JPS63303008A - Manufacture of 0.5%-mo steel plate for boiler and pressure vessel excellent in weldability - Google Patents

Manufacture of 0.5%-mo steel plate for boiler and pressure vessel excellent in weldability

Info

Publication number
JPS63303008A
JPS63303008A JP20903087A JP20903087A JPS63303008A JP S63303008 A JPS63303008 A JP S63303008A JP 20903087 A JP20903087 A JP 20903087A JP 20903087 A JP20903087 A JP 20903087A JP S63303008 A JPS63303008 A JP S63303008A
Authority
JP
Japan
Prior art keywords
steel plate
steel
less
rolled material
normalizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20903087A
Other languages
Japanese (ja)
Inventor
Kensaburo Takizawa
瀧澤 謙三郎
Haruo Kaji
梶 晴男
Chisato Ishioka
石岡 千里
Shoji Tone
登根 正二
Akihito Nishijima
西島 明史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP20903087A priority Critical patent/JPS63303008A/en
Publication of JPS63303008A publication Critical patent/JPS63303008A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture a 0.5-Mo steel plate for boiler and pressure vessel excellent in weldability, by subjecting a rolling stock having a specific composition consisting of C, Si, Mn, Mo, B, Al, N, and Fe to hot rolling and normalizing at respectively specified temps. CONSTITUTION:A rolling stock which has a composition consisting of, by weight, 0.01-0.12% C, 0.05-1% Si, 0.1-2% Mn, 0.2-0.8% Mo, 0.0002-0.002% B, 0.005-0.1% Sol.Al, <=0.007% N, and the balance Fe with inevitable impurities and further containing, if necessary, one or more kinds among 0.05-0.5% Cu, 0.05-0.5% Ni, 0.05-0.8% Cr, 0.005-0.08% Ti, 0.005-0.08% Nb, and 0.0053-0.1% V and/or 0.0005-0.01% Ca and in which the value calculated from PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B is regulated to <=0.23% is used. This stock is hot-rolled at 900-1,150 deg.C heating temp., and the resulting steel plate is normalized at 910-1,000 deg.C. By this method, the steel plate for pressure vessel excellent in weldability can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はボイラ・圧力容器用0.5%Mowi板の製造
方法に関し、殊に溶接性に優れ且つ高強度・高靭性を有
するボイラ・圧力容器用0.5%Mo鋼板の製造方法に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing 0.5% Mowi plates for boilers and pressure vessels, particularly for boilers and pressure vessels that have excellent weldability, high strength, and high toughness. The present invention relates to a method for manufacturing a 0.5% Mo steel plate for containers.

[従来の技術] 発電プラントや化学プラント等に招けるボイラや圧力容
器に用いられる構造材料は、耐熱・耐酸化性が要求され
ると共に、溶接性や加工性が良好なことが必要である。
[Prior Art] Structural materials used for boilers and pressure vessels used in power generation plants, chemical plants, etc. are required to have heat resistance and oxidation resistance, as well as good weldability and workability.

この様な構造材料としては、従来からJIS  S84
6M、3849M(ASTM  A204  Gr、A
、B)等の圧延鋼板が用いられてきた。
As such structural materials, JIS S84 has traditionally been used.
6M, 3849M (ASTM A204 Gr, A
, B), etc. have been used.

上述の圧延鋼板はフェライトを主体としたフェライト+
ベイナイト組織又はフェライト+パーライト組織を有し
ているが、室温及び高温(約300〜450℃程度)に
おける強度を確保するにはベイナイトやパーライトの割
合を高める様にすることが望ましく、これを実現する為
に含有C量を0.15〜0.3%と比較的多めに設定し
ている。
The above-mentioned rolled steel sheet is mainly made of ferrite +
It has a bainite structure or a ferrite + pearlite structure, but in order to ensure strength at room temperature and high temperature (approximately 300 to 450 degrees Celsius), it is desirable to increase the proportion of bainite and pearlite, and this is achieved. Therefore, the amount of C contained is set relatively high at 0.15 to 0.3%.

しかしながらC量を高めると、当然ながら溶接割れ感受
性組成Pcw(以下阜にPCMと呼ぶ)が大きくなる。
However, as the amount of C increases, the weld cracking susceptibility composition Pcw (hereinafter referred to as PCM) naturally increases.

従ってその様な圧延鋼材の溶接施工に当たっては、低温
割れ防止という観点から通常150〜300℃程度の高
温予熱が余儀なくされ、製造期間の長期化や熱エネルギ
ーの大量消費等を招き、製造コストの上昇につながる。
Therefore, when welding such rolled steel materials, high-temperature preheating of about 150 to 300 degrees Celsius is usually necessary to prevent low-temperature cracking, which leads to longer production times, large consumption of thermal energy, etc., and increases production costs. Leads to.

[発明が解決しようとする問題点] 一方銅鋼板溶接性を改善する手段としては、鋼中のC含
有量を低減して前記PCMを小さくすることが有効であ
ることは既に良く知られている。しかしながら鋼中のC
含有量を低減すれば、従来の鋼では焼ならし後或は応力
除去焼なましく以下、SR処理と呼ぶ)後の強度を十分
なレベルに確保することができないという問題があった
[Problems to be Solved by the Invention] On the other hand, it is already well known that reducing the C content in the steel to reduce the PCM is effective as a means to improve the weldability of copper steel sheets. . However, C in steel
If the content is reduced, there is a problem in that conventional steels cannot maintain a sufficient level of strength after normalization or stress relief annealing (hereinafter referred to as SR treatment).

この様な状況のもとで、最近では、低C且つ低pcMの
成分系を有する鋼板に微量のBを含有させ、焼ならしを
実施することにより高強度を得る技術も開発されている
。しかしながら、これまで0.5%Mail板では、B
による焼入性向上効果を有効に活用できる製造条件(圧
延時の加熱温度及び焼ならし条件)については、全く検
討されていないのが実情である。
Under these circumstances, a technique has recently been developed to obtain high strength by adding a small amount of B to a steel sheet having a low C and low pcM composition and normalizing the steel sheet. However, until now on the 0.5% Mail board, B
The reality is that no consideration has been given at all to manufacturing conditions (heating temperature during rolling and normalizing conditions) that can effectively utilize the hardenability improvement effect.

