JPS63302758A - Superconductive rotor - Google Patents

Superconductive rotor

Info

Publication number
JPS63302758A
JPS63302758A JP62070166A JP7016687A JPS63302758A JP S63302758 A JPS63302758 A JP S63302758A JP 62070166 A JP62070166 A JP 62070166A JP 7016687 A JP7016687 A JP 7016687A JP S63302758 A JPS63302758 A JP S63302758A
Authority
JP
Japan
Prior art keywords
gas helium
current lead
helium
superconducting rotor
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62070166A
Other languages
Japanese (ja)
Other versions
JP2529963B2 (en
Inventor
Kazuo Sato
和雄 佐藤
Masanori Shin
政憲 新
Mikio Kumagai
熊谷 幹夫
Hisayasu Mitsui
久安 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62070166A priority Critical patent/JP2529963B2/en
Publication of JPS63302758A publication Critical patent/JPS63302758A/en
Application granted granted Critical
Publication of JP2529963B2 publication Critical patent/JP2529963B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To prevent dielectric breakdown from being generated, by preventing a connecting conductor or the like from coming in direct contact with, with gas helium after a current lead is cooled. CONSTITUTION:To the gas helium discharge slot 2a of a current lead 2, the linear communicating vessel 10 of high electrical and on the downstream side of gas helium, the vessel 11 of the same material is connected; thus a structure communicating with an exhaust passage 5 is composed. Accordingly, after the current lead 2 is cooled by the gas helium of a low temperature gasified in a rotor, the gas helium passes via the communicating vessel 10 and the insulating vessel 11 and flows in the direction of an arrow head. A space 12 formed by the insulations is separated from a space 6 formed at the end section of a shaft 13, and the space 6 is filled up with air under atmospheric pressure. At a result, against high application voltage, discharge (dielectric breakdown) from the current lead 2 or a connecting conductor 4 to the shaft 13 (earth) is not generated.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は回転電機の超電導回転子に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a superconducting rotor for a rotating electric machine.

(従来の技術) 最近、超電導線を回転界磁巻線として利用したいわゆる
超電導回転子を備えた発電機が開発されている。超電導
線を用いた界磁巻線は、その超電導性を維持するため4
に程度の極低温に冷却しなければならず、そのために冷
却媒体として液体ヘリウムを用いている。そして界磁巻
線に通電する電流リードも、界磁巻線への侵入熱を少な
くするために冷却しなければならない。
(Prior Art) Recently, a generator equipped with a so-called superconducting rotor that uses superconducting wire as a rotating field winding has been developed. Field windings using superconducting wires require 4 degrees to maintain their superconductivity.
It must be cooled to an extremely low temperature, which is about 300 degrees Fahrenheit, and for this purpose liquid helium is used as the cooling medium. The current lead that supplies current to the field winding must also be cooled to reduce heat entering the field winding.

そこで従来は、界磁巻線を含む低温回転子を冷却した後
、伝導伝熱や放射伝熱などの侵入熱により液体ヘリウム
は気化し、ガスヘリウムとなる。
Conventionally, after a low-temperature rotor including field windings is cooled, liquid helium is vaporized by heat intrusion such as conduction heat transfer or radiation heat transfer, and becomes gas helium.

そのガスヘリウムは単に回収されるのではなく、トルク
チューブや電流リードなど熱伝導による低温回転子への
侵入熱を抑制するために、これらの部材を冷却する媒体
として有効に利用されつつ(An Approach 
to 0ptisIal Thermal Dasig
n ofSuporconducting Gone−
rator Rotor ; K、5ato、at。
The helium gas is not simply recovered, but is effectively used as a medium to cool torque tubes, current leads, and other components, in order to suppress heat from entering the low-temperature rotor through heat conduction.
to 0ptisIal Thermal Dasig
ofSupporting Gone-
rator Rotor; K, 5ato, at.

al、IEHE/PES、1985.(85SM 33
4−8)参照)回収される。
al, IEHE/PES, 1985. (85SM 33
4-8)) will be recovered.

