JPH01129765A - Superconducting rotor - Google Patents

Superconducting rotor

Info

Publication number
JPH01129765A
JPH01129765A JP62287293A JP28729387A JPH01129765A JP H01129765 A JPH01129765 A JP H01129765A JP 62287293 A JP62287293 A JP 62287293A JP 28729387 A JP28729387 A JP 28729387A JP H01129765 A JPH01129765 A JP H01129765A
Authority
JP
Japan
Prior art keywords
current lead
rotor
lead
superconducting
torque tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62287293A
Other languages
Japanese (ja)
Inventor
Kazuo Sato
和雄 佐藤
Mikio Kumagai
熊谷 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62287293A priority Critical patent/JPH01129765A/en
Publication of JPH01129765A publication Critical patent/JPH01129765A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To sufficiently utilize cooling medium of a current lead by folding a current lead a plurality of times in the axial direction in a vacuum heat insulating space in a torque tube. CONSTITUTION:A first stage current lead 1a made of a normal conducting conductor is connected at its end to a superconducting field winding 5, and temporarily connected at its joint shaft 7 side to a first connection pipe 8a having a U-shaped hole. A folding-second stage current lead 1b is connected to the pipe 8a. A second connection pipe 8b having a U-shaped hole is connected to the other end of the lead 1b, folded to a second stage pipe 8b, and connected with a third stage current lead 1c. The leads 1a-1c are folded in a torque tube 6 and a vacuum heat insulating space 9 in the torque tube 6 surrounded by the end faces of a low temperature rotor 3 and the shaft 7. The folded opposite end of the lead 1c is connected through the shaft 7 to a collector ring 10 by a connection conductor 10.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は回転電機の超電導回転子に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a superconducting rotor for a rotating electric machine.

(従来の技術) 最近、超電導導体を回転界磁巻線として利用したいわゆ
る超電導回転子を備えた発電機が開発されている。超電
導導体を用いた界磁巻線は、その超電導性を維持するた
めに臨界温度以下に冷却しなければならず1例えば導体
として、NbTi、Nb、Snを用いた場合は冷却媒体
として4に程度の液体ヘリウムを使用する。
(Prior Art) Recently, a generator equipped with a so-called superconducting rotor that uses a superconducting conductor as a rotating field winding has been developed. Field windings using superconducting conductors must be cooled to below a critical temperature in order to maintain their superconductivity.1For example, if NbTi, Nb, or Sn is used as the conductor, the cooling medium must be cooled to about 4. liquid helium.

このような低温の冷媒は一般に蒸発潜熱が小さく、冷媒
が気化し易いために、超電導界磁巻線の超電導状態を維
持するにはその界磁巻線を備えた低温ロータへの侵入熱
を極力少なくする必要がある。
Such low-temperature refrigerants generally have a small latent heat of vaporization and are easily vaporized. Therefore, in order to maintain the superconducting state of the superconducting field windings, it is necessary to minimize the heat intruding into the low-temperature rotor equipped with the field windings. need to be reduced.

侵入熱は輻射伝熱、希薄気体伝熱、伝導伝熱等に分類さ
れるが、従来はこれらを抑制するために低温ロータの周
囲は真空圧力の小さい真空層とし、機械的に低温ロータ
と常温ロータを接続する構造部材は低温ロータ内で気化
した気体の冷媒により冷却されていた。すなわち、低温
ロータ内で気化した冷媒に単に排出・回収されるのでは
なく、トルクチューブや電流リードなど熱伝導による低
温ロータへの侵入熱を抑制するために、これらの部材を
冷却する媒体として排気ガスを有効に利用されツツ(A
n Approach to Optimag The
n’nd Designof 5upes condu
cting Generator Rotor ; k
、5ato。
Invasive heat is classified into radiant heat transfer, lean gas heat transfer, conductive heat transfer, etc., but in order to suppress these, conventionally, a vacuum layer with low vacuum pressure was created around the low-temperature rotor, and mechanically the low-temperature rotor was separated from the room temperature rotor. The structural members connecting the rotors were cooled by a gaseous refrigerant vaporized within the low temperature rotor. In other words, the refrigerant is not simply discharged and recovered by the vaporized refrigerant inside the low-temperature rotor, but is used as a medium to cool the torque tubes, current leads, etc. in order to suppress the heat that enters the low-temperature rotor through heat conduction. Gas is used effectively and Tutu (A
n Approach to Optimag The
n'nd Design of 5 ups condu
cting Generator Rotor;
, 5ato.

et、al、 IEEE/PES、 1985. (8
55M 334−8)参照)回収されている。
et al. IEEE/PES, 1985. (8
55M 334-8)) has been recovered.