本発明は上述した実情に鑑みてなされたものであり、そ
の目的とするところは、低C1低pew化を図り且つ微
量のBを添加した0、5%Mofi板において、Bによ
る焼入性向上効果を最大限に発揮させ得る製造方法を提
供することにある。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to improve the hardenability by B in a 0.5% Mofi plate with low C1 and low pew and a trace amount of B added. The objective is to provide a manufacturing method that can maximize the effects.

[問題点を解決する為の手段] 上記目的を達成し得た本発明方法は、次の4つの発明を
包含する。
[Means for Solving the Problems] The method of the present invention that achieves the above object includes the following four inventions.

第1の発明は、 C:0.01〜0.12% S i : 0.05〜1% M n : 0.1〜2% M o : 0.2〜0.8% B  : 0.0002〜0.002%So1.A 1
 : 0.005〜0.1%を必須成分とすると共に、
Nを0.007%以下に制限してなり、残部がFe及び
不可避不純物であり、且つ ◆−■(零)◆5B(零) で算出される値が0.23%以下である圧延素材を用い
、 該圧延素材を900〜1150℃の加熱温度で熱間圧延
して鋼板とした後、該鋼板を910〜1000℃の温度
範囲で焼ならしする点に要旨を有する溶接性の優れたボ
イラ・圧力容器用0.5%Mo鋼板の製造方法である。
The first invention is as follows: C: 0.01-0.12% Si: 0.05-1% Mn: 0.1-2% Mo: 0.2-0.8% B: 0.0002 ~0.002% So1. A 1
: 0.005-0.1% as an essential component,
A rolled material in which N is limited to 0.007% or less, the remainder is Fe and unavoidable impurities, and the value calculated by ◆-■ (zero) ◆5B (zero) is 0.23% or less. A boiler with excellent weldability, characterized in that the rolled material is hot-rolled at a heating temperature of 900 to 1150°C to form a steel plate, and then the steel plate is normalized at a temperature range of 910 to 1000°C. - A method for manufacturing 0.5% Mo steel plate for pressure vessels.

第2の発明は前記第1の発明の構成要件に加え、Cu 
: 0.05〜0.5%、  N i : 0.05〜
0.5%。
In addition to the constituent features of the first invention, the second invention
: 0.05~0.5%, Ni: 0.05~
0.5%.

Cr : 0.05〜0.8%、 T i : 0.0
05〜0.08%。
Cr: 0.05-0.8%, Ti: 0.0
05-0.08%.

N b : 0.005〜0.08%、 V : 0.
005〜0.1%よりなる群から選択されるtl又は2
種以上をも含んだ圧延素材を用いる点に要旨を有する製
造方法である。
Nb: 0.005-0.08%, V: 0.
tl or 2 selected from the group consisting of 0.005-0.1%
The key point of this manufacturing method is that it uses a rolled material containing more than just seeds.

第3の発明は、前記第1の発明の構成要件に加え、Ca
 : 0.005〜0.01%をも必須成分として含ん
だ圧延素材を用いる点に要旨を有する製造方法である。
A third invention provides, in addition to the constituent features of the first invention,
: This manufacturing method has the gist of using a rolled material containing 0.005 to 0.01% as an essential component.

第4の発明は、前記’11の発明の構成要件に加え、C
a : 0.005〜0.01%をも必須要件として含
み、且ツCu : 0.05〜0.5%、 N t :
、0.05〜0.5%、 Cr : 0.05〜0.8
%、 Ti :0.005〜0.08%、  N b 
: 0.005〜0.08%、  V : 0.005
〜0.1%よりなる群から選択される1種又は2種以上
をも含んだ圧延素材を用いる点に要旨を有する製造方法
である。
In addition to the constituent features of the invention of '11, the fourth invention provides C.
a: 0.005-0.01% is also included as an essential requirement, Cu: 0.05-0.5%, Nt:
, 0.05-0.5%, Cr: 0.05-0.8
%, Ti: 0.005-0.08%, Nb
: 0.005-0.08%, V: 0.005
This manufacturing method is characterized in that it uses a rolled material containing one or more selected from the group consisting of ~0.1%.

[作用] 本発明は上述の如く構成されるが、要は上記各成分の含
有量及びpcvを規制すると共に、圧延時における加熱
温度及び焼ならし条件を規制することによって、高強度
・高靭性を有し且つ溶接性の優れたボイラ・圧力容器用
0.5%Mo@板を製造する方法が実現できたものであ
る。
[Function] The present invention is configured as described above, but the point is that high strength and high toughness can be achieved by regulating the content and PCV of each of the above components, as well as regulating the heating temperature and normalizing conditions during rolling. A method for producing a 0.5% Mo@ plate for boilers and pressure vessels which has excellent weldability and has excellent weldability has been realized.

本発明方法で対象とするボイラ・圧力容器用0.5%M
O鋼板において、Bはオーステナイト組織中に固溶し、
結晶粒界に偏析してフェライト変態の発生を抑制する為
、鋼の焼入性を向上させるという効果を発揮する。一方
Bは鋼中のNと結合し易く、鋼中に多量のNが存在する
とBがNと結合してBNを生成し、鋼中におけるB有効
量が減少して鋼の焼入性が低下する。
0.5% M for boilers and pressure vessels targeted by the method of the present invention
In the O steel sheet, B is dissolved in the austenite structure,
Since it segregates at grain boundaries and suppresses the occurrence of ferrite transformation, it has the effect of improving the hardenability of steel. On the other hand, B easily combines with N in steel, and when a large amount of N exists in steel, B combines with N to produce BN, reducing the effective amount of B in steel and reducing the hardenability of the steel. do.