この従来の超電導発電機は、発電機の内部リアクタンス
が小さいために励磁制御を行わなくとも十分に安定度が
高い、したがって、特に高い界磁電圧を加えることなく
、通常の超電導静止マグネットと同等の印加電圧で運転
でき、ガスヘリウム排出孔での界磁電圧による絶縁破壊
が生じることはなかった。
This conventional superconducting generator has sufficiently high stability without excitation control due to the small internal reactance of the generator. It was possible to operate with applied voltage, and no dielectric breakdown occurred due to field voltage at the gas helium exhaust hole.

第10図は、従来の超電導回転子の電流リード常湿側の
接続導体付近の代表的概略縦断面図を示すものである。
FIG. 10 shows a typical schematic vertical cross-sectional view of the vicinity of the connection conductor on the normal humidity side of the current lead of a conventional superconducting rotor.

同図に示すように、絶縁物■で絶縁された電流リード■
の内部の冷却パス■を低温ガスヘリウムが図中の矢印の
方向に流れ、電流り一ド■を冷却する。さらに、電流リ
ード端部のガスヘリウム排出孔(2a)を出たガスヘリ
ウムは接続導体に)を冷却し、ヘリウムトランスファー
カップリング(図示せず)に連通ずる流路■へと導かれ
As shown in the figure, the current lead ■ insulated with an insulator ■
Low-temperature gas helium flows through the internal cooling path (2) in the direction of the arrow in the figure, cooling the current lead (2). Furthermore, the gas helium exiting the gas helium discharge hole (2a) at the end of the current lead cools the connecting conductor (2a) and is guided to the flow path (2) which communicates with a helium transfer coupling (not shown).

回収される構造となっている。なお、(4a)は接続ス
タッド、(4b)は接続バー、(la) 〜(1d)は
絶縁物、0は空間、■はスリップリング、■は冷媒給排
管である。
The structure is such that it can be recovered. Note that (4a) is a connection stud, (4b) is a connection bar, (la) to (1d) are insulators, 0 is a space, ▪ is a slip ring, and ▪ is a refrigerant supply/discharge pipe.

従来の超電導回転子では、前述した様に、界磁電圧が高
々IOV程度であったので、絶縁の施されていない接続
導体(イ)の周囲の空間0に冷媒であるガスヘリウムが
流れても、絶縁破壊は生じなかった。因に、ガスヘリウ
ム雰囲気中に於ける耐圧を第9図に示す。(電気学会技
術報(■部)第93号最近の超電導材料とその冷却技術
より引用)ところで、超電導発電機では励磁制御を行わ
なくとも、安定度は十分に高いが、励磁制御を行うこと
により、この利点をさらに拡大しようとする試みが、近
年なされている。
In conventional superconducting rotors, as mentioned above, the field voltage was at most about IOV, so even if gas helium, which is a refrigerant, flows into the space 0 around the uninsulated connecting conductors (a), , no dielectric breakdown occurred. Incidentally, the withstand pressure in a gas helium atmosphere is shown in FIG. (Quoted from Institute of Electrical Engineers of Japan Technical Bulletin (Part ■) No. 93, Recent Superconducting Materials and Their Cooling Technology) By the way, superconducting generators have sufficiently high stability even without excitation control, but with excitation control , attempts have been made in recent years to further expand this advantage.

(発明が解決しようとする問題点) その場合、界磁電流を急激に変化させる必要があるため
、スリップリング■に加える端子電圧は数に〜数10K
Vのオーダに達する。したがって、第9図から明らかな
様に1回収されるガスヘリウム雰囲気中(200〜30
0 K )では絶縁破壊を生ずる。
(Problem to be solved by the invention) In that case, it is necessary to rapidly change the field current, so the terminal voltage applied to the slip ring ■ is several to several tens of K.
reaches the order of V. Therefore, as is clear from Fig. 9, in the gas helium atmosphere (200 to 30
0 K), dielectric breakdown occurs.

