and the oxygen electrode 31.

一方、上記容器40の下部には、円筒型水蒸気電解セル1の水素極21に水蒸気41を供給する水蒸気供給室2が設けられている。この水蒸気供給室2の水蒸気41は、水蒸気供給管3を介して円筒型水蒸気電解セル1に導入される。上記容器40の中間部には、上記水蒸気供給室2に隣接して、この水素極21おいて生成された水素42を系外に取り出すための生成水素排出室4が設けられている。また、上記容器40の上部には、上記円筒型水蒸気電解セル1の酸素極31側の酸素極雰囲気47を調整しながら導入して生成された酸素43を取り出すための酸素生成室5が備えられている。上記生成水素排出室4と酸素生成室5との間には隔壁6が設けられている。   On the other hand, a steam supply chamber 2 for supplying steam 41 to the hydrogen electrode 21 of the cylindrical steam electrolysis cell 1 is provided at the lower part of the container 40. The water vapor 41 in the water vapor supply chamber 2 is introduced into the cylindrical water vapor electrolysis cell 1 through the water vapor supply pipe 3. A generated hydrogen discharge chamber 4 for taking out hydrogen 42 generated in the hydrogen electrode 21 out of the system is provided in the middle portion of the vessel 40 adjacent to the water vapor supply chamber 2. In addition, an oxygen generation chamber 5 for taking out oxygen 43 generated by introducing an oxygen electrode atmosphere 47 on the oxygen electrode 31 side of the cylindrical steam electrolysis cell 1 while adjusting the oxygen electrode atmosphere 47 is provided at the upper part of the container 40. ing. A partition wall 6 is provided between the generated hydrogen discharge chamber 4 and the oxygen generation chamber 5.

この隔壁6と上記円筒型水蒸気電解セル1aとは、本図の左側に示すように、構造的および電気的に直接的に接合してもよい。また、本図の右側に示すように、円筒型水蒸気電解セル1bと同等の熱膨張率を有する支持管7を介して構造的および電気的に間接的に接合してもよい。ただし、いずれの場合も接合部においてもセル内側とセル外側とのガスが相互に漏洩しないこと、円筒型水蒸気電解セル1の酸素極31と隔壁6とが電気的に絶縁されていること、また支持管7を用いるときは、支持管7の内側と外側とは絶縁されていることが必要である。   The partition wall 6 and the cylindrical steam electrolysis cell 1a may be directly joined structurally and electrically as shown on the left side of the figure. Moreover, as shown on the right side of this figure, you may join structurally and electrically indirectly through the support tube 7 which has a thermal expansion coefficient equivalent to the cylindrical water-vapor-electrolysis cell 1b. However, in any case, the gas inside and outside the cell does not leak to each other at the junction, the oxygen electrode 31 and the partition wall 6 of the cylindrical steam electrolysis cell 1 are electrically insulated, and When the support tube 7 is used, it is necessary that the inside and outside of the support tube 7 are insulated.

また、酸素生成室5の少なくとも一部の壁面を、生成水素排出室4と酸素生成室との5の隔壁6から電気的に絶縁するために、絶縁層8が設けられている。この絶縁層8を設けることにより、簡易な反応容器構造により、円筒型水蒸気電解セル1の両極に電解電流を流すことができる。   In addition, an insulating layer 8 is provided to electrically insulate at least a part of the wall surface of the oxygen generation chamber 5 from the partition walls 6 of the generated hydrogen discharge chamber 4 and the oxygen generation chamber 5. By providing this insulating layer 8, an electrolytic current can be passed through both electrodes of the cylindrical steam electrolysis cell 1 with a simple reaction vessel structure.

また、円筒型水蒸気電解セル1の内側の水素極21は、弾性給電端子22を介して、円筒型水蒸気電解セル1の内部に差し込まれた水蒸気供給管3と接触している。また、円筒型水蒸気電解セル1の外側の酸素極31は、弾性給電端子32を介して、ガイド板10と接触している。この弾性給電端子22や弾性給電端子32は、例えば、バネ状に加工した白金、銀又はニッケル等が用いられる。またバネ状構造の他に、メッシュやフェルト状に加工した上述の材料を用いてもよい。
In addition, the hydrogen electrode 21 inside the cylindrical steam electrolysis cell 1 is in contact with the steam supply pipe 3 inserted into the cylindrical steam electrolysis cell 1 through the elastic power supply terminal 22. Further, the oxygen electrode 31 outside the cylindrical steam electrolysis cell 1 is in contact with the guide plate 10 via the elastic power supply terminal 32. The elastic feeding terminal 22 and the resilient feed terminal 32 is, for example, platinum, silver or nickel or the like is used which is processed into a spring-like. In addition to the spring-like structure, the above-described material processed into a mesh or felt shape may be used.