本発明では、鋼の焼入性を低下させないという趣旨にお
いて鋼中有効B量を確保する必要がある為、鋼中のN量
そのものを低減すると共にSol、A Iによって固定
することとした。しかしながらB添加量が多過ぎるとき
には、オーステナイト粒界にB化合物が析出し、却って
焼入性が低下するという事態が生じる。そこで本発明に
おいては、この様な点をも考慮し、B及びSol、A 
1の添加量を所定の範囲内に限定すると共に、N量を所
定量以下に規制したのである。
In the present invention, since it is necessary to ensure an effective amount of B in the steel in order not to reduce the hardenability of the steel, it was decided to reduce the amount of N itself in the steel and fix it with Sol and AI. However, when the amount of B added is too large, a B compound precipitates at the austenite grain boundaries, resulting in a situation where the hardenability deteriorates. Therefore, in the present invention, taking such points into consideration, B, Sol, and A
The amount of N added was limited to within a predetermined range, and the amount of N was regulated to be below a predetermined amount.

以下、本発明における各成分の限定理由は下記の如くで
ある。
The reasons for limiting each component in the present invention are as follows.

C: 0.01〜0.12% Cは鋼板の強度を確保する為に、0.01%以上を添加
する必要がある。これに対し、C量を増加しすぎると溶
接性及び靭性が低下するので、C添加量は、0.12%
以下に限定する必要がある。
C: 0.01 to 0.12% C needs to be added in an amount of 0.01% or more to ensure the strength of the steel plate. On the other hand, if the amount of C is increased too much, weldability and toughness will decrease, so the amount of C added is 0.12%.
Must be limited to the following.

S i : 0.05〜1% Stは鋼板の強度確保及び耐酸化性向上の為に効果的で
あり、その効果を発揮させるには少なくとも0.05%
含有させる必要がある。しかしながら、過剰に含有させ
ると、鋼板の靭性が低下するので、その上限は1%とす
る必要がある。
Si: 0.05 to 1% St is effective for ensuring the strength of steel sheets and improving oxidation resistance, and at least 0.05% is required to exhibit this effect.
It is necessary to contain it. However, if it is contained excessively, the toughness of the steel plate will decrease, so the upper limit needs to be 1%.

M n : 0.1〜2% Mnは鋼の焼入性を高めるのに有効であり、0.1%以
上添加する必要がある。しかしながら2%よりも多く添
加すると靭性が低下する。従って本発明におけるMn添
加量は0.1〜2%に限定する必要がある。
Mn: 0.1-2% Mn is effective in improving the hardenability of steel, and must be added in an amount of 0.1% or more. However, if more than 2% is added, the toughness decreases. Therefore, the amount of Mn added in the present invention must be limited to 0.1 to 2%.

M o : 0.2〜0.8% MOは特にBと共存した場合において焼ならし時の焼入
れ性を高める為、本発明鋼の不可欠元素である。そして
本発明においては、450℃程度の高温度での使用に耐
え得る様に、その添加量は0.2%以上とする必要があ
る。しかしながらMOは高価な元素であり、その添加量
の上限は実用的な見地からして0.8%とした。
Mo: 0.2 to 0.8% MO is an essential element of the steel of the present invention because it improves the hardenability during normalizing, especially when it coexists with B. In the present invention, the amount added must be 0.2% or more so that it can withstand use at high temperatures of about 450°C. However, MO is an expensive element, and the upper limit of its addition amount is set at 0.8% from a practical standpoint.

B : 0.0002〜0.002% 前述した様にBは焼ならし時における焼入性を高め、強
度上昇の効果を得る為に不可欠の元素である。そして本
発明鋼において、Bによる上記効果を達成するには0.
0002%以上添加する必要がある。しかしながら、0
.002%を超えてBを過剰に添加すると、焼ならし時
にB化合物を生成し、焼入性を低下させると共に靭性を
も劣化させる。
B: 0.0002 to 0.002% As mentioned above, B is an essential element for improving hardenability during normalizing and obtaining the effect of increasing strength. In the steel of the present invention, in order to achieve the above effects due to B, 0.
It is necessary to add 0002% or more. However, 0
.. If B is added in excess of more than 0.002%, B compounds are generated during normalizing, which reduces hardenability and also deteriorates toughness.

SoL、AI:Q、QO5〜0.1% So1.AIは前述した様にNを固定し、又鋼板の組織
を微細化して靭性な高める効果を有し、本発明鋼におい
て不可欠の元素である。そして、その含有量がo、oo
s%よりも少ないときは、上記効果が達成されない、一
方その含有量が0.1%を超えると、鋼塊表面割れの原
因となる。従って本発明においては、その含有量は0.
005〜0.1%の範囲に限定した。
SoL, AI:Q, QO5~0.1% So1. As mentioned above, AI has the effect of fixing N, refining the structure of the steel plate, and increasing toughness, and is an essential element in the steel of the present invention. And its content is o, oo
If the content is less than s%, the above effects will not be achieved, while if the content exceeds 0.1%, it will cause cracks on the surface of the steel ingot. Therefore, in the present invention, the content is 0.
It was limited to a range of 0.005 to 0.1%.

N : 0.007以下 Nの含有量が0.007%を超えるとBNを生成し易く
なり、鋼の焼入れ性発現に有効なりfiが減少する。従
って本発明においては、Nの含有量は0.007%以下
に制限する必要がある。
N: 0.007 or less If the N content exceeds 0.007%, BN is likely to be generated, which is effective in developing hardenability of steel, and fi decreases. Therefore, in the present invention, it is necessary to limit the N content to 0.007% or less.

本発明鋼において各成分を限定した理由は上述した如く
であるが、本発明においてはPCMも0.23以下に制
限する必要がある。即ち、PCMは溶接時における低温
割れ感受性を示す指標であり、溶接施工時の予熱温度を
より低くするにはPCMを極力低く抑える必要がある。
The reasons for limiting each component in the steel of the present invention are as described above, but in the present invention, it is also necessary to limit the PCM to 0.23 or less. That is, PCM is an index indicating the susceptibility to cold cracking during welding, and it is necessary to keep PCM as low as possible in order to lower the preheating temperature during welding.

そして予熱温度を約50℃以下にしても割れを生じない
様にする為、本発明鋼においてはPCMを0.23%以
下に制限した。尚PCMは下記の式によって算出される
値である。
In order to prevent cracks from occurring even when the preheating temperature is lower than about 50° C., the PCM content in the steel of the present invention is limited to 0.23% or lower. Note that PCM is a value calculated by the following formula.

