JPS63302759A - Snubber circuit for switching power source - Google Patents

Snubber circuit for switching power source

Info

Publication number
JPS63302759A
JPS63302759A JP13439787A JP13439787A JPS63302759A JP S63302759 A JPS63302759 A JP S63302759A JP 13439787 A JP13439787 A JP 13439787A JP 13439787 A JP13439787 A JP 13439787A JP S63302759 A JPS63302759 A JP S63302759A
Authority
JP
Japan
Prior art keywords
power supply
auxiliary
circuit
transformer
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13439787A
Other languages
Japanese (ja)
Other versions
JPH07123349B2 (en
Inventor
Kazufumi Watanabe
一史 渡辺
Harunobu Hiki
比企 春信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Densetsu Co Ltd
TDK Lambda Corp
Original Assignee
Densetsu Co Ltd
TDK Lambda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Densetsu Co Ltd, TDK Lambda Corp filed Critical Densetsu Co Ltd
Priority to JP62134397A priority Critical patent/JPH07123349B2/en
Publication of JPS63302759A publication Critical patent/JPS63302759A/en
Publication of JPH07123349B2 publication Critical patent/JPH07123349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To suppress peak voltage, by charging a capacitor located in parallel with a main switching element, with the return of energy, and by discharging it through the primary winding of an auxiliary transformer and an auxiliary switching element. CONSTITUTION:So far as a switching power source is concerned, the series circuit of the primary winding 2 of a main transformer 1 and a MOSFET 3 is connected to a DC power source 4, and to the secondary winding 5 of the main transformer 1, output terminals 17-18 are connected via rectified wave filter circuits 6-8. To the terminals 17-18, a direction amplifier circuit 9 is connected, and via a photo-coupler 10 and a time rate controlling IC 11, the switching of said PET 3 is controlled. In this case, to both the ends of said FET 3, the series circuit of a diode 12 and a capacitor 14 is connected, and the series circuit of the primary winding 20 of an auxiliary transformer 19 and a MOSFET 21 is set in parallel with a capacitor 14. From its secondary winding 22, via rectified wave filter circuits 23-25, current is fed to the auxiliary power-supply section 26 of the time rate controlling IC 11. As a result, the regenerative use of power is performed.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は中または大電力のより高周波化したスイッチン
グ電源において、能率の向上を達成するためのスナバ−
回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention is directed to a snubber for achieving improved efficiency in medium or high power, higher frequency switching power supplies.
It is related to circuits.

「従来の技術」 一般に、この種のスイッチング電源は、第6図に示すよ
うに、主トランス(1)の1次巻線(2)と主開閉素子
であるMOSFET(3)とを直流電源(4)間に直列
に結合し、前記主トランス(1)の2次巻線(5)に、
整流ダイオード(6)、転流ダイオード(7)、チョー
クコイル(8a) 、コンデンサ(8b)からなる整流
ろ波回路を結合し、この出力を検出増幅回路(9)とア
イソレータ(lO)を介して時比率制御用IC(11)
に結合し、このIC(11)にてMOSFET(3)を
制御するように構成されている。
``Prior Art'' In general, this type of switching power supply, as shown in FIG. 4) coupled in series between the secondary windings (5) of the main transformer (1);
A rectifier filter circuit consisting of a rectifier diode (6), a commutation diode (7), a choke coil (8a), and a capacitor (8b) is combined, and the output is passed through a detection amplifier circuit (9) and an isolator (lO). Duty ratio control IC (11)
This IC (11) is configured to control the MOSFET (3).

このようなスイッチング電源において、高能率化達成の
ための従来のスナバ−回路は、第6図に示すように、M
OS F E T(3)のドレン・ソース間に、ダイオ
ード(12)と抵抗(13)の並列回路に、コンデンサ
(14)を直列に挿入した回路を結合し、同時に前記主
トランス(1)の3次巻線(15)とダイオード(16
)の直列回路からなるクランプ回路を併用していた。
In such a switching power supply, the conventional snubber circuit for achieving high efficiency is as shown in FIG.
A circuit in which a capacitor (14) is inserted in series with a parallel circuit of a diode (12) and a resistor (13) is connected between the drain and source of the OS FET (3), and at the same time the main transformer (1) is Tertiary winding (15) and diode (16)
) was used together with a clamp circuit consisting of a series circuit.