また、弾性給電端子22は、円筒型水蒸気電解セル1の内側の水蒸気ガスの流れや温度変化に伴う円筒型水蒸気電解セル1と水蒸気供給管3との相対的な位置変化を妨げないように、円筒型水蒸気電解セルの中心から放射状に隙間を設けてもよい。   Further, the elastic power supply terminal 22 does not hinder the relative position change between the cylindrical steam electrolysis cell 1 and the steam supply pipe 3 due to the flow of steam gas inside the cylindrical steam electrolysis cell 1 and the temperature change. Gaps may be provided radially from the center of the cylindrical steam electrolysis cell.

また、水蒸気導入管3を導電性材料とすることにより、円筒型水蒸気電解セル1の水素極21には、隔壁6と水蒸気供給管3との2つの電流供給経路により電気的接触が確保されると共に、円筒型水蒸気電解セル1の固定が先端部と根元部の2点で行われるため、構造的に安定性を向上させることができる。   Further, by using the water vapor introduction pipe 3 as a conductive material, electrical contact is secured to the hydrogen electrode 21 of the cylindrical water vapor electrolysis cell 1 through two current supply paths of the partition wall 6 and the water vapor supply pipe 3. At the same time, the cylindrical steam electrolysis cell 1 is fixed at two points, that is, the tip portion and the root portion, so that the stability can be improved structurally.

また、上記水蒸気供給室2と生成水素排出室4との隔壁44へ接続する水蒸気供給管3の一部分を弾性を有する弾性構造体9に置換することにより、組立時及び高温における素材変形等による円筒型水蒸気電解セル1の損傷を効果的に防止することができる。この弾性構造体9として、ベローズ加工した金属管やらせん状に曲げ加工した金属管等で形成することができる。   Further, by replacing a part of the water vapor supply pipe 3 connected to the partition wall 44 between the water vapor supply chamber 2 and the generated hydrogen discharge chamber 4 with an elastic structure 9 having elasticity, a cylinder due to material deformation or the like at the time of assembly or at a high temperature. The type steam electrolysis cell 1 can be effectively prevented from being damaged. The elastic structure 9 can be formed of a metal tube processed by bellows, a metal tube bent by a spiral, or the like.

さらに、上記絶縁層8で隔壁6と絶縁した酸素生成室5の壁面に設けられたガイド板10により、この円筒型水蒸気電解セル1の側面を支持することができる。このガイド板10を設けることにより、上記円筒型水蒸気電解セル1の側面の酸素極31は、弾性給電端子32を介して機械的かつ電気的に接触させることができる。この弾性給電端子32として、例えば、バネ状に加工した白金や銀、耐酸化性金属を用いることができる。また、このバネ状構造の他に、メッシュやフェルト状に加工した前記の材料を用いてもよい。これらの構造により、円筒型水蒸気電解セル1の位置を外側から固定して円筒型水蒸気電解セル1の外側の部材との接触による機械的な衝撃・破損を防ぐと共に、酸素極31側の電気的な接触を確保することができる。   Furthermore, the side surface of the cylindrical steam electrolysis cell 1 can be supported by the guide plate 10 provided on the wall surface of the oxygen generation chamber 5 insulated from the partition wall 6 by the insulating layer 8. By providing this guide plate 10, the oxygen electrode 31 on the side surface of the cylindrical steam electrolysis cell 1 can be brought into mechanical and electrical contact via the elastic power supply terminal 32. As the elastic power supply terminal 32, for example, platinum, silver, or oxidation-resistant metal processed into a spring shape can be used. In addition to the spring-like structure, the material processed into a mesh or felt may be used. With these structures, the position of the cylindrical steam electrolysis cell 1 is fixed from the outside to prevent mechanical shock / breakage due to contact with the members outside the cylindrical steam electrolysis cell 1, and the electrical property on the oxygen electrode 31 side is prevented. Contact can be ensured.

本実施の形態によれば、水素極21には容器壁面からシール機能を維持した状態で、また酸素極31には水素極21に電気的に接続している容器壁面とは絶縁した別の壁面から給電端子を介して電解電流を流すことにより、簡易な構造で水素と酸素とのガスリークを防止しすることができる。しかも、高温かつ酸化/還元雰囲気の下でセル電極に均一かつ長期間にわたって安定的に電解電流を供給することができる。さらに、組立時及び高温における素材変形等によるセルの損傷を防ぎつつ、高効率でかつ安定的に高温水蒸気の電解を行うことができる。   According to the present embodiment, the hydrogen electrode 21 maintains a sealing function from the vessel wall surface, and the oxygen electrode 31 is another wall surface insulated from the vessel wall surface electrically connected to the hydrogen electrode 21. By flowing an electrolysis current from through the power supply terminal, gas leakage between hydrogen and oxygen can be prevented with a simple structure. In addition, the electrolytic current can be supplied to the cell electrode uniformly and stably over a long period of time at a high temperature and in an oxidizing / reducing atmosphere. Furthermore, high temperature steam electrolysis can be performed efficiently and stably while preventing damage to the cell due to material deformation or the like at the time of assembly or at a high temperature.