十二V(零)+5B(零) 本発明方法における対象鋼の基本的な成分は上述した通
りであるが、その他Cu、Ni、Or。
12V (zero) + 5B (zero) The basic components of the steel to be used in the method of the present invention are as described above, with the exception of Cu, Ni, and Or.

Ti、Nb、V又はCa等を添加することにより本発明
方法の効果が更に有効に達成される。即ちCu、Ni、
Cr、Ti、Nb、V等はいずれも鋼板の強度向に有効
な元素であり、又Caは靭性の改善に有効な元素である
。以下これらの成分の詳細な限定理由を説明する。
By adding Ti, Nb, V, Ca, etc., the effects of the method of the present invention can be achieved even more effectively. That is, Cu, Ni,
Cr, Ti, Nb, V, etc. are all effective elements for improving the strength of steel sheets, and Ca is an effective element for improving toughness. The detailed reasons for limiting these components will be explained below.

Cu : 0.05〜0.5% N i : 0.05〜0.5% Cr  :  0.05〜0.8  %T i : 0
.005〜0.08% N b : 0.005〜0.08% V  : 0.005〜0.01% これらの6元素は前述の如く鋼板の強度向上に有効な元
素であり、その意味においても同効元素であるから、下
記の様に夫々特有の作用効果を有しているが、発明の目
的を達成するという観点からは、これらの中から選択さ
れる1 fit又は221以上を配合すれば、選択内容
の如にかかわらず均等の作用効果が得られる。
Cu: 0.05-0.5% Ni: 0.05-0.5% Cr: 0.05-0.8% Ti: 0
.. 005-0.08% Nb: 0.005-0.08% V: 0.005-0.01% As mentioned above, these six elements are effective elements for improving the strength of steel sheets, and in that sense as well. Since they are equivalent elements, they each have their own specific effects as described below, but from the perspective of achieving the purpose of the invention, if 1 fit or 221 or more selected from these are combined. , the same effect can be obtained regardless of the selection content.

Cuは固溶強化及び析出強化に効果的である。Cu is effective for solid solution strengthening and precipitation strengthening.

この効果を有効に発揮させるには、Cu添加量は少なく
とも0.05%は必要である。しかしながら0.5%を
超えて過剰に添加すると溶接性が低下する。従ってCu
の添加量は、0.05〜0.5%の範囲とする必要があ
る。
In order to effectively exhibit this effect, the amount of Cu added must be at least 0.05%. However, if added in excess of more than 0.5%, weldability deteriorates. Therefore, Cu
The amount of addition must be in the range of 0.05 to 0.5%.

Niは鋼の焼入性を増すのに効果的であり、又高温にお
けるオーステナイト粒界へのCuの析出によって生じる
亀甲割れを防止する上でも効果的である。かかる効果を
有効に発揮させるには、Niは0.05%以上添加する
必要がある。しかしながらNiは高価な元素であるので
、実用的な観点からして、その上限は0.5%とした。
Ni is effective in increasing the hardenability of steel, and is also effective in preventing hexagonal cracking caused by precipitation of Cu at austenite grain boundaries at high temperatures. In order to effectively exhibit this effect, it is necessary to add 0.05% or more of Ni. However, since Ni is an expensive element, from a practical standpoint, the upper limit was set at 0.5%.

Crは高温における耐食性と強度を確保するのに効果的
である。かかる効果を有効に発揮させる為には、少なく
とも0.05%を添加することが必要であるが、過剰に
添加すると靭性が劣化するので、その上限は0.8%と
した。
Cr is effective in ensuring corrosion resistance and strength at high temperatures. In order to effectively exhibit this effect, it is necessary to add at least 0.05%, but since adding too much will deteriorate the toughness, the upper limit was set at 0.8%.

Tiは1200℃以上の高温域までNの固定に有効であ
るが、その添加量が0.005%よりも少ないときは上
記効果が不十分であり、一方0.08%を超えて過剰に
添加するときは靭性を著しく損なう。従ってTiの添加
量は0.005〜0.08%の範囲とする必要がある。
Ti is effective in fixing N up to a high temperature range of 1200°C or higher, but when the amount added is less than 0.005%, the above effect is insufficient; on the other hand, when added in excess of 0.08%, Ti is effective in fixing N. When doing so, the toughness is significantly impaired. Therefore, the amount of Ti added must be in the range of 0.005 to 0.08%.

Nb及びVは共に結晶粒を微細化して強度を向上させる
のに有効である。しかし添加量が0.005%未満では
それらの効果に乏しく、一方Nbについて0.08%、
■について0.1%を夫々超えるときは、靭性及び溶接
性を劣化させるのみならず、経済性の点からる好ましく
ない、従って、それらの添加量は、Nbについては0.
005〜0.08%、■については0.005〜0.1
%の範囲とした。
Both Nb and V are effective in refining crystal grains and improving strength. However, if the amount added is less than 0.005%, these effects are poor; on the other hand, for Nb, 0.08%
When Nb exceeds 0.1%, it not only deteriorates toughness and weldability, but is also unfavorable from an economic point of view. Therefore, the amount of Nb added is 0.1%.
005-0.08%, 0.005-0.1 for ■
% range.

Ca : 0.0005〜0.01% Caは前述の如く鋼板の靭性を改善し、又溶接継手のボ
ンド部の靭性を向上し、更には板厚方向の特性を改善す
る。上記効果を有効に発揮させるには、Caは少なくと
も0.0005%添加する必要があるが、Q、01%を
超えて過剰に添加すると非金属介在物の量が増大し、延
性を低下させる。従って本発明鋼においては、その添加
量をo、oos〜0.01%の範囲とする必要があるが
、Caの効果が最大限に発揮できる様な好ましい範囲は
0.0(15〜0.007%である。
Ca: 0.0005 to 0.01% Ca improves the toughness of the steel plate as described above, improves the toughness of the bond part of the welded joint, and further improves the properties in the thickness direction of the plate. In order to effectively exhibit the above effect, it is necessary to add at least 0.0005% of Ca, but if it is added in excess of Q,01%, the amount of nonmetallic inclusions increases and the ductility decreases. Therefore, in the steel of the present invention, the amount of Ca added must be in the range of o, oos to 0.01%, but the preferable range for maximizing the effect of Ca is 0.0 (15 to 0.0%). It is 007%.