「発明が解決しようとする問題点」 以上のような従来の回路における各部の波形図が第7図
に示される。この第7図のT1時に、MOSFET(3
)がターンオフしたものとすると、このMOSFET(
3)を流れる電流Iqは直ちに零点に向うが、主トラン
ス(1)の1次巻線(2)には+ I” qp (Lx
 +l、、 )のエネルギーが残存し、14時まで継続
する。
"Problems to be Solved by the Invention" A waveform diagram of each part in the conventional circuit as described above is shown in FIG. At T1 in Fig. 7, MOSFET (3
) is turned off, this MOSFET (
3) immediately goes to zero, but the primary winding (2) of the main transformer (1) has +I”qp (Lx
+l,, ) energy remains and continues until 14:00.

なお、IQPはターンオフ時のピーク電流、Llは1次
巻線(2)のり一ケージインダクタンス、L3は1次巻
線(2)に換算した2次巻線(5)のり一ケージインダ
クタンスである。
Note that IQP is the peak current at turn-off, Ll is the one-cage inductance of the primary winding (2), and L3 is the one-cage inductance of the secondary winding (5) converted to the primary winding (2).

前記エネルギーはダイオード(12)を介してコンデン
サ(14)に充電される。つまりT3−T、間はIt−
Iq=Icが成立する。このときVqp==Vcpとす
れば下記(1)式が成立する。
The energy is charged to a capacitor (14) via a diode (12). In other words, T3-T, the interval is It-
Iq=Ic holds true. At this time, if Vqp==Vcp, the following equation (1) holds true.

+ I”QP(Li”La)=+ CV”qp    
−(1)つぎに、T、−T4間にコンデンサ(14)に
蓄えられたエネルギーはT4−T、間に抵抗(13)と
主トランス(1)の1次巻線(2)を通じてそのエネル
ギーは一部が電源(4)に返送され、さらにT1時点の
MOSFET(3)のターンオン時に、抵抗(13)と
MOSFET(3)を介して抵抗(13)の損失として
消耗され、電圧■cは零となってターンオフ時点のT。
+ I”QP(Li”La)=+CV”qp
-(1) Next, the energy stored in the capacitor (14) between T and -T4 is transmitted through the resistor (13) between T4 and T4 and the primary winding (2) of the main transformer (1). A part of is returned to the power supply (4), and furthermore, when the MOSFET (3) is turned on at time T1, it is consumed as a loss in the resistor (13) via the resistor (13) and MOSFET (3), and the voltage ■c becomes T at the time of turn-off when it becomes zero.

まで待期する。すなわち、T、−T4のターンオフ時に
コンデンサ(14)に充電されたエネルギーの大半はT
、−T、間とT、−T、間に抵抗(13)の損失となっ
て放電される。
I'll wait until then. In other words, most of the energy charged in the capacitor (14) when T and -T4 are turned off is T.
, -T, and T, -T, causing a loss in the resistor (13) and discharging.

ツマリ、MOSFET(3)の印加ピーク電圧VCIP
を抑制するためにはコンデンサ(14)の容量も(1)
式のように相当量が必要であるが、この放電時の損失と
なるので、能率と実装上の考慮より充分な大きさのもの
は実用上用意できない、これを補うため、第6図の従来
回路においては3次巻線(15)とダイオード(16)
を設けて、 +I”、qp(Lt+Lお) というエネルギーの大半を電ホ(4)側に返送すると同
時にピーク電圧VQPの抑制を図ったものである。
Applied peak voltage VCIP of MOSFET (3)
In order to suppress the capacitor (14), the capacity (1)
As shown in the formula, a considerable amount is required, but due to the loss during this discharge, it is practically impossible to prepare a sufficiently large one due to efficiency and mounting considerations.To compensate for this, the conventional method shown in Fig. 6 In the circuit, the tertiary winding (15) and the diode (16)
+I'', qp(Lt+Lo) Most of the energy is returned to the power supply (4) side, and at the same time, the peak voltage VQP is suppressed.