この従来の超電導発電機は、コレクタリング側の超電導
界磁巻線端部とコレクタリングを真空断熱空間の内部を
直線状にて軸方向に貫通して、電気的に接続する構造で
配設されている。
This conventional superconducting generator is arranged in a structure in which the end of the superconducting field winding on the collector ring side and the collector ring are electrically connected by penetrating the vacuum insulation space in a straight line in the axial direction. ing.

第5図は、従来の超電導回転子の電流リードの概略配置
図を示すものである。同図に示すように、絶縁物で絶縁
された電流リード■(通常は常電導導体)の内部の冷却
パス■を低温冷媒が図中の矢印の方向に流れ、電流リー
ドωを冷却する。すなわち、電流リード(11)を中空
にして内部に冷却パス■を設けることにより、それ自体
が熱交換器の機能を有することになる。電流リードωを
介しての低温ロータ■への侵入熱を抑制するためには、
冷却パス■の構成を検討し、電流リード断面積を小さく
することが一般的である。
FIG. 5 shows a schematic layout of current leads of a conventional superconducting rotor. As shown in the figure, a low-temperature refrigerant flows in the direction of the arrow in the figure through the cooling path (2) inside the current lead (2) (usually a normally conducting conductor) insulated with an insulating material, cooling the current lead (ω). That is, by making the current lead (11) hollow and providing a cooling path (2) inside, it itself has the function of a heat exchanger. In order to suppress the heat entering the low temperature rotor ■ through the current lead ω,
It is common to consider the configuration of the cooling path (2) and reduce the cross-sectional area of the current leads.

従来の超電導回転子の構造では、前述したように、コレ
クタリング(へ)側の界磁巻線■の端部からコレクタリ
ング(イ)までの長さをある程度確保されており、その
長さは概ねトルクチューブ0の軸方向長さに継ぎシャフ
ト■の軸方向長さを加えた程度であった。そして、一般
にはこの電流リードの長さは発電機容量が大きくなって
もトルクチューブ0や継シヤフト■がそれに比例して長
くなることはなく、100100O級の機械でも高々3
m程度であった。
In the structure of a conventional superconducting rotor, as mentioned above, a certain length is secured from the end of the field winding ■ on the collector ring (to) side to the collector ring (a), and the length is The length was approximately equal to the axial length of the torque tube 0 plus the axial length of the connecting shaft (2). In general, even if the generator capacity increases, the length of the current lead does not increase proportionally to the length of the torque tube 0 or joint shaft ■.
It was about m.

ところで、近年に至っては、超電導回転子の熱性能(冷
却性能)をさらに向上させ冷媒の効率的運用の試みがな
されると共に、小型機への超電導導体塔載が検討されて
いる。
Incidentally, in recent years, attempts have been made to further improve the thermal performance (cooling performance) of superconducting rotors and to use refrigerants more efficiently, and consideration has been given to mounting superconducting conductors on small aircraft.

(発明が解決しようとする問題点) 上記のように、機械、特に回転子軸長を長くすることな
く、電流リードを介して低温ロータへの侵入熱を低減、
抑制する必要があるため、低熱侵入形の電流リードの構
造にしなければならないが、電流リード断面を小さくす
る方式をとると常電導部の電流密度が上昇し、電流リー
ドの過熱やひいては焼損を引起こすことになる。
(Problems to be Solved by the Invention) As mentioned above, it is possible to reduce the heat entering the low-temperature rotor through the current lead without increasing the machine, especially the rotor shaft length.
Therefore, it is necessary to create a current lead structure with low heat penetration, but if a method is used to reduce the cross section of the current lead, the current density in the normally conducting part will increase, causing overheating of the current lead and eventually burnout. I'll wake you up.

