JPS63302448A - Optical thermomagnetic recording medium - Google Patents

Optical thermomagnetic recording medium

Info

Publication number
JPS63302448A
JPS63302448A JP1612288A JP1612288A JPS63302448A JP S63302448 A JPS63302448 A JP S63302448A JP 1612288 A JP1612288 A JP 1612288A JP 1612288 A JP1612288 A JP 1612288A JP S63302448 A JPS63302448 A JP S63302448A
Authority
JP
Japan
Prior art keywords
alloy layer
amorphous magnetic
magnetic alloy
layer
tbfeco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1612288A
Other languages
Japanese (ja)
Other versions
JP2550633B2 (en
Inventor
Kazuhiko Tsutsumi
和彦 堤
Takashi Tokunaga
隆志 徳永
Kazuo Hajima
一夫 羽島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63016122A priority Critical patent/JP2550633B2/en
Publication of JPS63302448A publication Critical patent/JPS63302448A/en
Application granted granted Critical
Publication of JP2550633B2 publication Critical patent/JP2550633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To enable efficient taking out of light reproduction output by disposing a 1st ternary amorphous magnetic TbFeCo alloy layer where the sub-lattice magnetization of FeCo is dominant at a room temp. and further, disposing the 2nd ternary amorphous magnetic TbFeCo alloy layer where the sub-lattice magnetization of Tb is dominant at a room temp. and utilizing an exchange bonding. CONSTITUTION:This recording medium has a magnetic layer 4 which is formed by laminating the 1st ternary amorphous magnetic alloy layer of TbFeCo having the axis of easy magnetization in the direction perpendicular to the film plane and expressed by Tbx(Fe1-yCoy)1-x and the 2nd ternary amorphous magnetic alloy layer 3 of TbFeCo having the axis of easy magnetization in the direction perpendicular to the film plane and expressed by Tbx(Fe1-yCoy)1-x and in which the 1st and 2nd amorphous magnetic alloy layers 2, 3 are exchange-bonded. The 1st amorphous magnetic alloy layer 2 is of 0.1<=x<=0.2, 0<y<0.5 and the 2nd amorphous magnetic alloy layer 3 is of 0.2<x<=0.35, 0<=y<0.5. The sub-lattice magnetization of FeCo is dominant in the 1st amorphous magnetic alloy layer 2 at the room temp. and the sub-lattice magnetization of Tb is dominant in the 2nd amorphous magnetic alloy layer. The light reproduction output is taken out efficiency by effectively utilizing the resultant max. angle of Kerr rotation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光熱磁気記録媒体に関し、例えば光磁気メ
モリ、磁気記録、表示素子などに用いられるものに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a photothermal magnetic recording medium, for example, one used in a magneto-optical memory, magnetic recording, display element, etc.

C従来の技術〕 従来、光熱磁気記録媒体としては、MnB1. MnC
uB1などの多結晶体薄膜、GdCo、GdFe、Tb
Fe、DyPe5GdTbFe、 TbDyFeなどの
非晶質薄膜、crcなどの単結晶薄膜などが知られてい
る。これらの’fi1mのうち、大面積の薄膜を室温近
傍の温度で製作する製膜性、信号を小さな光熱エネルギ
ーで書込むための書込み効率、書込まれた信号を511
比よく読出すだめの続出し効率などの点から、最近では
上記の非晶質薄膜が優れていると考えられている。
C. Prior Art] Conventionally, as a photothermal magnetic recording medium, MnB1. MnC
Polycrystalline thin film such as uB1, GdCo, GdFe, Tb
Amorphous thin films such as Fe, DyPe5GdTbFe, and TbDyFe, and single crystal thin films such as CRC are known. Among these 'fi1m', there is film-forming ability to produce a large-area thin film at a temperature near room temperature, writing efficiency to write signals with small photothermal energy, and write signals of 511.
Recently, the above-mentioned amorphous thin film is considered to be superior in terms of readout efficiency.

しかしながら、これらの非晶質薄膜においても種々の欠
点が指摘されている。例えば、GdFeは保磁力が小さ
く、記録された情報が不安定である。
However, various drawbacks have been pointed out even in these amorphous thin films. For example, GdFe has a small coercive force and recorded information is unstable.