これらの方式ではMOSFET(3)の時比率が50%
以下に制限され1回路全体のバホーマンスが損われるの
みならず、中および大電力においてはピーク電圧VqP
の抑制も不充分であるという問題点があった。
In these methods, the duty ratio of MOSFET (3) is 50%.
Not only is the vacuum of the entire circuit impaired, but also the peak voltage VqP is limited to
There was also the problem that the suppression of

r問題点を解決する起めの手段」 本発明は上述のような従来の欠点を除去するためになさ
れたもので、主トランスの1次巻線と主開閉素子との直
列回路を直流電源に結合し、前記主トランスの2次巻線
を整流ろ波回路を介して出力端子に結合し、この出力端
子に結合した検出増幅回路を、アイソレータと時比率制
御ICを介して前記主開閉素子の開閉を制御するように
したスイッチング電源において、前記主開閉素子の両端
に、ダイオードとコンデンサの直列回路を結合し、この
ダイオードとコンデンサの結合点と前記直流電源の一端
との間に、補助トランスの1次巻線と補助開閉素子との
直列回路を結合し、前記補助トランスの2次巻線を、整
流ろ波回路を介して電力回生利用個所に結合してなるも
のである。
The present invention was made in order to eliminate the above-mentioned drawbacks of the conventional technology. The secondary winding of the main transformer is coupled to an output terminal via a rectifying filter circuit, and the detection amplifier circuit coupled to this output terminal is connected to the main switching element via an isolator and a duty ratio control IC. In a switching power supply that controls opening and closing, a series circuit of a diode and a capacitor is coupled to both ends of the main switching element, and an auxiliary transformer is connected between the connection point of the diode and the capacitor and one end of the DC power supply. A series circuit of a primary winding and an auxiliary switching element is coupled, and a secondary winding of the auxiliary transformer is coupled to a power regeneration utilization point via a rectifying filter circuit.

「作用」 主開閉素子がターンオフすると主トランスのり一ケージ
インダクタンスに蓄えられたエネルギーと励磁エネルギ
ーの戻りが、主開閉素子と並列なコンデンサに充電され
る。この充電電荷は、従来は主開閉素子のターンオンに
より抵抗を介して主開閉素子を通して放電される。とこ
ろが、本発明では、補助トランスの1次巻線と補助開閉
素子を通して放電されるので、補助トランスの2次巻線
から全エネルギーが取出され、電力回生利用個所に供給
される。
"Operation" When the main switching element is turned off, the energy stored in the main transformer cage inductance and the return of the excitation energy are charged to the capacitor in parallel with the main switching element. Conventionally, this charged charge is discharged through the main switching element via a resistor when the main switching element is turned on. However, in the present invention, since the discharge is carried out through the primary winding of the auxiliary transformer and the auxiliary switching element, all the energy is taken out from the secondary winding of the auxiliary transformer and supplied to the point where the power is regenerated.

r実施例」 以下、本発明の゛一実施例を図面に基づき説明する。r Example” Hereinafter, one embodiment of the present invention will be described based on the drawings.

(1)は主トランスで、この主トランス(1)の1次巻
線(2)と主開閉素子であるMOSFET(3)との直
列回路を直流電源(4)に結合する。前記主トランス(
1)の2次巻線(5)には、整流ダイオード(6)。
(1) is a main transformer, and a series circuit of the primary winding (2) of this main transformer (1) and a MOSFET (3) which is a main switching element is coupled to a DC power supply (4). The main transformer (
The secondary winding (5) of 1) is a rectifier diode (6).