また、系統安定度向上の為に近年開発されている超速応
励磁形超電導発電機では遠路時の励磁電圧が数kVと、
従来の数Vに比較して飛躍的に上昇し、そのために電流
リード絶縁厚は増加する。すると、電流リードの断面積
が増加し、侵入熱が増大する。
In addition, in the ultra-fast adaptively excited superconducting generators that have been developed in recent years to improve system stability, the excitation voltage during long trips is several kV.
This increases dramatically compared to the conventional several volts, and therefore the current lead insulation thickness increases. This increases the cross-sectional area of the current lead and increases the amount of heat that enters.

本発明は、上記事情に鑑みてなされたもので。The present invention has been made in view of the above circumstances.

その目的は低温ロータへの熱伝導による伝導量を低減せ
しめる電流リードを具備した超電導回転子を提供するこ
とにある。
The object is to provide a superconducting rotor with current leads that reduce the amount of heat conduction to the low temperature rotor.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、上記目的を達成するために、電流リードを内
部に低温ガスを流して冷却する超電導回転子において、
電流リードはトルクチューブ内の真空断熱空間にて軸方
向に複数回折り返したことを特徴とする超電導回転子を
提供する。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a superconducting rotor in which current leads are cooled by flowing low-temperature gas inside them.
The present invention provides a superconducting rotor characterized in that the current leads are folded back multiple times in the axial direction in the vacuum insulation space within the torque tube.

(作  用) このように構成されたものにおいては、折り返しにより
電流リードの全長を長くすることが可能となり、例えば
常電導導体断面積を小さくすることになく、あるいは、
寸法的に余裕のない小容量機においても電流リード長を
確保できるので侵入熱を低減し、さらに、電流リードの
絶縁被覆の厚い、安全な超速応励磁が可能となり、冷却
性能が高く、信頼性の高い超電導回転子を提供すること
ができる。
(Function) With this structure, it is possible to increase the total length of the current lead by folding it, for example, without reducing the cross-sectional area of the normal conductor, or
Even in small-capacity machines with limited dimensions, the current lead length can be secured, reducing heat intrusion.Furthermore, the thick insulation coating of the current leads enables safe ultra-fast response excitation, resulting in high cooling performance and reliability. It is possible to provide a superconducting rotor with high performance.

(実 施 例) 実施例1 以下1本発明の第1の実施例について第1図および第2
図を参照して説明する。尚、第1図および第21;!I
において、従来例の第5図と同一部分には同一符号を付
して説明を省略し、未説明のものは説明をつけるから、
従来例の理解の参照にされたい。
(Example) Example 1 The following figures 1 and 2 show the first embodiment of the present invention.
This will be explained with reference to the figures. In addition, Fig. 1 and Fig. 21;! I
In the figure, the same parts as those in FIG. 5 of the conventional example are given the same reference numerals and explanations are omitted, and unexplained parts will be explained.
Please use this as a reference for understanding conventional examples.

常電4導体製の第1段電流リード(la)は端部で超電
導回転子IiA■と接続し、継シャフト■側で一旦U字
状孔を有する第1段接続パイプ(8a)に連結する。第
1の接続パイプ(8a)には折り返して第2段電流リー
ド(1b)を連結する。第2段電流リード(1b)の他
端はU字状孔を有する第2の接続パイプ(8b)を連結
し、第2の接続パイプ(8b)には折り返して第3段電
流リード(1c)を連結する。これらの電流リード(l
a)、 (lb)= (lc)の折り返しは、トルクチ
ューブ0と低温ロータ■端面と継シャフト■端面で囲ま
れたトルクチューブ内の真空断熱空間0内で行なう。第
3段電流リード(1c)の折り返し反対端は従来の配設
方法と同様に継シャフト■内を貫通し、接続導体(10
)を用いてコレクタリング(イ)に接続する。
The first stage current lead (la) made of normal current 4 conductors is connected to the superconducting rotor IiA■ at the end, and once connected to the first stage connection pipe (8a) having a U-shaped hole on the joint shaft ■ side. . A second stage current lead (1b) is connected to the first connection pipe (8a) by turning it back. The other end of the second stage current lead (1b) is connected to a second connecting pipe (8b) having a U-shaped hole, and the second connecting pipe (8b) is folded back and connected to the third stage current lead (1c). Concatenate. These current leads (l
The folding of a), (lb)=(lc) is performed in the vacuum insulation space 0 within the torque tube surrounded by the torque tube 0, the end face of the low temperature rotor (2), and the end face of the joint shaft (2). The folded opposite end of the third stage current lead (1c) passes through the joint shaft ■ in the same manner as the conventional installation method, and connects the connecting conductor (10
) to connect to the collector ring (a).