図2は、本発明の第2の実施の形態の高温水蒸気電解装置の概略構成を示す縦断面図である。   FIG. 2 is a longitudinal sectional view showing a schematic configuration of the high temperature steam electrolyzer according to the second embodiment of the present invention.

本図に示すように、水蒸気電解装置は、少なくとも1個の円筒型水蒸気電解セル51と、この円筒型水蒸気電解セル51を格納する容器40とを有する。   As shown in this figure, the water vapor electrolysis apparatus has at least one cylindrical water vapor electrolysis cell 51 and a container 40 that stores the cylindrical water vapor electrolysis cell 51.

この円筒型水蒸気電解セル51は、一端を閉じ、他端を開放した円筒型電解セルより構成される。このセルの内側は酸素極31より形成されている。このセルの外側は水素極21より形成されている。この水素極21と酸素極31との間には、電子絶縁性および酸素イオン導電性を持つ電解質層45が介在している。   The cylindrical steam electrolysis cell 51 is composed of a cylindrical electrolysis cell having one end closed and the other end open. The inside of this cell is formed from the oxygen electrode 31. The outside of the cell is formed from a hydrogen electrode 21. An electrolyte layer 45 having electronic insulation and oxygen ion conductivity is interposed between the hydrogen electrode 21 and the oxygen electrode 31.

一方、上記容器40の下部には、円筒型水蒸気電解セル51の酸素極31に酸素雰囲気47を供給する酸素雰囲気供給室46が設けられている。この酸素雰囲気供給室46の酸素雰囲気47は、酸素雰囲気供給管50を介して円筒型水蒸気電解セル1に導入される。上記容器40の中間部には、上記酸素雰囲気供給室46に隣接して、この酸素極31おいて生成された酸素を系外に取り出すための生成酸素排出室48が設けられている。また、上記容器40の上部には、上記円筒型水蒸気電解セル1の水素極において水蒸気41から生成された水素42を取り出すための水素生成室49が備えられている。上記生成酸素排出室48と水素生成室49との間には隔壁6aが設けられている。   On the other hand, an oxygen atmosphere supply chamber 46 for supplying an oxygen atmosphere 47 to the oxygen electrode 31 of the cylindrical steam electrolysis cell 51 is provided at the lower part of the container 40. The oxygen atmosphere 47 in the oxygen atmosphere supply chamber 46 is introduced into the cylindrical steam electrolysis cell 1 through the oxygen atmosphere supply pipe 50. A generated oxygen discharge chamber 48 for taking out oxygen generated in the oxygen electrode 31 out of the system is provided in the middle portion of the container 40 adjacent to the oxygen atmosphere supply chamber 46. In addition, a hydrogen generation chamber 49 for taking out hydrogen 42 generated from the water vapor 41 at the hydrogen electrode of the cylindrical water vapor electrolysis cell 1 is provided in the upper part of the container 40. A partition wall 6 a is provided between the generated oxygen discharge chamber 48 and the hydrogen generation chamber 49.

この隔壁6aと上記円筒型水蒸気電解セル51aとは、本図の左側に示すように、構造的および電気的に直接的接合してもよい。また、本図の右側に示すように、円筒型水蒸気電解セル51bと同等の熱膨張率を有する支持管7を介して構造的および電気的に間接的接合してもよい。ただし、いずれの場合も接合部においてもセル内側とセル外側とのガスが相互に漏洩しないこと、円筒型水蒸気電解セル51の水素極21と隔壁6aとが電気的に絶縁されていること、また支持管7を用いるときは、支持管7の内側と外側とは絶縁されていることが必要である。   The partition wall 6a and the cylindrical steam electrolysis cell 51a may be directly joined structurally and electrically as shown on the left side of the figure. In addition, as shown on the right side of the figure, it may be structurally and electrically indirectly joined through a support tube 7 having a thermal expansion coefficient equivalent to that of the cylindrical steam electrolysis cell 51b. However, in any case, the gas inside and outside the cell does not leak to each other at the junction, the hydrogen electrode 21 and the partition wall 6a of the cylindrical steam electrolysis cell 51 are electrically insulated, When the support tube 7 is used, it is necessary that the inside and outside of the support tube 7 are insulated.

また、水素生成室49の少なくとも一部の壁面を、生成酸素排出室48と水素生成室49の隔壁6aと電気的に絶縁するために、絶縁層8が設けられている。この絶縁層8を設けることにより、簡易な反応容器構造により、円筒型水蒸気電解セル1の両極に電解電流を流すことができる。   In addition, an insulating layer 8 is provided to electrically insulate at least a part of the wall surface of the hydrogen generation chamber 49 from the generated oxygen discharge chamber 48 and the partition wall 6 a of the hydrogen generation chamber 49. By providing this insulating layer 8, an electrolytic current can be passed through both electrodes of the cylindrical steam electrolysis cell 1 with a simple reaction vessel structure.