転流ダイオード(7)、チョークコイル(8a)、コン
デンサ(8b)からなる整流が波回路を介して出力端子
(17)(18)が結合されている。また、この出力端
子(17) (1g)に検出増幅回路(9)を結合し、
さらにアイソレータとしてのフォトカプラ(10)、時
比率制御IC(11)を介して前記MO8FET(3)
の開閉を制御するようにしてスイッチング電源を構成す
る。このスイッチング電源において、前記MO8FET
(3)の両端に、ダイオード(12)とコンデンサ(1
4)の直列回路を結合し、このダイオード(12)とコ
ンデンサ(14)の結合点と前記直流電源(4)の一端
との間に、補助トランス(19)の1次巻線(20)と
補助開閉素子としてのMOS F E T(21)との
直列回路を結合し、前記補助トランス(19)の2次巻
線(22)を、ダイオード(23) (24)、チョー
クコイル(25)からなる整流ろ波回路を介して電力回
生利用個所1例えば、前記時比率制御IC(11)の補
助電源部(26)に結合する。この補助電源部(26)
は具体的には、主トランス(1)の3次巻線(27)で
取出された電力を、ダイオード(28)とコンデンサ(
29)で平滑化する回路で構成されている。
A rectifier consisting of a commutation diode (7), a choke coil (8a), and a capacitor (8b) is coupled to output terminals (17) and (18) via a wave circuit. In addition, a detection amplifier circuit (9) is connected to this output terminal (17) (1g),
Furthermore, the MO8FET (3) is connected to the photocoupler (10) as an isolator and the duty ratio control IC (11).
A switching power supply is configured to control opening and closing of the switch. In this switching power supply, the MO8FET
A diode (12) and a capacitor (1
4), and the primary winding (20) of the auxiliary transformer (19) is connected between the connection point of the diode (12) and the capacitor (14) and one end of the DC power supply (4). A series circuit with the MOS FET (21) as an auxiliary switching element is coupled, and the secondary winding (22) of the auxiliary transformer (19) is connected to the diodes (23) (24) and the choke coil (25). It is coupled to the power regeneration utilization point 1, for example, the auxiliary power supply section (26) of the duty ratio control IC (11), through a rectifying and filtering circuit. This auxiliary power supply section (26)
Specifically, the power extracted by the tertiary winding (27) of the main transformer (1) is transferred to the diode (28) and the capacitor (
29) consists of a smoothing circuit.

以上のような回路構成における作用を第5図(a)(b
)の波形図によって説明する。T3−T4時のMOSF
ET(3)のターンオフ時の動作は第7図の従来例と同
様である。しかし、スナバ−コンデンサ(14)が本発
明の場合、充分大きいものを用いることにより(1)式
によりピーク電圧vqpは充分に抑制されT3−T4期
間も長くなる。ちなみに、この電圧vqの立上りの緩和
は人、出力端子の雑音電圧抑制にも非常に重大である@
 T4−T4’の期間は主トランス(1)の励磁エネル
ギーの戻りがコンデンサ(14)に充電され、T4′に
至りて電圧VQは最高値となる。T4’−T、間におイ
テは補助(7)MOSFET(21)は主MO8FET
(3)と同様遮断されているので、その間もコンデンサ
(14)の電圧Vcは最大電圧Vqmxにキープされる
。T2に至りて主MO8FE T (3)がターンオン
すると、ダイオード(12)に阻止されるので従来回路
によるようなT1−T、間の電流Ic、は主MOS F
、E T(3)を通過せず、電流IQIには急峻な電流
は存在しない、ちなみに、従来例のT、−T、間では急
峻な電流は抵抗(13)の損失のみならず主MO5FE
T(3)−Oターンオン損失および入出力端子雑音を増
大しこれも重大な障害の1つであった。
The effects of the above circuit configuration are shown in Figures 5 (a) and (b).
) waveform diagram. MOSF at T3-T4
The operation of the ET (3) at turn-off is similar to the conventional example shown in FIG. However, in the case of the present invention, the snubber capacitor (14) is sufficiently large, so that the peak voltage vqp is sufficiently suppressed according to equation (1), and the T3-T4 period is also lengthened. By the way, easing the rise of this voltage vq is also very important for suppressing noise voltage at the output terminal.
During the period T4-T4', the return excitation energy of the main transformer (1) charges the capacitor (14), and the voltage VQ reaches its maximum value at T4'. T4'-T, the one in between is the auxiliary (7) MOSFET (21) is the main MO8FET
Since it is cut off like in (3), the voltage Vc of the capacitor (14) is kept at the maximum voltage Vqmx during that time as well. When the main MO8FE T (3) turns on at T2, it is blocked by the diode (12), so the current Ic between T1 and T, as in the conventional circuit, is reduced to the main MO8FE T (3).
, E T(3), and there is no steep current in the current IQI.Incidentally, the steep current between T and -T in the conventional example is caused not only by the loss of the resistor (13) but also by the main MO5FE.
This increased T(3)-O turn-on loss and input/output terminal noise, which was also one of the serious problems.