そこで、この絶縁破壊を起こさない構造にする必要があ
る。
Therefore, it is necessary to create a structure that does not cause this dielectric breakdown.

本発明は、上記事情に鑑みてなされたもので。The present invention has been made in view of the above circumstances.

その目的は電流リードを低温ガスヘリウムで冷却する超
電導回転子に於いて、速溶励磁などにより電流リードに
例えば、数に〜数10KVの高い印加電圧を加える場合
でも絶縁破壊が生じない安全な電流リードを具備した超
電導回転子を提供することにある。
The purpose of this is to create a safe current lead that does not cause dielectric breakdown even when a high applied voltage of several to several tens of kilovolts is applied to the current lead by fast excitation, etc. in a superconducting rotor where the current lead is cooled with low-temperature gas helium. An object of the present invention is to provide a superconducting rotor equipped with the following.

(発明の構成〕 (問題点を解決するための手段)   ′本発明は、上
記目的を達成するために、低温ガスヘリウムにより電流
リードを冷却する形式の超電導回転子に於いて1反低温
回転子側電流リード端部の外周囲や電流リードとスリッ
プリングをつなぐ接続導体の周囲に雰囲気ガスとして、
低温又は常温ガスヘリウムが流動又は滞溜することの無
いように、その電流リードのガスヘリウム排出孔とヘリ
ウムトランスファーカップリングを電気的絶縁物の管等
により連通させる構造とすることによって、従来の数1
00〜数1000倍の印加電圧に耐える電流リードを有
する超電導回転子°を提供するものである。
(Structure of the Invention) (Means for Solving the Problems) 'In order to achieve the above object, the present invention provides a superconducting rotor in which current leads are cooled by low-temperature gas helium. As an atmospheric gas around the outer edge of the side current lead and around the connecting conductor that connects the current lead and the slip ring,
In order to prevent low-temperature or room-temperature gas helium from flowing or accumulating, the current lead's gas helium discharge hole and helium transfer coupling are connected through an electrically insulating tube, etc. 1
The present invention provides a superconducting rotor having current leads that can withstand an applied voltage of 0.00 to several 1000 times.

(作 用) そして、これにより、例えば従来の系統安定度の高い超
電導発電機の速溶励磁制御が可能となり。
(Function) This makes it possible, for example, to perform fast melting excitation control of conventional superconducting generators with high system stability.

数に〜数10KVの高い界磁電圧でも絶縁破壊が発生し
ない超電導回転子を提供することができる。
It is possible to provide a superconducting rotor in which dielectric breakdown does not occur even at high field voltages of several to several tens of kilovolts.

(発明の実施例) 実施例1 本発明の第1の実施例を図面を参照して説明する。(Example of the invention) Example 1 A first embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明の第1の実施例の縦断面図を示すもの
で、電流リード■のガスヘリウム排出孔(2a)に電気
的絶縁性が高<、170に程度の低温に耐える材料(例
えばテフロン、セラミックスなど)による直線状の連通
管(10)を接続し、ガスヘリウムの下流側に同様な材
料による容器(11)に接続し。
FIG. 1 shows a longitudinal cross-sectional view of the first embodiment of the present invention, in which the gas helium discharge hole (2a) of the current lead A straight communication pipe (10) made of (for example, Teflon, ceramics, etc.) is connected, and the downstream side of the gas helium is connected to a container (11) made of a similar material.

さらにヘリウムトランスファーカップリング(図示せず
)に到゛る排気流路■に連通ずる構造を形成している。
Furthermore, a structure is formed that communicates with the exhaust flow path (2) that reaches a helium transfer coupling (not shown).