第2図は上述の真空断熱空間0内に配置された電流リー
ドの横断面を示すもので、冷却パス■を′有する第1.
第2、第3段の電流リード(la)。
FIG. 2 shows a cross section of the current lead arranged in the vacuum insulation space 0 mentioned above, and shows the first lead 1' which has a cooling path .
2nd and 3rd stage current leads (la).

(lb)、 (lc)は低温部はど超電導回転子の中心
から半径の小さい側に配設され、電気的に絶縁物(11
)を介して第1、第2、第3の真空パイプ(12a)。
(lb) and (lc) are located on the small radius side from the center of the superconducting rotor, and are electrically insulating (11
) through the first, second and third vacuum pipes (12a).

(12b)、 (12c)により閉じた系を構成してい
る。
(12b) and (12c) constitute a closed system.

尚、冷媒供給管(21)と冷媒回収管(22)とで冷媒
給排管(23)を形成して液体ヘリウム(24)を界磁
巻線(イ)に供給後、ガスヘリウム(25)として1部
は電流リードω内を通し、ガスヘリウム排出孔(26)
から連通管(27)を介して冷媒回収を行わせ、残部は
冷媒回収管(22)を介して冷媒回収を行わせる。
The refrigerant supply pipe (21) and the refrigerant recovery pipe (22) form a refrigerant supply/discharge pipe (23), and after supplying liquid helium (24) to the field winding (a), gas helium (25) is One part passes through the current lead ω, and the gas helium exhaust hole (26)
The refrigerant is recovered from the remaining portion through the communication pipe (27), and the remaining refrigerant is recovered through the refrigerant recovery pipe (22).

次に上記実施例1の作用を説明する。Next, the operation of the first embodiment will be explained.

本実施例によれば、電流リード■を折り返して畏くした
から電流リード内を通る冷却媒体の十分な活用が可能と
なり、電流リードω長をロータ長を延ばすことなく長く
することができ、熱侵入量を数分の−から一桁小さくす
ることができるため、低温ロータ■内の超電導線の安定
した超電導状態を維持する極めて安全な超電導回転子を
提供することができる。そして、冷媒の消費量の観点か
ら言えば、侵入熱が小さくなった分だけ冷却効率の良い
機械を提供できるわけである。これは特に、小容量機に
於いてその利点が拡大される。さらに電流リードの温度
勾配が小さくなるから、電流リードを介して低温ロータ
に侵入する伝熱量を従来に比較して増加させることなく
電気的絶縁厚を十分確保できるので、超速応励磁形発電
機にも有効で信頼性を著しく向上できる。
According to this embodiment, since the current lead (2) is folded back, the cooling medium passing through the current lead can be fully utilized, and the current lead ω length can be increased without increasing the rotor length. Since the amount of penetration can be reduced from a few minutes to an order of magnitude, it is possible to provide an extremely safe superconducting rotor that maintains a stable superconducting state of the superconducting wire in the low-temperature rotor. From the perspective of refrigerant consumption, it is possible to provide a machine with better cooling efficiency as the amount of heat that enters is reduced. This advantage is particularly magnified in small capacity machines. Furthermore, since the temperature gradient of the current lead is reduced, sufficient electrical insulation thickness can be secured without increasing the amount of heat transferred to the low-temperature rotor via the current lead compared to conventional methods, making it suitable for ultra-fast excitation type generators. is also effective and can significantly improve reliability.

又、従来クールダウン時に電流リードの排ガスがマイナ
ス数10[”C]になる場合があり、排気ループ(発電
機本体の外側)に配設した冷凍機系のコンプレッサに不
具合を発生する可能性があったが、本実施例では電流リ
ード長が長く熱交換量の増大から、排ガスは安定して常
温に維持可能となり発電機全体システムの信頼性を向上
できる。
In addition, conventionally, during cool-down, the exhaust gas from the current lead may reach minus 10 [C], which may cause a malfunction in the refrigerator system compressor installed in the exhaust loop (outside the generator body). However, in this embodiment, the current lead length is long and the amount of heat exchange is increased, so that the exhaust gas can be stably maintained at room temperature, and the reliability of the entire generator system can be improved.