また、円筒型水蒸気電解セル1の内側の酸素極31は、弾性給電端子22を介して、円筒型水蒸気電解セル51の内部に差し込まれた酸素雰囲気供給管50と接触している。また、円筒型水蒸気電解セル51の外側の水素極21は、弾性給電端子32を介して、ガイド板10と接触している。この弾性給電端子22や弾性給電端子32は、例えば、バネ状に加工した白金、銀又はニッケル等が用いられる。またバネ状構造の他に、メッシュやフェルト状に加工した上述の材料を用いてもよい。 The oxygen electrode 31 inside the cylindrical steam electrolysis cell 1 is in contact with an oxygen atmosphere supply pipe 50 inserted into the cylindrical steam electrolysis cell 51 via the elastic power supply terminal 22. The hydrogen electrode 21 outside the cylindrical steam electrolysis cell 51 is in contact with the guide plate 10 via the elastic power supply terminal 32. For example, platinum, silver, or nickel processed into a spring shape is used for the elastic power supply terminal 22 and the elastic power supply terminal 32. In addition to the spring-like structure, the above-described material processed into a mesh or felt shape may be used.

また、弾性給電端子22は、円筒型水蒸気電解セル51の内側の酸素ガスの流れや温度変化に伴う円筒型水蒸気電解セル51と酸素雰囲気供給管50との相対的な位置変化を妨げないように、円筒型水蒸気電解セル51の中心から放射状に隙間を設けてもよい。   Further, the elastic power supply terminal 22 does not hinder the relative position change between the cylindrical steam electrolysis cell 51 and the oxygen atmosphere supply pipe 50 due to the flow of oxygen gas inside the cylindrical steam electrolysis cell 51 and the temperature change. The gaps may be provided radially from the center of the cylindrical steam electrolysis cell 51.

また、酸素雰囲気供給管50を導電性材料とすることにより、円筒型水蒸気電解セル51の酸素極31には、隔壁6aと酸素雰囲気供給管50との2つの電流供給経路により電気的接触が確保されると共に、円筒型水蒸気電解セル51の固定が先端部と根元部の2点で行われるため、構造的に安定性を向上することができる。   Further, by using the oxygen atmosphere supply pipe 50 as a conductive material, the oxygen electrode 31 of the cylindrical steam electrolysis cell 51 is secured in electrical contact by two current supply paths of the partition wall 6a and the oxygen atmosphere supply pipe 50. In addition, since the fixation of the cylindrical steam electrolysis cell 51 is performed at two points, that is, the tip portion and the root portion, the structural stability can be improved.

また、上記酸素雰囲気供給室46と生成酸素排出室48との隔壁44aへ接続する酸素雰囲気供給管50の一部分を弾性を有する弾性構造体9に置換することにより、組立時及び高温における素材変形等による円筒型水蒸気電解セル1の損傷を効果的に防止することができる。この弾性構造体9として、ベローズ加工した金属管やらせん状に曲げ加工した金属管等で形成することができる。   Further, by replacing a part of the oxygen atmosphere supply pipe 50 connected to the partition wall 44a between the oxygen atmosphere supply chamber 46 and the generated oxygen discharge chamber 48 with an elastic structure 9 having elasticity, material deformation at the time of assembling and at a high temperature, etc. The cylindrical steam electrolysis cell 1 can be effectively prevented from being damaged. The elastic structure 9 can be formed of a metal tube processed by bellows, a metal tube bent by a spiral, or the like.

さらに、上記絶縁層8で隔壁6aと絶縁した酸素生成室5の壁面に設けられたガイド板10により、この円筒型水蒸気電解セル51の側面を支持することができる。このガイド板10を設けることにより、上記円筒型水蒸気電解セル51の側面の水素極21は、弾性給電端子32を介して機械的かつ電気的に接触させることができる。この弾性給電端子32として、例えば、バネ状に加工した白金や銀、耐酸化性金属を用いることができる。また、このバネ状構造の他に、メッシュやフェルト状に加工した前記の材料を用いてもよい。これらの構造により、円筒型水蒸気電解セル1の位置を外側から固定して円筒型水蒸気電解セル51の外側の部材との接触による機械的な衝撃・破損を防ぐと共に、水素極21側の電気的な接触を確保することができる。   Further, the side surface of the cylindrical steam electrolysis cell 51 can be supported by the guide plate 10 provided on the wall surface of the oxygen generation chamber 5 insulated from the partition wall 6a by the insulating layer 8. By providing the guide plate 10, the hydrogen electrode 21 on the side surface of the cylindrical steam electrolysis cell 51 can be brought into mechanical and electrical contact via the elastic power supply terminal 32. As the elastic power supply terminal 32, for example, platinum, silver, or oxidation-resistant metal processed into a spring shape can be used. In addition to the spring-like structure, the material processed into a mesh or felt may be used. With these structures, the position of the cylindrical steam electrolysis cell 1 is fixed from the outside to prevent mechanical shock / breakage due to contact with the outer member of the cylindrical steam electrolysis cell 51, and the electrical property on the hydrogen electrode 21 side is prevented. Contact can be ensured.