したがって回転子内で気化した低温のガスヘリウムは、
電流リードを冷却した後、この連通管(lO)と絶縁容
器(11)内を経由、通過し図中の矢印の方向に流れる
。これら絶縁物によって形成される空間(12)は、シ
ャフト(13)の端部に形成される空間(0と隔離され
ている。そして空間0は通常大気圧下の空気で満たされ
ている8上述した本実施例の構造によれば、高印加電圧
に対して電流リード■あるいは接続導体0)からシャフ
ト(13) (アース)に放電(絶縁破壊)することは
ない。
Therefore, the low temperature gas helium vaporized in the rotor is
After cooling the current lead, the current flows through the communication pipe (1O) and the insulating container (11) in the direction of the arrow in the figure. The space (12) formed by these insulators is isolated from the space (0) formed at the end of the shaft (13), and the space (0) is normally filled with air under atmospheric pressure. According to the structure of this embodiment, there is no discharge (dielectric breakdown) from the current lead (1) or the connecting conductor (0) to the shaft (13) (earth) in response to a high applied voltage.

実施例2 第2図は1本発明の第2の実施例を示すもので、機械が
運転状態に入り、シャフト(13)が回転すると、連通
管(10)に大きな遠心力が作用するため、スペーサ(
15)を配置して強化した構造である。
Embodiment 2 FIG. 2 shows a second embodiment of the present invention. When the machine enters the operating state and the shaft (13) rotates, a large centrifugal force acts on the communication pipe (10). Spacer(
15) is installed to strengthen the structure.

実施例3 第3図は、本発明の第3の実施例を示すもので、第1図
で示した実施例1のシャフト(13)の端部空27!l
 (Gに、例えば、シリコーンラバー、エポキシレジン
などの絶縁混和物を密に充填し、シャフト端の導体周囲
にはガスヘリウム、空気などが介在しない絶縁空間を形
成し、万一の絶縁管の破損によってもガスヘリウムが連
通管(10)外に漏洩することのない構造のものである
Embodiment 3 FIG. 3 shows a third embodiment of the present invention, in which the end portion 27 of the shaft (13) of Embodiment 1 shown in FIG. l
(G is densely filled with an insulating mixture such as silicone rubber or epoxy resin, and an insulating space is formed around the conductor at the end of the shaft without gas helium, air, etc., to prevent damage to the insulating tube. The structure is such that gas helium does not leak out of the communication pipe (10) even if the pipe is closed.

実施例4 第4図は第4の実施例を示すもので、連通管(10)を
非直線状にしたもので、他は第1図に示す実施例1の通
りである。
Embodiment 4 FIG. 4 shows a fourth embodiment, in which the communicating pipe (10) is made non-linear, and the other parts are the same as in Embodiment 1 shown in FIG.

ここで非直線状の連通管とは、ガスヘリウム排出孔とヘ
リウムトランスファーカップリングの間を直線的に連通
ずる管でなく1例えばらせん状に巻いた管、あるいは蛇
行した管等の管の有効パス(直線換算距離)を直線より
長くしたものをいう。
Here, a non-linear communication pipe is not a pipe that communicates linearly between the gas helium discharge hole and the helium transfer coupling, but an effective path of the pipe, such as a spirally wound pipe or a meandering pipe. (straight line equivalent distance) is longer than a straight line.

このように、有効パスを長くすることにより、ガスヘリ
ウムの有効絶縁距離が延びるため、ガスヘリウム排出孔
とヘリウムトランスファーカップリングの距離が同じで
あっても直線的に連結した連通管に比べ絶縁波IjI電
圧が高くなる。第8図は一例としてらせん状に巻いたテ
フロン(商品名>tSのチューブにガスヘリウムを流し
た際のチューブ長と破壊電圧の関係を直線状のチューブ
と比較したもの(昭和61年電気学会全国大会NO,1
76)を示すが1?!極間距離が一定であっても、チュ
ーブ長が長くなると共に、絶縁破壊電圧が上ることが分
る。
In this way, by lengthening the effective path, the effective insulation distance of gas helium is extended, so even if the distance between the gas helium discharge hole and the helium transfer coupling is the same, the insulation wave will be smaller than that of a linearly connected communication pipe. IjI voltage increases. Figure 8 shows, as an example, a comparison of the relationship between tube length and breakdown voltage when gas helium is flowed through a spirally wound Teflon tube (product name > tS) with that of a straight tube (1986, National Institute of Electrical Engineers of Japan Tournament No. 1
76) is 1? ! It can be seen that even if the distance between the electrodes is constant, the breakdown voltage increases as the tube length increases.