実施例2 第3図は本発明の第2の実施例を示すもので、第1の実
施例を示す第2図の横断面に相当する図である。
Embodiment 2 FIG. 3 shows a second embodiment of the present invention, and is a view corresponding to the cross section of FIG. 2 showing the first embodiment.

すなわち、高温部になるほど常電導電流リード■は導体
の電気抵抗が増大するゆえ、当該部のジュール損失が増
加する。そこで低温部の第1段電流リード(la)断面
積より高温部の第2段、第3段の電流リード(1b)、
(1c)の断面を大きくしたもので軸方向に折り返して
構成する方式は実施例1と基本的に変りない。
That is, as the temperature increases, the electrical resistance of the conductor of the normal conduction current lead (2) increases, so the Joule loss in that part increases. Therefore, the cross-sectional area of the first stage current lead (la) in the low temperature part is larger than that of the current lead (1b) in the second stage and third stage in the high temperature part.
The method in which the cross section of (1c) is enlarged and folded back in the axial direction is basically the same as in the first embodiment.

このようにすれば各電流リード(la) −(lb) 
* (lc)の温度勾配は更に小さくなる他、実施例1
と同様な作用効果が得られる。
In this way, each current lead (la) - (lb)
*The temperature gradient of (lc) becomes even smaller, and in addition, Example 1
The same effects can be obtained.

実施例3 第4図は本発明の第3の実施例を示すもので、第1の実
施例を示す第2図の横断面に相当する図である。
Embodiment 3 FIG. 4 shows a third embodiment of the present invention, and is a view corresponding to the cross section of FIG. 2 showing the first embodiment.

すなわち電流リードを折り返すトルクチューブ内の真空
断熱空間(ロ)が半径方向に余裕のない場合に1周方向
に位相をずらして配設した例である。
That is, this is an example in which the vacuum insulation space (b) in the torque tube in which the current lead is folded back does not have enough space in the radial direction, and is arranged with a phase shift in the circumferential direction.

他は実施例1と同様である。The rest is the same as in Example 1.

このようにすれば小直径の回転子でも、実施例1と同様
な作用効果が得られる。
In this way, the same effects as in the first embodiment can be obtained even with a small diameter rotor.

[発明の効果] 以上説明したように1本発明によれば、電流リードを折
り返して長くしたから、電流リードの冷却媒体の十分な
活用が可能となり、電流リード長をロータ長を延ばすこ
となく長くすることができ熱侵入量を数分の−から一桁
小さくすることができるため、低温ロータ内の超電導線
の安定した超電導状態を維持する極めて安全な超電導回
転子を提供することができる。そして、冷媒の消費量の
観点から言えば、侵入熱が小さくなった分だけ冷却効率
の良い機械を提供できるわけである。これは特に、小容
量機に於いてその利点が拡大される。
[Effects of the Invention] As explained above, according to the present invention, since the current leads are folded back and made longer, the cooling medium of the current leads can be fully utilized, and the current lead length can be increased without increasing the rotor length. Since the amount of heat penetration can be reduced from a few minutes to an order of magnitude, it is possible to provide an extremely safe superconducting rotor that maintains a stable superconducting state of the superconducting wire in the low-temperature rotor. From the perspective of refrigerant consumption, it is possible to provide a machine with better cooling efficiency as the amount of heat that enters is reduced. This advantage is particularly magnified in small capacity machines.

さらに電流リードの温度勾配が小さくなるから、電流リ
ードを介して低温ロータに侵入する伝熱量を従来に比較
して増加させることなく電気的絶縁厚を十分確保できる
ので、超速応励磁形発電機にも有効で信頼性を著しく向
上できる。
Furthermore, since the temperature gradient of the current lead is reduced, sufficient electrical insulation thickness can be secured without increasing the amount of heat transferred to the low-temperature rotor via the current lead compared to conventional methods, making it suitable for ultra-fast excitation type generators. is also effective and can significantly improve reliability.