また、GdFe、 GdCoは磁気的補償点を利用した
書込みを行っており、書込み効率を均一にするために、
製膜の際、膜組成を厳しく管理しなければならないとい
う問題点がある。また、TbFe、 DyFe、 Tb
DyFeはキュリ一点書込みのため、膜組成をそれほど
激しく管理する必要がないが、キュリ一点が100℃前
後と低いために、信号を読出す時にパワーの強い光を用
いることができないという問題点がある。キュリ一温度
は低ければ書込み効率は向上するが、書込まれが信号が
、周囲の温度とか読出し光により乱されてしまう、従っ
てキュリ一温度は、書込み可能であれば高い程よく、実
用上の状態を考慮すれば200℃前後が望ましい。
In addition, GdFe and GdCo perform writing using magnetic compensation points, and in order to make the writing efficiency uniform,
There is a problem in that the film composition must be strictly controlled during film formation. Also, TbFe, DyFe, Tb
Since DyFe allows writing at a single Curie point, there is no need to control the film composition so severely, but since the single Curie point is low at around 100 degrees Celsius, there is a problem in that high-power light cannot be used when reading signals. . If the Curie temperature is lower, the writing efficiency will improve, but the written signal will be disturbed by the ambient temperature or the read light. Considering this, a temperature of around 200°C is desirable.

また、反射光による読出しSN比は、反射率をR、カー
回転角をθにとすると、5θKに比例する。
Further, the read SN ratio by reflected light is proportional to 5θK, where R is the reflectance and θ is the Kerr rotation angle.

従って、SN比よく読出すためには、カー回転角を太き
(すればよい0表1に非晶質薄膜による光熱磁気記録媒
体の主なもののカー回転角とキュリ一温度を示す。なお
、第6図(a)及び(b)は、各々Tbx(Fel−y
Coy) I−X膜の組成(x)によるカー回転角(d
eg・)変化を示す特性図および組成(x)によるキュ
リ一温度(’C)変化を示す特性図である。
Therefore, in order to read with a good signal-to-noise ratio, the Kerr rotation angle should be increased. FIGS. 6(a) and (b) respectively show Tbx(Fel-y
Coy) Kerr rotation angle (d) depending on the composition (x) of the I-X film
3 is a characteristic diagram showing changes in Curie temperature ('C) depending on composition (x); and FIG.

図において、(^)はy=0.17の特性、(B)はy
=0.1の特性を示し、各図中、横軸は組成(x)、縦
軸はカー回転角(deg・)(第6図(a))および横
軸は組成(x)縦軸はキュリ一温度(℃)(第6図(b
))を示す。
In the figure, (^) is the characteristic of y=0.17, and (B) is the characteristic of y
In each figure, the horizontal axis is the composition (x), the vertical axis is the Kerr rotation angle (deg・) (Figure 6 (a)), the horizontal axis is the composition (x), and the vertical axis is the composition (x). Curi temperature (℃) (Figure 6 (b)
)).

この表1におけるTbFeCoに関しては、特開昭58
−73746号公報に報告されている。
Regarding TbFeCo in Table 1, JP-A-58
It is reported in Publication No.-73746.

表1 又、キュリ一温度の高い膜を用いる方法として、特開昭
56−153546号公報に示されている様に、基板の
上面に高保磁力で垂直磁気異方性を有する書き込み層を
配設し、該書き込み層の上面に磁気光学効果が大きく低
保磁力で垂直磁気異方性を有する読み出し層を配設した
構造の媒体が提案されている。
Table 1 Furthermore, as a method using a film with a high Curie temperature, a writing layer having a high coercive force and perpendicular magnetic anisotropy is provided on the upper surface of the substrate, as shown in Japanese Patent Application Laid-open No. 153546/1983. However, a medium has been proposed in which a reading layer having a large magneto-optic effect, low coercive force, and perpendicular magnetic anisotropy is disposed on the upper surface of the writing layer.

さらに特開昭57−78652号公報においても、−面
に垂直磁化可能な低キユリ一点を有する低保磁力層が形
成され、他面には高キュリ一点を有する低保磁力層が形
成され、該高保磁力層と該低保磁力層とは交換結合され
ている媒体が報告されている。
Furthermore, in JP-A-57-78652, a low coercive force layer having one low Curie point that can be perpendicularly magnetized is formed on the negative side, and a low coercive force layer having one high Curie point on the other side. A medium in which the high coercive force layer and the low coercive force layer are exchange-coupled has been reported.

〔発明が解決しようとする問題点3 表1に示されるようにTbFeCo膜は、キュリ一温度
が200℃前後で望ましく、カー回転角もこの中では最
も大きく 、SN比よく読み出すことができる。
[Problem to be Solved by the Invention 3] As shown in Table 1, the TbFeCo film preferably has a Curie temperature of around 200° C., has the largest Kerr rotation angle among them, and can be read out with a good signal-to-noise ratio.