ところが、本発明ではTL時点において、補助MOS 
F E T(21)がターンオンするとコンデンサ(1
4)に蓄えられた電荷のエネルギーは補助トランス(1
9)を通じてT、−T、間に放電される。しかして第1
図の点線で示すように、このときの補助トランス(19
)と直列に挿入されたチョークコイル(30)は適当な
インピーダンスであって、コンデンサ(14)の放電電
流の立上りを抑制するとともにコンデンサ(14)と適
当な共振により電圧Vcを12時点において零にまで持
ちこすものである。前記チョークコイル(30)は無損
失のインピーダンスであるのでコンデンサ(14)に充
電されたエネルギーは理論上、すべて補助トランス(1
9)の2次巻線(22)より取出すことが可能であり、
時比率制御IC(11)への電力の回生利用が可能であ
る。
However, in the present invention, at the time of TL, the auxiliary MOS
When FET (21) turns on, the capacitor (1
4) The energy of the charge stored in the auxiliary transformer (1
9) is discharged between T and -T. However, the first
As shown by the dotted line in the figure, the auxiliary transformer (19
) is inserted in series with the choke coil (30), which has an appropriate impedance and suppresses the rise of the discharge current of the capacitor (14), and also reduces the voltage Vc to zero at time 12 by appropriate resonance with the capacitor (14). It is something that can be brought up to. Since the choke coil (30) has a lossless impedance, theoretically all the energy charged in the capacitor (14) is transferred to the auxiliary transformer (1).
9) can be taken out from the secondary winding (22),
It is possible to regenerate power to the duty ratio control IC (11).

前記第1図の実施例では補助トランス(19)で取出さ
れたエネルギーは時比率制御IC(11)の電源の一部
として帰還するようにした。
In the embodiment shown in FIG. 1, the energy taken out by the auxiliary transformer (19) is fed back as part of the power supply for the time ratio control IC (11).

しかし1本発明ではこれに限られるものではなく、第2
図に示すように、直流電源(4)に並列に電力帰還させ
ても、第3図に示すように、直流電源(4)に直列に電
力帰還させても、さらに第4図に示すように負荷側に電
力帰還させてもよい。
However, the present invention is not limited to this, and the second invention is not limited to this.
Even if the power is returned in parallel to the DC power source (4) as shown in the figure, even if the power is returned in series to the DC power source (4) as shown in Figure 3, the power will be returned as shown in Figure 4. Power may be fed back to the load side.

なお、本発明は、フライバック方式、プッシュプル方式
、ブリッジ方式などすべてのコンバータに応用できる。
Note that the present invention can be applied to all converters such as flyback type, push-pull type, and bridge type.

「発明の効果」 本発明は上述のように構成したので、主開閉素子のター
ンオフ時に充電されたエネルギーはすべて電力帰還され
て有効に利用され、損失がない。
[Effects of the Invention] Since the present invention is configured as described above, all of the energy charged when the main switching element is turned off is fed back and used effectively, and there is no loss.