本実施の形態によれば、酸素極31には容器壁面からシール機能を維持した状態で、また水素極21には酸素極31に電気的に接続している容器壁面とは絶縁した別の壁面から給電端子を介して電解電流を流すことにより、簡易な構造で水素と酸素とのガスリークを防止しすることができる。しかも、高温かつ酸化/還元雰囲気の下でセル電極に均一かつ長期間にわたって安定的に電解電流を供給することができる。さらに、組立時及び高温における素材変形等によるセルの損傷を防ぎつつ、高効率でかつ安定的に高温水蒸気の電解を行うことができる。   According to the present embodiment, the oxygen electrode 31 maintains a sealing function from the container wall surface, and the hydrogen electrode 21 is another wall surface insulated from the container wall surface electrically connected to the oxygen electrode 31. By flowing an electrolysis current from the power supply terminal through the power supply terminal, gas leakage between hydrogen and oxygen can be prevented with a simple structure. In addition, the electrolytic current can be supplied to the cell electrode uniformly and stably over a long period of time at a high temperature and in an oxidizing / reducing atmosphere. Furthermore, high temperature steam electrolysis can be performed efficiently and stably while preventing damage to the cell due to material deformation at the time of assembly and at high temperatures.

さらに、本発明は、上述したような各実施の形態に何ら限定されるものではなく、本発明の各実施例を組み合わせて、本発明の主旨を逸脱しない範囲で種々変形して実施することができる。   Furthermore, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention by combining the embodiments of the present invention. it can.

本発明の第1の実施の形態の高温水蒸気電解装置の概略構成を示す縦断面図。BRIEF DESCRIPTION OF THE DRAWINGS The longitudinal cross-sectional view which shows schematic structure of the high temperature steam electrolysis apparatus of the 1st Embodiment of this invention. 本発明の第2の実施の形態の高温水蒸気電解装置の概略構成を示す縦断面図。The longitudinal cross-sectional view which shows schematic structure of the high temperature steam electrolyzer of the 2nd Embodiment of this invention. 従来の高温水蒸気電解装置の概略構成を示す縦断面図。The longitudinal cross-sectional view which shows schematic structure of the conventional high temperature steam electrolysis apparatus. 図3の電流リード部の概略構造を示す縦断面図。FIG. 4 is a longitudinal sectional view showing a schematic structure of a current lead portion in FIG. 3.

符号の説明Explanation of symbols

1…円筒型水蒸気電解セル、2…水蒸気供給室、3…水蒸気供給管、4…生成水素排出室、5…酸素生成室、6…生成水素排出室と酸素生成室との隔壁、6a…生成酸素排出室と水素生成室との隔壁、7…支持管、8…絶縁層、9…弾性構造体、10…ガイド板、21…水素極、22…弾性給電端子、31…酸素極、32…弾性給電端子、40…容器、41…水蒸気、42…水素、43…酸素、44…水蒸気供給室と生成水素排出室との隔壁、44a…酸素雰囲気供給室と生成酸素排出室との隔壁、45…電解質層、46…酸素雰囲気供給室、47…酸素雰囲気、48…生成酸素排出室、49…水素生成室、50…酸素雰囲気供給管。   DESCRIPTION OF SYMBOLS 1 ... Cylindrical steam electrolysis cell, 2 ... Steam supply chamber, 3 ... Steam supply pipe, 4 ... Production hydrogen discharge chamber, 5 ... Oxygen production chamber, 6 ... Partition between production hydrogen exhaust chamber and oxygen production chamber, 6a ... Production Separation of oxygen discharge chamber and hydrogen generation chamber, 7 ... support pipe, 8 ... insulating layer, 9 ... elastic structure, 10 ... guide plate, 21 ... hydrogen electrode, 22 ... elastic feeding terminal, 31 ... oxygen electrode, 32 ... Elastic power supply terminal, 40 ... container, 41 ... water vapor, 42 ... hydrogen, 43 ... oxygen, 44 ... partition wall between water vapor supply chamber and product hydrogen discharge chamber, 44a ... partition wall between oxygen atmosphere supply chamber and product oxygen discharge chamber, 45 ... electrolyte layer, 46 ... oxygen atmosphere supply chamber, 47 ... oxygen atmosphere, 48 ... generated oxygen discharge chamber, 49 ... hydrogen generation chamber, 50 ... oxygen atmosphere supply pipe.