又、従来クールダウン時に電流リードの排ガスがマイナ
ス数10[”C]になる場合があり、排気ループ(発電
機本体の外側)に配設した冷凍機系のコンプレッサに不
具合を発生する可能性があったが、本発明では電流リー
ド長が長く熱交換量の増大から、排ガスは安定して常温
に維持可能となり発電機全体システムの信頼性を向上で
きる。
In addition, conventionally, during cool-down, the exhaust gas from the current lead may reach minus 10 [C], which may cause a malfunction in the refrigerator system compressor installed in the exhaust loop (outside the generator body). However, in the present invention, since the current lead length is long and the amount of heat exchange is increased, the exhaust gas can be stably maintained at room temperature, and the reliability of the entire generator system can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の超電導回転子の第1の実施例を示す上
半部縦断面図、第2図は第1図の■−■線に沿う矢視拡
大断面図、第3図および第4図は第2および第3の実施
例の第2図相当部を示す断面図、第5図は従来例を示す
上半部縦断面図である。 1・・・電流リード、    5・・・界磁巻線、6・
・・トルクチューブ、  9・・・真空断熱空間、25
・・・低温ガスであるガスヘリウム。
FIG. 1 is a vertical sectional view of the upper half of a first embodiment of the superconducting rotor of the present invention, FIG. 2 is an enlarged sectional view taken along the line ■-■ in FIG. 1, and FIGS. FIG. 4 is a sectional view showing a portion corresponding to FIG. 2 of the second and third embodiments, and FIG. 5 is a vertical sectional view of the upper half of the conventional example. 1... Current lead, 5... Field winding, 6...
...Torque tube, 9...Vacuum insulation space, 25
...Helium is a low-temperature gas.

Claims (2)

【特許請求の範囲】[Claims] (1)電流リードを内部に低温ガスを流して冷却する超
電導回転子において、電流リードはトルクチューブ内の
真空断熱空間にて軸方向に複数回折り返したことを特徴
とする超電導回転子。
(1) A superconducting rotor in which current leads are cooled by flowing low-temperature gas therein, characterized in that the current leads are folded back multiple times in the axial direction in a vacuum insulation space within a torque tube.
(2)折り返しの電流リードは、低温側より常温側へ接
続するものほど通電断面積を大にしたことを特徴とする
特許請求の範囲第1項記載の超電導回転子。
(2) The superconducting rotor according to claim 1, wherein the folded current leads have a larger current carrying cross-sectional area as they are connected to the room temperature side rather than the low temperature side.
JP62287293A 1987-11-16 1987-11-16 Superconducting rotor Pending JPH01129765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62287293A JPH01129765A (en) 1987-11-16 1987-11-16 Superconducting rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62287293A JPH01129765A (en) 1987-11-16 1987-11-16 Superconducting rotor

Publications (1)

Publication Number Publication Date
JPH01129765A true JPH01129765A (en) 1989-05-23

Family

ID=17715507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62287293A Pending JPH01129765A (en) 1987-11-16 1987-11-16 Superconducting rotor

Country Status (1)

Country Link
JP (1) JPH01129765A (en)

Similar Documents

Publication Publication Date Title
US6489701B1 (en) Superconducting rotating machines
US7119644B2 (en) Mounting structure for superconducting windings
JP4064721B2 (en) Synchronous machine with cryogenic gas transfer joint to rotor with superconducting coil
US6605886B2 (en) High temperature superconductor synchronous rotor coil support insulator
US6570292B2 (en) High temperature super-conducting rotor coil support with split coil housing and assembly method
US6600251B2 (en) Super-conducting rotor coil winding support assembly method for synchronous machine
US6727633B2 (en) High temperature super-conducting synchronous rotor coil support with tension rods and method for assembly of the coil support
US7548000B2 (en) Multilayer radiation shield
US6617714B2 (en) High temperature super-conducting coils supported by an iron core rotor
US6803684B2 (en) Super-conducting synchronous machine having rotor and a plurality of super-conducting field coil windings
US4227102A (en) Electrical machine with cryogenic cooling
US6590308B2 (en) High power density super-conducting electric machine
JPH01129765A (en) Superconducting rotor
US6787967B2 (en) High temperature super-conducting rotor coil support and coil support method
MXPA02004830A (en) High temperature superconducting rotor power leads.
KR100465024B1 (en) Conduction Cooling System for High Temperature Superconducting Rotor
JP2529981B2 (en) Superconducting rotor
JPS63198574A (en) Superconducting rotor
JP2529963B2 (en) Superconducting rotor
JP2001119078A (en) Superconducting current lead
JPS63299765A (en) Superconductive rotary machine
JPH06327233A (en) Superconducting rotor
JPS60170274A (en) Superconductive device