また、ノイズの抑制、能率の向上等にも優れた効果を有
する。
It also has excellent effects in suppressing noise and improving efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるスイッチング電源のスナバ−回路
の一実施例を示す電気回路図、第2図、第3図および第
4図はそれぞれボ発明の異なる例の回路図、第5図は本
発明による回路の各部の波形図、第6図は従来の回路の
電気回路図、第7図は従来回路の各部の波形図である。 (1)・・・主トランス、(2)・・・1次巻線、(3
)・・・主開閉素子(MOS F E T)、 (4)
・・・直流電源、(5)・・・2次巻線、(9)・・・
検出増幅回路、(10)・・・アイソレータ(フォトカ
プラ)、(11)・・・時比率制御IC1(12)・・
・ダイオード、(14)・・・コンデンサ、 (19)
・・・補助トランス、 ’(20)・・・1次巻線、 
(21)・・・補助開閉素子(MOSFET)、(22
)・・・2次巻線、(26)・・・補助電源部、(3)
・・・チョークコイル。 出願人 ネミック・ラムダ株式会社 同 株式会社 電 設
FIG. 1 is an electric circuit diagram showing one embodiment of the snubber circuit of a switching power supply according to the present invention, FIGS. 2, 3, and 4 are circuit diagrams of different examples of the invention, and FIG. FIG. 6 is a waveform diagram of various parts of the circuit according to the invention, FIG. 6 is an electric circuit diagram of a conventional circuit, and FIG. 7 is a waveform diagram of various parts of the conventional circuit. (1) Main transformer, (2) Primary winding, (3
)...Main switching element (MOS FET), (4)
...DC power supply, (5)...Secondary winding, (9)...
Detection amplifier circuit, (10)...Isolator (photocoupler), (11)... Duty ratio control IC1 (12)...
・Diode, (14)...Capacitor, (19)
...Auxiliary transformer, '(20)...Primary winding,
(21)... Auxiliary switching element (MOSFET), (22
)...Secondary winding, (26)...Auxiliary power supply section, (3)
···choke coil. Applicant Nemic Lambda Co., Ltd. Densetsu Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1)主トランスの1次巻線と主開閉素子との直列回路
を直流電源に結合し、前記主トランスの2次巻線を整流
ろ波回路を介して出力端子に結合し、この出力端子に結
合した検出増幅回路を、アイソレータと時比率制御IC
を介して前記主開閉素子の開閉を制御するようにしたス
イッチング電源において、前記主開閉素子の両端に、ダ
イオードとコンデンサの直列回路を結合し、このダイオ
ードとコンデンサの結合点と前記直流電源の一端との間
に、補助トランスの1次巻線と補助開閉素子との直列回
路を結合し、前記補助トランスの2次巻線を、整流ろ波
回路を介して電力回生利用個所に結合してなることを特
徴とするスイッチング電源のスナバー回路。
(1) A series circuit of the primary winding of the main transformer and the main switching element is coupled to a DC power supply, the secondary winding of the main transformer is coupled to an output terminal via a rectifying filter circuit, and this output terminal The detection amplifier circuit coupled to the isolator and duty ratio control IC
In the switching power supply, a series circuit of a diode and a capacitor is connected to both ends of the main switching element, and a connection point between the diode and the capacitor and one end of the DC power supply are connected to the connecting point of the diode and the capacitor. A series circuit of the primary winding of an auxiliary transformer and an auxiliary switching element is coupled between the transformer and the auxiliary switching element, and the secondary winding of the auxiliary transformer is coupled to a power regeneration utilization point via a rectifying filter circuit. A snubber circuit for a switching power supply characterized by:
(2)補助トランスの1次巻線と直列に適当なインピー
ダンス素子を挿入してなる特許請求の範囲第1項記載の
スイッチング電源のスナバー回路。
(2) A snubber circuit for a switching power supply according to claim 1, which comprises a suitable impedance element inserted in series with the primary winding of an auxiliary transformer.
(3)補助トランスの2次巻線は直流電源に並列に結合
して電力帰還してなる特許請求の範囲第1項記載のスイ
ッチング電源のスナバー回路。
(3) A snubber circuit for a switching power supply according to claim 1, in which the secondary winding of the auxiliary transformer is connected in parallel to the DC power supply for power feedback.
(4)補助トランスの2次巻線は直流電源に直列に結合
して電力帰還してなる特許請求の範囲第1項記載のスイ
ッチング電源のスナバー回路。
(4) A snubber circuit for a switching power supply according to claim 1, wherein the secondary winding of the auxiliary transformer is connected in series to a DC power supply and returns power.
(5)補助トランスの2次巻線は負荷側に結合して電力
帰還してなる特許請求の範囲第1項記載のスイッチング
電源のスナバー回路。
(5) A snubber circuit for a switching power supply according to claim 1, wherein the secondary winding of the auxiliary transformer is coupled to the load side for power feedback.
JP62134397A 1987-05-29 1987-05-29 Snubber circuit of switching power supply Expired - Lifetime JPH07123349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62134397A JPH07123349B2 (en) 1987-05-29 1987-05-29 Snubber circuit of switching power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62134397A JPH07123349B2 (en) 1987-05-29 1987-05-29 Snubber circuit of switching power supply