Claims (8)

一端を閉じ円筒状の内側を形成する水素極と、この水素極の外側に設けられた円筒状の酸素極と、この水素極と酸素極との間に設けられ電子絶縁性および酸素イオン導電性を持つ電解質層と、を有する少なくとも1個の円筒型水蒸気電解セルと、
この円筒型水蒸気電解セルの水素極に水蒸気を供給する水蒸気供給室と、
この水蒸気供給室の水蒸気を前記円筒型水蒸気電解セルの内側に供給する水蒸気供給管と、
前記水蒸気供給室に隣接し前記水素極で生成された水素を系外に取り出すための生成水素排出室と、
前記生成水素排出室に隣接し前記酸素極側で生成された酸素を系外に取り出すための酸素生成室と、
前記円筒型水蒸気電解セルの内側および外側に電解電流を供給しかつ固定する弾性給電端子と、
を備え、
前記水蒸気供給室及び酸素生成室の壁面に導電性を持たせると共に、前記水蒸気供給室と酸素生成室との間に絶縁層を設けて、前記水蒸気供給室及び酸素生成室の壁面を介して前記円筒型水蒸気電解セルの水素極及び酸素極に電解電流を供給する電解電流供給手段を具備し、
かつ生成水素排出室と酸素生成室とに隔離する隔壁と前記円筒型水蒸気電解セルとは、前記円筒型水蒸気電解セルと同等の熱膨張率を有する支持管を介して構造的および電気的に間接的に接合すること、を特徴とする高温水蒸気電解装置。
A hydrogen electrode that closes one end and forms a cylindrical inner side, a cylindrical oxygen electrode provided outside the hydrogen electrode, and an electronic insulating property and oxygen ion conductivity provided between the hydrogen electrode and the oxygen electrode An electrolyte layer having: at least one cylindrical steam electrolysis cell having:
A steam supply chamber for supplying steam to the hydrogen electrode of the cylindrical steam electrolysis cell;
A steam supply pipe for supplying the steam in the steam supply chamber to the inside of the cylindrical steam electrolysis cell;
A generated hydrogen discharge chamber adjacent to the water vapor supply chamber for taking out the hydrogen generated at the hydrogen electrode out of the system;
An oxygen generation chamber for taking out oxygen generated on the oxygen electrode side adjacent to the generated hydrogen discharge chamber;
An elastic power supply terminal for supplying and fixing an electrolytic current to the inside and the outside of the cylindrical steam electrolysis cell;
With
Conductivity is provided to the wall surfaces of the water vapor supply chamber and the oxygen generation chamber, and an insulating layer is provided between the water vapor supply chamber and the oxygen generation chamber. Comprising an electrolytic current supply means for supplying an electrolytic current to the hydrogen electrode and oxygen electrode of the cylindrical steam electrolysis cell;
And The partition wall that isolates the generation hydrogen discharge chamber and oxygen generating chamber the cylindrical steam electrolysis cell, structurally and electrically indirectly via a support tube having a thermal expansion coefficient equivalent to that of the cylindrical steam electrolytic cell A high temperature steam electrolyzer characterized by the fact that they are joined together.
前記絶縁層は、前記酸素極側の弾性給電端子が接続されている酸素生成室の壁面及び前記水素極側の弾性給電端子が接続されている水蒸気供給室の壁面を電気的に絶縁する絶縁層であること、を特徴とする請求項1記載の高温水蒸気電解装置。   The insulating layer electrically insulates the wall surface of the oxygen generation chamber to which the elastic electrode terminal on the oxygen electrode side is connected and the wall surface of the water vapor supply chamber to which the elastic electrode terminal on the hydrogen electrode side is connected. The high-temperature steam electrolyzer according to claim 1, wherein 前記弾性給電端子は、前記円筒型水蒸気電解セルの内側と前記水蒸気供給管の外側とを接触させる弾性および電子導電性を有する弾性給電端子であり、前記水蒸気供給管を前記水蒸気供給室と生成水素排出室とに隔離する隔壁へ接続する部分に設けられた弾性構造体を具備すること、を特徴とする請求項1又は2記載の高温水蒸気電解装置。   The elastic power supply terminal is an elastic power supply terminal having elasticity and electronic conductivity that contacts the inside of the cylindrical steam electrolysis cell and the outside of the water vapor supply pipe, and the water supply pipe is connected to the water supply chamber and the generated hydrogen. The high-temperature steam electrolysis apparatus according to claim 1 or 2, further comprising an elastic structure provided at a portion connected to a partition wall separated from the discharge chamber. 前記弾性給電端子は、前記酸素生成室の中に設けられ前記円筒型水蒸気電解セルの外側の酸素極に接触する弾性および電子導電性を有する弾性給電端子であり、前記酸素生成室の壁面に設置されこの給電端子を介して前記円筒型水蒸気電解セルを支えると共に導電性を有するガイド板を具備すること、を特徴とする請求項1又は2記載の高温水蒸気電解装置。 The elastic power supply terminal is an elastic power supply terminal having elasticity and electronic conductivity that is provided in the oxygen generation chamber and contacts an oxygen electrode outside the cylindrical steam electrolysis cell, and is installed on the wall surface of the oxygen generation chamber The high-temperature steam electrolysis apparatus according to claim 1 or 2 , further comprising a conductive guide plate that supports the cylindrical steam electrolysis cell via the power supply terminal. 一端を閉じ円筒状の内側を形成する酸素極と、この酸素極の外側に設けられた円筒状の水素極と、この酸素極と水素極との間に設けられ電子絶縁性および酸素イオン導電性を持つ電解質層と、を有する少なくとも1個の円筒型水蒸気電解セルと、
この円筒型水蒸気電解セルの酸素極雰囲気を調整する酸素極雰囲気供給室と、
この酸素極雰囲気供給室の酸素極雰囲気を前記円筒型水蒸気電解セルの内側に供給する酸素極雰囲気供給管と、
前記酸素極雰囲気供給室に隣接し前記酸素極で生成された酸素を系外に取り出すための生成酸素排出室と、
前記生成酸素排出室に隣接し前記水素極側で生成された水素を系外に取り出すための水素生成室と、
前記円筒型水蒸気電解セルの内側および外側に電解電流を供給しかつ固定する弾性給電端子と、
を備え、