従って非直線状の連通管は限られた空間の中で有効パス
を可能な限り長くすることが望ましい。
Therefore, it is desirable that the non-linear communication pipe has an effective path as long as possible within a limited space.

上述した本実施例4の構造によれば、破壊電圧の低いガ
スヘリウムの通る流路は連通管を直線状に配置した場合
より長くなり、絶縁破壊電圧が上るため、印加電圧が高
くなっても電流リード■あるいは接続導体(4)から接
地部に絶縁破壊することはない。
According to the structure of the fourth embodiment described above, the flow path through which the gas helium, which has a low breakdown voltage, passes is longer than when the communicating tubes are arranged in a straight line, and the breakdown voltage increases, so even if the applied voltage becomes high, There will be no dielectric breakdown from the current lead ■ or the connecting conductor (4) to the ground.

実施例5 第5図は第5の実施例を示すもので、非直線状の連通管
(10)をスペーサ(15)で支持したもので、他は第
2図に示した実施例2と同様である。
Embodiment 5 FIG. 5 shows a fifth embodiment, in which a non-linear communicating pipe (10) is supported by a spacer (15), and the rest is the same as in Embodiment 2 shown in FIG. It is.

このようにすると、連通管の遠心力は実施例2と同様に
支持できる他、第4図に示した実施例4と同様な作用効
果が得られる。
In this way, the centrifugal force of the communicating tube can be supported in the same manner as in the second embodiment, and the same effects as in the fourth embodiment shown in FIG. 4 can be obtained.

実施例6 第6図は第6の実施例を示すもので、非直線状の連通管
(10)の周囲の空間に絶縁混和物を密に充填したもの
である。
Embodiment 6 FIG. 6 shows a sixth embodiment, in which the space around a non-linear communicating tube (10) is densely filled with an insulating mixture.

このようにすると万一の連通管(10)の破損によって
もガスヘリウムが連通管(10)外に漏洩することがな
い他、第4図に示した実施例4と同様な作用効果が得ら
れる。
In this way, gas helium will not leak out of the communication pipe (10) even in the unlikely event that the communication pipe (10) is damaged, and the same effects as in Embodiment 4 shown in FIG. 4 can be obtained. .

実施例7 第7図は第7の実施例を示すものであって、非直線状の
連通管の形状としてはらせん状、渦巻状。
Embodiment 7 FIG. 7 shows a seventh embodiment, in which the shape of the non-linear communicating tube is spiral or spiral.

蛇管状など各種が考えられる6例えば第7図はらせん状
に配置した場合の例の要部を示す図で、空間0が面する
適当な位置1例えば接続導体(4)と容1(11)とに
固定された絶縁物(パイプあるいは捧)(19)の上に
絶縁パイプから成る連通管(10)をらせん状に巻きつ
けて形成し、そのパイプの両端をガスヘリウム排出孔(
2a)と容器(11)に連結したものである。絶縁物(
19)は遠心力場で連通管(lO)が耐え得るように設
けた支持部材である。
For example, Fig. 7 is a diagram showing the main parts of an example in which they are arranged in a spiral shape, and the connection conductor (4) and the container 1 (11) are placed at an appropriate position 1 facing the space 0. A communicating tube (10) made of an insulated pipe is wound spirally on an insulating material (pipe or support) (19) fixed to the pipe, and both ends of the pipe are connected to gas helium discharge holes (
2a) and the container (11). Insulator(
19) is a support member provided so that the communication tube (lO) can withstand the centrifugal force field.