上述したCu、Ni、Cr、Ti、Nb、V及びCa等
の元素は鋼板に要求される性能に応じて、組合わせて添
加されるのであるが、これらの元素を添加する場合にお
いても溶接性を考慮して前記PCMは0.23%以下に
抑える必要がある。
The above-mentioned elements such as Cu, Ni, Cr, Ti, Nb, V, and Ca are added in combination depending on the performance required of the steel sheet, but even when these elements are added, weldability Considering this, it is necessary to suppress the PCM to 0.23% or less.

本発明方法においては、上述した様な成分を有する0、
5%Mo圧延素材を用い、900〜l!50℃の加熱温
度で熱間圧延して鋼板とした後、該鋼板を910〜10
00℃の温度範囲で焼ならしするものであるが、圧延時
における温度範囲及び焼ならし条件を規制した理由は下
記の如くである。
In the method of the present invention, 0, which has the above-mentioned components,
Using 5% Mo rolled material, 900~l! After hot rolling a steel plate at a heating temperature of 50°C, the steel plate is heated to 910-10
Normalizing is carried out in a temperature range of 00°C, and the reason for regulating the temperature range and normalizing conditions during rolling is as follows.

本発明者らは、本発明で規定する成分組成範囲を満足す
る鋼種A(後述の第1表参照)を用い、スラブ加熱温度
と焼ならし温度の夫々が鋼板の機械的性質に及ぼす影響
について調査した。その結果を第1図及び第2図に示し
た。
The present inventors used steel type A (see Table 1 below) that satisfies the composition range specified in the present invention, and investigated the effects of slab heating temperature and normalizing temperature on the mechanical properties of the steel sheet. investigated. The results are shown in FIGS. 1 and 2.

第1図の結果からも明らかな様に、スラブ加熱温度が1
150℃を超えると、耐力ps、引張り強さTS、及び
伸びEllが低下し且つそれらのばらつきも大きくなっ
ており、同時に2a+m Vシャルビ試験における0℃
での吸収エネルギーvEoも低下している。
As is clear from the results in Figure 1, the slab heating temperature is 1.
When the temperature exceeds 150°C, the proof stress ps, tensile strength TS, and elongation Ell decrease and their dispersion increases, and at the same time, at 0°C in the 2a+m V Charbi test
The absorbed energy vEo at is also decreasing.

これらの原因について下記の様に考察することができる
。即ち、本発明においては、B添加による効果を有効に
活用する為に、Aiを添加してNをAj!Nとして固定
しているのであるが、スラブ加熱温度が1150℃を超
えるとAILNの一部が固溶し、固溶したNの一部がB
と結合してBNを生成し、B添加による焼入性向上効果
を損なうものと考えられる。尚圧延時の加熱温度とは一
般にスラブ加熱温度と考えてよいが、例えば鋼塊の様に
スラブ以外のものから直接鋼板に圧延する場合等は、そ
の際の加熱温度を意味する。
These causes can be considered as follows. That is, in the present invention, in order to effectively utilize the effect of B addition, Ai is added and N is Aj! It is fixed as N, but when the slab heating temperature exceeds 1150°C, part of AILN becomes solid solution, and part of the solid solution N becomes B.
It is considered that B combines with B to produce BN, which impairs the hardenability improvement effect of B addition. The heating temperature during rolling may generally be considered to be the slab heating temperature, but in the case of directly rolling a steel plate from something other than a slab, such as a steel ingot, it means the heating temperature at that time.

上述した様に本発明においては圧延時の加熱温度は11
50℃以下に制限する必要があるが、この加熱温度を9
00℃未満とあまり低くし過ぎると熱間変形抵抗が高く
なり圧延の能率が著しく損なわれる為、本発明において
は圧延時の加熱温度は900〜1150℃の範囲とする
必要がある。
As mentioned above, in the present invention, the heating temperature during rolling is 11
Although it is necessary to limit the heating temperature to 50℃ or less,
If the temperature is too low, below 00°C, the hot deformation resistance will increase and the efficiency of rolling will be significantly impaired, so in the present invention, the heating temperature during rolling needs to be in the range of 900 to 1150°C.

−1第2図の結果からも明らかである様に、B添加によ
る焼入性向上効果は焼ならし温度を910℃以上にする
ことによって始めて発揮し得るものである。この理由は
、焼ならし温度が910℃よりも低い場合には、オース
テナイト中に固溶するB量が減少して結晶粒界へ偏析す
るB量が不足する為、Bm加によるフェライト変態抑制
効果が十分に発揮されないからである。これに対し、焼
ならし温度が1000℃を超えると結晶粒が粗大化して
鋼板の靭性が劣化するので好ましくない。従って本発明
において、焼ならし温度は910〜1000℃と限定し
た。
-1 As is clear from the results shown in Figure 2, the effect of improving hardenability due to the addition of B can only be achieved by increasing the normalizing temperature to 910°C or higher. The reason for this is that when the normalizing temperature is lower than 910°C, the amount of B dissolved in austenite decreases and the amount of B that segregates to grain boundaries is insufficient, so the addition of Bm has an effect on suppressing ferrite transformation. This is because they are not fully demonstrated. On the other hand, if the normalizing temperature exceeds 1000°C, the crystal grains become coarse and the toughness of the steel sheet deteriorates, which is not preferable. Therefore, in the present invention, the normalizing temperature is limited to 910 to 1000°C.