前記酸素雰囲気供給室及び水素生成室の壁面に導電性を持たせると共に、前記酸素雰囲気供給室と水素生成室との間に絶縁層を設けて、前記酸素雰囲気供給室及び水素生成室の壁面を介して前記円筒型水蒸気電解セルの酸素極及び水素極に電解電流を供給する電解電流供給手段を具備し、
かつ生成酸素排出室と水素生成室とに隔離する隔壁と前記円筒型水蒸気電解セルとは、前記円筒型水蒸気電解セルと同等の熱膨張率を有する支持管を介して構造的および電気的に間接的に接合すること、を特徴とする高温水蒸気電解装置。
An oxygen electrode that closes one end and forms a cylindrical inner side, a cylindrical hydrogen electrode that is provided outside the oxygen electrode, and an electronic insulating property and oxygen ion conductivity that are provided between the oxygen electrode and the hydrogen electrode. An electrolyte layer having: at least one cylindrical steam electrolysis cell having:
An oxygen electrode atmosphere supply chamber for adjusting the oxygen electrode atmosphere of the cylindrical steam electrolysis cell;
An oxygen electrode atmosphere supply pipe for supplying the oxygen electrode atmosphere in the oxygen electrode atmosphere supply chamber to the inside of the cylindrical steam electrolysis cell;
A generated oxygen discharge chamber for taking out oxygen generated at the oxygen electrode adjacent to the oxygen electrode atmosphere supply chamber;
A hydrogen generating chamber for taking out hydrogen generated on the hydrogen electrode side adjacent to the generated oxygen discharge chamber, and
An elastic power supply terminal for supplying and fixing an electrolytic current to the inside and the outside of the cylindrical steam electrolysis cell;
With
The walls of the oxygen atmosphere supply chamber and the hydrogen generation chamber are made conductive, and an insulating layer is provided between the oxygen atmosphere supply chamber and the hydrogen generation chamber, so that the walls of the oxygen atmosphere supply chamber and the hydrogen generation chamber are provided. An electrolysis current supply means for supplying electrolysis current to the oxygen electrode and the hydrogen electrode of the cylindrical steam electrolysis cell through
And The partition wall that isolates the generation oxygen discharge chamber and the hydrogen generation chamber the cylindrical steam electrolysis cell, structurally and electrically indirectly via a support tube having a thermal expansion coefficient equivalent to that of the cylindrical steam electrolytic cell High-temperature steam electrolysis apparatus characterized by jointing.
前記絶縁層は、前記水素極側の弾性給電端子が接続されている水素生成室の壁面と酸素極側の弾性給電端子が接続されている生成酸素排出室の壁面を電気的に絶縁する絶縁層であること、を特徴とする請求項5記載の高温水蒸気電解装置。   The insulating layer electrically insulates the wall surface of the hydrogen generation chamber to which the elastic feed terminal on the hydrogen electrode side is connected and the wall surface of the generated oxygen discharge chamber to which the elastic feed terminal on the oxygen electrode side is connected. The high-temperature steam electrolysis apparatus according to claim 5, wherein 前記弾性給電端子は、前記円筒型水蒸気電解セルの内側と前記酸素極雰囲気供給管の外側とを接触させる弾性および電子導電性を有する弾性給電端子であり、前記酸素極雰囲気供給管を前記酸素極雰囲気供給室と生成酸素排出室とに隔離する隔壁へ接続する部分に設けられた弾性構造体を具備すること、を特徴とする請求項5又は6記載の高温水蒸気電解装置。   The elastic power supply terminal is an elastic power supply terminal having elasticity and electronic conductivity for contacting the inside of the cylindrical steam electrolysis cell and the outside of the oxygen electrode atmosphere supply pipe, and the oxygen electrode atmosphere supply pipe is connected to the oxygen electrode 7. The high-temperature steam electrolysis apparatus according to claim 5, further comprising an elastic structure provided at a portion connected to a partition wall that is separated into an atmosphere supply chamber and a product oxygen discharge chamber. 前記弾性給電端子は、前記水素生成室の中に設けられ前記円筒型水蒸気電解セルの外側の水素極に接触する弾性および電子導電性を有する弾性給電端子であり、前記水素生成室の壁面に設置されこの給電端子を介して前記円筒型水蒸気電解セルを支えると共に導電性を有するガイド板を具備すること、を特徴とする請求項5又は6記載の高温水蒸気電解装置。 The elastic power supply terminal is an elastic power supply terminal having elasticity and electronic conductivity that is provided in the hydrogen generation chamber and is in contact with a hydrogen electrode outside the cylindrical steam electrolysis cell, and is installed on a wall surface of the hydrogen generation chamber The high temperature steam electrolysis apparatus according to claim 5 or 6 , further comprising a conductive guide plate that supports the cylindrical steam electrolysis cell via the power supply terminal.
JP2006085170A 2006-03-27 2006-03-27 High temperature steam electrolysis apparatus and electrolysis method thereof Active JP4630837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006085170A JP4630837B2 (en) 2006-03-27 2006-03-27 High temperature steam electrolysis apparatus and electrolysis method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006085170A JP4630837B2 (en) 2006-03-27 2006-03-27 High temperature steam electrolysis apparatus and electrolysis method thereof