このようにしても本発明の目的は達成できる。Even in this manner, the object of the present invention can be achieved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、電流リードを冷
却した後のガスヘリウムにより、接続導体等が直接接触
することを防止できる上、ガスヘリウムの流路が長くな
るため、電流リードに対して高い印加電圧を加えても、
絶縁破壊することのない安全な超電導回転子を提供する
ことができる。
As explained above, according to the present invention, the gas helium after cooling the current lead can prevent the connecting conductors etc. from coming into direct contact with each other, and since the gas helium flow path becomes longer, the current lead Even if a high applied voltage is applied,
A safe superconducting rotor without dielectric breakdown can be provided.

そして、例えばこの絶縁構造の電流リードを有した超電
導発電機では従来のそれよりも、さらに系統安定度を高
くするための励磁制御が可能となる。
For example, a superconducting generator having current leads with this insulated structure enables excitation control to further improve system stability than conventional generators.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第7図は本発明の超電導回転子の第1ない
し第7の実施例を示す要部縦断面図、第8図(A)は連
通管が直線状試料の場合を示す模式図、第8図CB)は
連通管がコイル状試料の場合を示す模式図、第8図(C
)は第8図(A)、(B)で示す試料に対するガスヘリ
ウムの流路長と破壊電圧の関係を示す曲線図で、第9図
はガスヘリウムとガス窒素の破壊電圧一温度特性を示す
曲線図、第10図は従来例を示す要部縦断面図である。 2・・・電流リード、 2a・・・ガスヘリウム排出孔
。 lO・・・絶縁物製の連通管。 11・・・トランスファーカップリング側ヘリウム流路
である容器。 15・・・支持部材であるスペーサ、 16・・・支持部材である絶縁混和物、19・・・支持
部材である絶縁物(パイプまたは捧)。 代理人 弁理士  井 上 −男 (C)    石麿壜1υL祷す、−グ(、疼<atは
。 第  8 図
1 to 7 are longitudinal sectional views of essential parts showing first to seventh embodiments of the superconducting rotor of the present invention, and FIG. 8(A) is a schematic diagram showing a case where the communicating tube is a straight sample. , Fig. 8 CB) is a schematic diagram showing the case where the communicating tube is a coiled sample, and Fig. 8 (C
) is a curve diagram showing the relationship between the flow path length and breakdown voltage of gas helium for the samples shown in Fig. 8 (A) and (B), and Fig. 9 shows the breakdown voltage-temperature characteristics of gas helium and gas nitrogen. The curve diagram and FIG. 10 are longitudinal sectional views of main parts showing a conventional example. 2... Current lead, 2a... Gas helium discharge hole. lO: Communication tube made of insulator. 11... Container serving as a helium flow path on the transfer coupling side. 15... Spacer serving as a supporting member; 16... Insulating mixture serving as a supporting member; 19... Insulator (pipe or pipe) serving as a supporting member. Agent Patent Attorney Inoue (C)

Claims (5)

【特許請求の範囲】[Claims] (1)300K以下の低温ガスヘリウムにより電流リー
ドを冷却する超電導回転子において、電流リードの常温
側のガスヘリウム排出孔と、その下流側のヘリウムトラ
ンスファーカップリングに連通するガスヘリウム流路を
電気的絶縁物製の連通管にて接続したことを特徴とする
超電導回転子。
(1) In a superconducting rotor that cools current leads with low-temperature gas helium of 300K or less, the gas helium flow path that communicates with the gas helium discharge hole on the room temperature side of the current lead and the helium transfer coupling on the downstream side is electrically connected. A superconducting rotor characterized by being connected by a communication tube made of an insulator.
(2)連通管は遠心力場で耐えるように支持部材を設け
たことを特徴とする特許請求の範囲第1項記載の超電導
回転子。
(2) The superconducting rotor according to claim 1, wherein the communicating tube is provided with a support member so as to withstand a centrifugal force field.
(3)支持部材は連通管と回転軸との間隙に充填したエ
ポキシレジンやシリコーンラバー等の絶縁混和物とした
ことを特徴とする特許請求の範囲第2項記載の超電導回
転子。
(3) The superconducting rotor according to claim 2, wherein the support member is an insulating mixture such as epoxy resin or silicone rubber filled in the gap between the communication tube and the rotating shaft.
(4)連通管は直線状にしたことを特徴とする特許請求
の範囲第1項ないし第3項のいずれか1項に記載の超電
導回転子。
(4) The superconducting rotor according to any one of claims 1 to 3, characterized in that the communicating tube is linear.
(5)連通管は非直線状にしたことを特徴とする特許請
求の範囲第1項ないし第3項のいずれか1項に記載の超
電導回転子。
(5) The superconducting rotor according to any one of claims 1 to 3, characterized in that the communicating tube is non-linear.
JP62070166A 1986-07-03 1987-03-26 Superconducting rotor Expired - Lifetime JP2529963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62070166A JP2529963B2 (en) 1986-07-03 1987-03-26 Superconducting rotor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP61-155064 1986-07-03
JP15506486 1986-07-03
JP62070166A JP2529963B2 (en) 1986-07-03 1987-03-26 Superconducting rotor