[実施例] 下記第1表に示す11種類のtI4種A−にのスラブ(
圧延素材)を用い、第2表に示す製造条件(圧延時のス
ラブ加熱温度、焼ならし温度)で得られた各f1鋼板A
−1〜A−4,B−1,8−2、C−,1,C−2,D
−1,D−2,E−1゜E−2,F−1,F−2,G−
1,G−2,H−1、H−2,I−1,I−2,J−1
,J−2゜に−1について、その機械的性質及び溶接性
を調査した。その結果を板厚と共に第2表に併記した。
[Example] Slabs of 11 types of tI4 type A- shown in Table 1 below (
Each f1 steel plate A was obtained using a rolled material) under the manufacturing conditions (slab heating temperature during rolling, normalizing temperature) shown in Table 2.
-1 to A-4, B-1, 8-2, C-, 1, C-2, D
-1, D-2, E-1゜E-2, F-1, F-2, G-
1, G-2, H-1, H-2, I-1, I-2, J-1
, J-2°-1, its mechanical properties and weldability were investigated. The results are also listed in Table 2 along with the plate thickness.

ここで1lfiA〜Jは本発明で規定する化学成分範囲
を全て満足するものであり、鋼種には本発明で規定する
化学成分範囲な満足しない従来のものである。又鋼板A
−1,A−2,B−1,C−1、D−1,E−1,F−
1,0−1,H−1゜I−1,J−1は本発明で規定す
る製造条件によって得られた実施例であり、鋼板A−3
,A−4、B−2,C−2,D−2,E−2,F−2゜
G−2,H−2,1−2,J=2は本発明方法に従わな
い方法によフて得られた比較例(m板に−1は製造条件
をも満足していない)である。
Here, 1lfiA to J satisfy all of the chemical composition ranges specified by the present invention, and are conventional steel types that do not satisfy the chemical composition ranges specified by the present invention. Also steel plate A
-1, A-2, B-1, C-1, D-1, E-1, F-
1,0-1,H-1゜I-1,J-1 is an example obtained under the manufacturing conditions specified in the present invention, and steel plate A-3
, A-4, B-2, C-2, D-2, E-2, F-2°G-2, H-2, 1-2, J=2 was obtained by a method that does not follow the method of the present invention. This is a comparative example (the m-plate -1 does not even satisfy the manufacturing conditions).

尚第2表中には、参考の為にSR処理を施した場合につ
いても、その機械的性質を同時に示した。
For reference, Table 2 also shows the mechanical properties of the samples subjected to SR treatment.

第1表、第2表の結果から、下記の様に考察することが
できる。
From the results in Tables 1 and 2, the following considerations can be made.

′u4種A−Jは低C0低PcM化を図っている為、斜
めY形溶接割れ試験におけるルート割れ防止予熱温度は
25℃以下と非常に低い値を示している。これに対し、
鋼f!にはCを多量に含有している為、pcvが高く、
同予熱温度は150℃と高い値を示している。
'U4 types A-J aim to achieve low C0 and low PcM, so the preheating temperature for preventing root cracking in the diagonal Y-shaped weld cracking test is as low as 25°C or less. In contrast,
Steel f! contains a large amount of C, so its PCV is high,
The preheating temperature is as high as 150°C.

一方化学成分が本発明で規定する範囲内であっても、得
られる機械的性質は製造条件によって大きく左右されて
いる。即ち本発明の要件を全て満足する鋼板A−1,A
−2,B−1,C−1゜D−1,E−1,F−1,G−
1,H−1,I−1、J−1では、625℃XtO時間
のSR処理後においても50 kgf/mm’以上の引
張り強さTSが得られており、又その他の引張特性(耐
力ps、伸びE文)及び衝撃特性(2mmVシャルピー
衝撃試験における0℃での吸収エネルギーvEo、50
%延性破面遷穆温度v T rs)も良好である。これ
に対し、低い焼ならし温度を採用した鋼板A−3,C−
2,D−2,J−2及び高いスラブ加熱温度を採用した
鋼板A−4,B−2゜E−2,F−2,G−2,H−2
,I−2では、焼ならしのままでも48 kgf/+m
2を下まわる引張り強さTSL、か得られていない。
On the other hand, even if the chemical components are within the range specified by the present invention, the mechanical properties obtained are largely influenced by the manufacturing conditions. That is, steel plates A-1 and A that satisfy all the requirements of the present invention
-2,B-1,C-1゜D-1,E-1,F-1,G-
1, H-1, I-1, and J-1, a tensile strength TS of 50 kgf/mm' or more was obtained even after SR treatment at 625°C , elongation E) and impact properties (absorbed energy vEo at 0°C in 2 mm V Charpy impact test, 50
% ductile fracture surface transition temperature v Trs) is also good. On the other hand, steel sheets A-3 and C-
2, D-2, J-2 and steel plates A-4, B-2゜E-2, F-2, G-2, H-2 that adopted high slab heating temperature
, I-2, 48 kgf/+m even after normalizing
A tensile strength TSL of less than 2 was not obtained.

[発明の効果] 以上述べた如く本発明によれば、既述の構成を採用する
ことによって、0.5%MO鋼板におけるBの焼入性向
上効果を最大限に発揮しつる製造方法が実現できた。
[Effects of the Invention] As described above, according to the present invention, by adopting the above-described configuration, a method for manufacturing a vine that maximizes the hardenability improvement effect of B in a 0.5% MO steel sheet is realized. did it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスラブ加熱温度が鋼板の機械的性質に及ぼす影
響を示すグラフ、第2図は焼ならし温度が鋼板の機械的
性質に及ぼす影響を示すグラフである。
FIG. 1 is a graph showing the effect of slab heating temperature on the mechanical properties of a steel plate, and FIG. 2 is a graph showing the effect of normalizing temperature on the mechanical properties of a steel plate.