Publications (2)

Publication Number Publication Date
JP2007262432A JP2007262432A (en) 2007-10-11
JP4630837B2 true JP4630837B2 (en) 2011-02-09

Family

ID=38635699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006085170A Active JP4630837B2 (en) 2006-03-27 2006-03-27 High temperature steam electrolysis apparatus and electrolysis method thereof

Country Status (1)

Country Link
JP (1) JP4630837B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100995713B1 (en) 2008-04-25 2010-11-19 웰로하스 주식회사 Electrode assembly for electrolysis, oxygen and/or hydrogen generator having the same, and apparatus of producing oxygen-rich water and/or hydrogen-rich water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303088A (en) * 1987-05-30 1988-12-09 Japan Atom Energy Res Inst Apparatus for electrolyzing steam with solid electrolyte
JPH03134190A (en) * 1989-10-18 1991-06-07 Mitsubishi Heavy Ind Ltd Steam electrolyzer
JPH06136583A (en) * 1992-10-27 1994-05-17 Mitsubishi Heavy Ind Ltd Solid electrolyte type electrolytic cell
JPH09228085A (en) * 1996-02-16 1997-09-02 Meidensha Corp Device for electrolysis of high temperature water vapor
JP2006070282A (en) * 2004-08-31 2006-03-16 Toshiba Corp High temperature steam electrolyzer and tubular steam electrolytic cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303088A (en) * 1987-05-30 1988-12-09 Japan Atom Energy Res Inst Apparatus for electrolyzing steam with solid electrolyte
JPH03134190A (en) * 1989-10-18 1991-06-07 Mitsubishi Heavy Ind Ltd Steam electrolyzer
JPH06136583A (en) * 1992-10-27 1994-05-17 Mitsubishi Heavy Ind Ltd Solid electrolyte type electrolytic cell
JPH09228085A (en) * 1996-02-16 1997-09-02 Meidensha Corp Device for electrolysis of high temperature water vapor
JP2006070282A (en) * 2004-08-31 2006-03-16 Toshiba Corp High temperature steam electrolyzer and tubular steam electrolytic cell

Also Published As

Publication number Publication date
JP2007262432A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
CN107431231B (en) Unit stacking apparatus, module, and module housing apparatus
JP2008512846A (en) Solid oxide fuel cell system
CN105765776B (en) Unit stacking apparatus, module, and module housing apparatus
JP6873820B2 (en) Fuel cell module
JP6511195B2 (en) Electrochemical reaction unit, electrochemical reaction cell stack, and method for producing electrochemical reaction unit
JP5185125B2 (en) Tubular fuel cell module and device for sealing the same
JP4630837B2 (en) High temperature steam electrolysis apparatus and electrolysis method thereof
JP5039260B2 (en) Fuel cell and fuel cell system
US20120015285A1 (en) Solid oxide fuel cell
JPH11111314A (en) Cathode collecting structure for solid electrolyte fuel cell, and solid electrolyte fuel cell power generating module using the same
JP2007314833A (en) Hydrogen-producing apparatus and hydrogen-producing method
JP4327687B2 (en) High temperature steam electrolyzer
JP4192047B2 (en) Fuel cell
US20100310966A1 (en) Coaxial fuel cell or electrolyser module with ball interconnectors
JP4942064B2 (en) Current collector and solid oxide fuel cell stack including the same
JP4351968B2 (en) High temperature steam electrolyzer and cylindrical steam electrolysis cell
JP2014222636A (en) Cell stack device, fuel cell module and fuel cell device
JP2014011038A (en) Cell stack device and fuel battery module and fuel battery device
US20230253582A1 (en) Heat insulation structure for high-temperature reaction room
JP6893127B2 (en) Electrochemical reaction unit and electrochemical reaction cell stack
JP2018139196A (en) Cell stack device, module and module housing device
JPH11102716A (en) Solid electrolyte fuel cell and power generation module with this fuel cell
JP5143687B2 (en) Fuel cell power generation module
JP6023275B2 (en) Cell stack device, fuel cell module, and fuel cell device
KR101934082B1 (en) Fuel cell stack with thin endplate with integrated gas distribution tubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101022

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4630837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3