Publications (2)

Publication Number Publication Date
JPS63302759A true JPS63302759A (en) 1988-12-09
JPH07123349B2 JPH07123349B2 (en) 1995-12-25

Family

ID=15127442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62134397A Expired - Lifetime JPH07123349B2 (en) 1987-05-29 1987-05-29 Snubber circuit of switching power supply

Country Status (1)

Country Link
JP (1) JPH07123349B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484421A (en) * 2009-09-08 2012-05-30 皇家飞利浦电子股份有限公司 Switching Device For An X-Ray Generator
EP2884646A3 (en) * 2013-12-13 2015-08-05 LG Innotek Co., Ltd. Multiple-output DC/DC converter and power supply having the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583787U (en) * 1981-06-29 1983-01-11 富士電気化学株式会社 DC-DC converter circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583787U (en) * 1981-06-29 1983-01-11 富士電気化学株式会社 DC-DC converter circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102484421A (en) * 2009-09-08 2012-05-30 皇家飞利浦电子股份有限公司 Switching Device For An X-Ray Generator
EP2884646A3 (en) * 2013-12-13 2015-08-05 LG Innotek Co., Ltd. Multiple-output DC/DC converter and power supply having the same
US9490708B2 (en) 2013-12-13 2016-11-08 Lg Innotek Co., Ltd. Multiple-output DC/DC converter and power supply having the same

Also Published As

Publication number Publication date
JPH07123349B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
US6452814B1 (en) Zero voltage switching cells for power converters
EP0851566B1 (en) Half-bridge zero-voltage-switched PWM flyback DC/DC converter
US5418704A (en) Zero-voltage-transition pulse-width-modulated converters
US5231563A (en) Square wave converter having an improved zero voltage switching operation
US5132888A (en) Interleaved bridge converter
US5625541A (en) Low loss synchronous rectifier for application to clamped-mode power converters
US5872705A (en) Low loss synchronous rectifier for application to clamped-mode power converters
JP3201324B2 (en) Switching power supply
US6392902B1 (en) Soft-switched full-bridge converter
US5982638A (en) Single stage power converter with regenerative snubber and power factor correction
US7859870B1 (en) Voltage clamps for energy snubbing
JP3199423B2 (en) Resonant type forward converter
US5506766A (en) 3-phase input type of switching power circuit
JPH05276751A (en) Pulse width modulation type dc-dc dc converter reducing distortion of ripple current component moreover having zero-voltage switching function
Fujiwara et al. A novel lossless passive snubber for soft-switching boost-type converters
US7362598B2 (en) Synchronous rectifier gate drive shutdown circuit
JP3402361B2 (en) Switching power supply
KR100207020B1 (en) A snubber circuit for being no loss and to improve circuit for input-factor of a dc/dc converter
US20060176034A1 (en) Multi-resonant dc-dc converter
JPS63302759A (en) Snubber circuit for switching power source
JP3585025B2 (en) AC / DC converter
JPH08228486A (en) Control method of dc-ac inverter
JP3354454B2 (en) Switching power supply
KR200266522Y1 (en) Energy regenerative snubber circuit for 2-switch forward converter
JPH05260739A (en) Forward converter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071225

Year of fee payment: 12