Claims (4)

【特許請求の範囲】[Claims] (1) C:0.01〜0.12%(重量%、以下同じ)Si:
0.05〜1% Mn:0.1〜2% Mo:0.2〜0.8% B:0.0002〜0.002% Sol.Al:0.005〜0.1% を必須成分とすると共に、Nを0.007%以下に制限
してなり、残部がFe及び不可避不純物であり、且つ P_C_M=C(%)+[1/30]Si(%)+[1
/20]Mn(%)+[1/20]Cu(%)+[1/
10]V(%)+5B(%) で算出される値が0.23%以下である圧延素材を用い
、 該圧延素材を900〜1150℃の加熱温度で熱間圧延
して鋼板とした後、該鋼板を910〜1000℃の温度
範囲で焼ならしすることを特徴とする溶接性の優れたボ
イラ・圧力容器用0.5%Mo鋼板の製造方法。
(1) C: 0.01 to 0.12% (weight%, same below) Si:
0.05-1% Mn: 0.1-2% Mo: 0.2-0.8% B: 0.0002-0.002% Sol. Al: 0.005-0.1% is an essential component, N is limited to 0.007% or less, the remainder is Fe and unavoidable impurities, and P_C_M=C(%)+[1/ 30] Si (%) + [1
/20]Mn (%) + [1/20]Cu (%) + [1/
10] Using a rolled material with a value calculated by V (%) + 5B (%) of 0.23% or less, hot rolling the rolled material at a heating temperature of 900 to 1150 ° C. to make a steel plate, A method for producing a 0.5% Mo steel plate for boilers and pressure vessels with excellent weldability, which comprises normalizing the steel plate at a temperature in the range of 910 to 1000°C.
(2) C:0.01〜0.12% Si:0.05〜1% Mn:0.1〜2% Mo:0.2〜0.8% B:0.0002〜0.002% Sol.Al:0.005〜0.1% を必須成分とすると共に、 Cu:0.05〜0.5% Ni:0.05〜0.5% Cr:0.05〜0.8% Ti:0.005〜0.08% Nb:0.005〜0.08% V:0.0053〜0.1% よりなる群から選択される1種又は2種以上を含み、N
を0.007%以下に制限してなり、残部がFe及び不
可避不純物であり、且つ P_C_M=C(%)+[1/30]Si(%)+[1
/20]Mn(%)+[1/20]Cu(%)+[1/
60]Ni(%)+[1/20]Cr(%)+[1/1
5]Mo(%)+[1/10]V(%)+5B(%) で算出される値が0.23%以下である圧延素材を用い
、 該圧延素材を900〜1150℃の加熱温度で熱間圧延
して鋼板とした後、該鋼板を900〜1000℃の温度
範囲で焼ならしすることを特徴とする溶接性の優れたボ
イラ・圧力容器用0.5%Mo鋼板の製造方法。
(2) C: 0.01-0.12% Si: 0.05-1% Mn: 0.1-2% Mo: 0.2-0.8% B: 0.0002-0.002% Sol .. Al: 0.005-0.1% is an essential component, Cu: 0.05-0.5% Ni: 0.05-0.5% Cr: 0.05-0.8% Ti: 0 .005~0.08% Nb: 0.005~0.08% V: 0.0053~0.1% Contains one or more types selected from the group consisting of N
is limited to 0.007% or less, the remainder is Fe and unavoidable impurities, and P_C_M=C(%)+[1/30]Si(%)+[1
/20]Mn (%) + [1/20]Cu (%) + [1/
60] Ni (%) + [1/20] Cr (%) + [1/1
5] Using a rolled material whose value calculated by Mo (%) + [1/10] V (%) + 5B (%) is 0.23% or less, the rolled material is heated at a heating temperature of 900 to 1150 ° C. A method for producing a 0.5% Mo steel plate for boilers and pressure vessels with excellent weldability, which comprises hot rolling the steel plate and then normalizing the steel plate at a temperature range of 900 to 1000°C.
(3) C:0.01〜0.12% Si:0.05〜1% Mn:0.1〜2% Mo:0.2〜0.8% B:0.0002〜0.002% Sol.Al:0.005〜0.1% 及び Ca:0.0005〜0.01% を必須成分とすると共に、Nを0.007%以下に制限
してなり、残部がFe及び不可避不純物であり、且つ P_C_M=C(%)+[1/30]Si(%)[1/
20]Mn(%)+[1/20]Cu(%)+[1/6
0]Ni(%)+[1/20]Cr(%)+[1/15
]Mo(%)+[1/10]V(%)+5B(%) で算出される値が0.23%以下である圧延素材を用い
、 該圧延素材を900〜1150℃の加熱温度で熱間圧延
して鋼板とした後、該鋼板を910〜1000℃の温度
範囲で焼ならしすることを特徴とする溶接性の優れたボ
イラ・圧力容器用0.5%Mo鋼板の製造方法。
(3) C: 0.01-0.12% Si: 0.05-1% Mn: 0.1-2% Mo: 0.2-0.8% B: 0.0002-0.002% Sol .. Al: 0.005 to 0.1% and Ca: 0.0005 to 0.01% are essential components, and N is limited to 0.007% or less, the remainder being Fe and inevitable impurities, And P_C_M=C(%)+[1/30]Si(%)[1/
20] Mn (%) + [1/20] Cu (%) + [1/6
0] Ni (%) + [1/20] Cr (%) + [1/15
] Mo (%) + [1/10] V (%) + 5B (%) Using a rolled material whose calculated value is 0.23% or less, heat the rolled material at a heating temperature of 900 to 1150 ° C. A method for producing a 0.5% Mo steel plate for boilers and pressure vessels with excellent weldability, which comprises rolling the steel plate into a steel plate and then normalizing the steel plate at a temperature range of 910 to 1000°C.
(4) C:0.01〜0.12% Si:0.05〜1% Mn:0.1〜2% Mo:0.2〜0.8% B:0.0002〜0.002% Sol.Al:0.005〜0.1% 及び Ca:0.0005〜0.01% を必須成分とすると共に、 Cu:0.05〜0.5% Ni:0.05〜0.5% Cr:0.05〜0.8% Ti:0.005〜0.08% Nb:0.005〜0.08% V:0.005〜0.1% よりなる群から選択される1種又は2種以上を含み、N
を0.007%以下に制限しなり、残部がFe及び不可
避不純物であり、且つ P_C_M=C(%)+[1/30]Si(%)+[1
/20]Mn(%)+[1/20]Cu(%)+[1/
60]Ni(%)+[1/20]Cr(%)+[1/1
5]Mo(%)+[1/10]V(%)+5B(%) で算出される値が0.23%以下ある圧延素材を用い、 該圧延素材を900〜1150℃の加熱温度で熱間圧延
して鋼板とした後、該鋼板を910〜1000℃の温度
範囲で焼ならしすることを特徴とする溶接性の優れたボ
イラ・圧力容器用0.5%Mo鋼板の製造方法。
(4) C: 0.01-0.12% Si: 0.05-1% Mn: 0.1-2% Mo: 0.2-0.8% B: 0.0002-0.002% Sol .. Al: 0.005-0.1% and Ca: 0.0005-0.01% are essential components, Cu: 0.05-0.5% Ni: 0.05-0.5% Cr: 0.05-0.8% Ti: 0.005-0.08% Nb: 0.005-0.08% V: 0.005-0.1% One or two selected from the group consisting of: Including the above, N
is limited to 0.007% or less, the remainder is Fe and unavoidable impurities, and P_C_M=C(%)+[1/30]Si(%)+[1
/20]Mn (%) + [1/20]Cu (%) + [1/
60] Ni (%) + [1/20] Cr (%) + [1/1
5] Using a rolled material with a value calculated by Mo (%) + [1/10] V (%) + 5B (%) of 0.23% or less, heat the rolled material at a heating temperature of 900 to 1150 ° C. A method for producing a 0.5% Mo steel plate for boilers and pressure vessels with excellent weldability, which comprises rolling the steel plate into a steel plate and then normalizing the steel plate at a temperature range of 910 to 1000°C.
JP20903087A 1987-01-20 1987-08-21 Manufacture of 0.5%-mo steel plate for boiler and pressure vessel excellent in weldability Pending JPS63303008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20903087A JPS63303008A (en) 1987-01-20 1987-08-21 Manufacture of 0.5%-mo steel plate for boiler and pressure vessel excellent in weldability