Publications (2)

Publication Number Publication Date
JPS63302758A true JPS63302758A (en) 1988-12-09
JP2529963B2 JP2529963B2 (en) 1996-09-04

Family

ID=26411324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62070166A Expired - Lifetime JP2529963B2 (en) 1986-07-03 1987-03-26 Superconducting rotor

Country Status (1)

Country Link
JP (1) JP2529963B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354717A (en) * 1976-10-28 1978-05-18 Alsthom Atlantique Superconductive rotary machine current conductor
JPS5667105A (en) * 1979-11-06 1981-06-06 Tokyo Shibaura Electric Co High withstand voltage superconductor
JPS5856373A (en) * 1981-09-30 1983-04-04 Toshiba Corp Leader for lead wire
JPS5947781A (en) * 1982-09-10 1984-03-17 Toshiba Corp Current introduction terminal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354717A (en) * 1976-10-28 1978-05-18 Alsthom Atlantique Superconductive rotary machine current conductor
JPS5667105A (en) * 1979-11-06 1981-06-06 Tokyo Shibaura Electric Co High withstand voltage superconductor
JPS5856373A (en) * 1981-09-30 1983-04-04 Toshiba Corp Leader for lead wire
JPS5947781A (en) * 1982-09-10 1984-03-17 Toshiba Corp Current introduction terminal

Also Published As

Publication number Publication date
JP2529963B2 (en) 1996-09-04

Similar Documents

Publication Publication Date Title
EP0709618B1 (en) Ceramic superconducting lead
US5774032A (en) Cooling arrangement for a superconducting coil
US20030011452A1 (en) Mounting structure for superconducting windings
JP5687548B2 (en) Device with superconducting cable
US3764726A (en) Terminal for electrical apparatus with conductors cooled down to a low temperature
JP2013030482A (en) Configuration with superconductive electrical dc cable system
US5574001A (en) Ceramic superconducting lead resistant to breakage
US4740724A (en) Superconducting generator rotor
US7388148B2 (en) Device for feeding electricity to a superconductive apparatus under medium or high voltage
KR100902428B1 (en) High temperature superconducting rotor power leads
JPH08190819A (en) Superconductor transmission line
JPS63302758A (en) Superconductive rotor
GB1396849A (en) Terminal arrangements for low-temperature cables
US5759960A (en) Superconductive device having a ceramic superconducting lead resistant to breakage
JP3124688B2 (en) Superconducting device
KR102677348B1 (en) Field coil support structure and modular field coil design for superconducting machines
JPH04120709A (en) Superconducting magnet apparatus
JP2529981B2 (en) Superconducting rotor
JPH0474947B2 (en)
Gerhold Design criteria for high voltage leads for superconducting power systems
JP2020054150A (en) Terminal connection portion of superconducting cable and superconducting cable system
JPH045244B2 (en)
JPH01129765A (en) Superconducting rotor
JPS626410B2 (en)
JPH01198221A (en) Superconducting current limiter