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP62-12099 1987-01-20
JP1209987 1987-01-20
JP20903087A JPS63303008A (en) 1987-01-20 1987-08-21 Manufacture of 0.5%-mo steel plate for boiler and pressure vessel excellent in weldability

Publications (1)

Publication Number Publication Date
JPS63303008A true JPS63303008A (en) 1988-12-09

Family

ID=26347663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20903087A Pending JPS63303008A (en) 1987-01-20 1987-08-21 Manufacture of 0.5%-mo steel plate for boiler and pressure vessel excellent in weldability

Country Status (1)

Country Link
JP (1) JPS63303008A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316441A (en) * 1988-06-14 1989-12-21 Nkk Corp Heat-resistant steel having excellent toughness
KR100928796B1 (en) * 2002-09-02 2009-11-25 주식회사 포스코 Steel Fabrication Method for 600MPa Pressure Vessel with High Tensile Strength

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959723A (en) * 1972-10-13 1974-06-10
JPS54114421A (en) * 1978-02-27 1979-09-06 Sumitomo Metal Ind Ltd Production of highly weldable steel plates
JPS6293349A (en) * 1985-10-17 1987-04-28 Sumitomo Metal Ind Ltd Steel plate for pressure vessel and its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4959723A (en) * 1972-10-13 1974-06-10
JPS54114421A (en) * 1978-02-27 1979-09-06 Sumitomo Metal Ind Ltd Production of highly weldable steel plates
JPS6293349A (en) * 1985-10-17 1987-04-28 Sumitomo Metal Ind Ltd Steel plate for pressure vessel and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316441A (en) * 1988-06-14 1989-12-21 Nkk Corp Heat-resistant steel having excellent toughness
KR100928796B1 (en) * 2002-09-02 2009-11-25 주식회사 포스코 Steel Fabrication Method for 600MPa Pressure Vessel with High Tensile Strength

Similar Documents

Publication Publication Date Title
US6926778B2 (en) Austenitic stainless steel excellent in high temperature strength and corrosion resistance, heat resistant pressurized parts, and the manufacturing method thereof
JP4946092B2 (en) High-strength steel and manufacturing method thereof
US20060016526A1 (en) High-strength steel for welded structures excellent in high temperature strength and method of production of the same
WO2009123292A1 (en) High-tensile strength steel and manufacturing method thereof
JP4718866B2 (en) High-strength refractory steel excellent in weldability and gas-cutting property and method for producing the same
US20060237102A1 (en) Ferritic steel sheet concurrently improved in formability, high-temperature strength, high temperature oxidation resistance, and low temperature toughness
JP4310591B2 (en) Method for producing high-strength steel sheet with excellent weldability
JP4344919B2 (en) High strength steel plate excellent in weldability without preheating, its manufacturing method and welded steel structure
JPH02284777A (en) Manufacture of stainless steel cladded plate having excellent corrosion resistance and toughness
US5350559A (en) Ferrite steel which excels in high-temperature strength and toughness
JPH06316723A (en) Production of weather resistant refractory steel material for building construction, excellent in gas cutting property and weldability
JPS63303008A (en) Manufacture of 0.5%-mo steel plate for boiler and pressure vessel excellent in weldability
JP4433844B2 (en) Method for producing high strength steel with excellent fire resistance and toughness of heat affected zone
JP2003166039A (en) Heat resistant austenitic steel excellent in characteristics for sensitization, high-temperature strength and corrosion resistance, and manufacturing method therefor
EP0524335B1 (en) Low-temperature service nickel steel plate with excellent weld toughness
JPH05245657A (en) Production of high ni alloy clad steel sheet excellent in brittleness propagation stoppage property of base metal
JPS61186453A (en) High strength and high toughness quenched and tempered low-carbon steel plate for boiler or pressure vessel having superior resistance to weld crack, erosion and creep
JPH0368100B2 (en)
JPS60181229A (en) Production of low-yield ratio high-tension thick steel plate
US5266417A (en) Low-temperature service nickel plate with excellent weld toughness
JPS5942745B2 (en) Non-thermal heat working Cr-Mo steel with excellent strength and toughness
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same
JPS63303034A (en) 0.5% mo steel plate for boiler pressure vessel having excellent weldability
JPH0737649B2 (en) Manufacturing method of fireproof steel plate for building with low yield ratio
JPS61250152A (en) Normalized low-carbon steel plate for boiler or pressure vessel having high strength and toughness