しかしこのTbFeCo膜においてもカー回転角、キュ
リ一温度は第5図に示す様に組成に依存しており、最大
のカー回転角を得るためにはTb1lは少ない方がよい
、しかしTb1lが少ない場合、飽和磁化(Ms)の温
度依存性のためN(ノイズ)レヘルが上昇し、SN比が
低下するという欠点がある。そのためTb1jlが22
〜35a t%程度のTbFeCo膜が適当であった。
However, even in this TbFeCo film, the Kerr rotation angle and Curie temperature depend on the composition as shown in Figure 5, and in order to obtain the maximum Kerr rotation angle, it is better to have less Tb1l, but when Tb1l is small, However, due to the temperature dependence of saturation magnetization (Ms), the N (noise) level increases and the S/N ratio decreases. Therefore, Tb1jl is 22
A TbFeCo film of about 35 at% was suitable.

又Co量を多くしていくにつれカー回転角は大きくなる
が、キュリ一温度が上昇し、書き込みに大きなエネルギ
ーを必要とする欠点がある。
Furthermore, as the amount of Co increases, the Kerr rotation angle increases, but there is a drawback that the Curie temperature increases and a large amount of energy is required for writing.

またTbFeCo三元系合金薄膜においてTbx(Fe
+  Y Coy) l−11としたとき、y≧0.5
のときは第1層、第2層どちらに用いたとしても膜のキ
ュリ一温度が高くなりすぎ、記録ができないという欠点
がある。
Furthermore, in the TbFeCo ternary alloy thin film, Tbx (Fe
+ Y Coy) When l-11, y≧0.5
In this case, regardless of whether it is used for the first layer or the second layer, the Curie temperature of the film becomes too high and recording is impossible.

又、特開昭56−153546号公報に示された方法で
は、書き込み層に情報を書き込んで、その書き込み層か
ら読み出し層に情報を転写して読み出し層に偏光を照射
して情報を再生する方法を用いているため、容易に転写
が可能である層の組み合わせを選ぶ必要がある。そのた
め書き込み層などにはTbCo膜、 DyFe膜を用い
、読み出し層にはGdFe膜。
Furthermore, in the method disclosed in Japanese Patent Application Laid-Open No. 56-153546, information is written in a writing layer, the information is transferred from the writing layer to a reading layer, and the reading layer is irradiated with polarized light to reproduce the information. Since it uses a layer combination that allows easy transfer, it is necessary to choose a combination of layers that can be easily transferred. Therefore, a TbCo film or a DyFe film is used for the writing layer, etc., and a GdFe film is used for the reading layer.

GdCo膜などを用いる必要があり、構造が複雑になり
、製造方法も複雑になるという欠点がある。さらに読み
出し層は基板との間に書き込み層があるため、再生光は
基板をとおらず、保護膜を介したとしても腹側から直接
読み出すことになり、媒体に付着したゴミ、はこりなど
の影響をうけるという欠点がある。
It is necessary to use a GdCo film or the like, which has the disadvantage that the structure is complicated and the manufacturing method is also complicated. Furthermore, since there is a writing layer between the readout layer and the substrate, the reproduction light does not pass through the substrate and is read directly from the ventral side even if it passes through a protective film. It has the disadvantage of being influenced.

さらに、特開昭57−78652号公報においても、望
ましくは高保磁力層としてTbFe膜、 DyFe膜、
低保磁力層としてGeFe膜、 GdCo膜等が例示さ
れており、異なった元素を含有する2層膜を用いる場合
には、構造上複雑になり製造条件も難しくなる。
Further, in Japanese Patent Application Laid-Open No. 57-78652, the high coercive force layer is preferably a TbFe film, a DyFe film,
A GeFe film, a GdCo film, etc. are exemplified as the low coercive force layer, and when a two-layer film containing different elements is used, the structure becomes complicated and the manufacturing conditions become difficult.

また、交換結合されている媒体であっても、例えばTb
Fe膜とGdFe膜の組合せの場合、Tb副格子磁化優
勢のTbPe膜とGd副格子磁化優勢のGdFE膜の時
は、大きなカー回転角を得ることができずSN比の向上
が期待できない。またFe副格子磁化優勢のTbFe膜
とFe副格子磁化優勢のGdFe膜の時は、ノイズレベ
ルの上昇があり、やはりSN比の向上が期待できないと
いう欠点あった。
Furthermore, even if the medium is exchange-coupled, for example, Tb
In the case of a combination of an Fe film and a GdFe film, a TbPe film with dominant Tb sublattice magnetization and a GdFE film with dominant Gd sublattice magnetization cannot obtain a large Kerr rotation angle, and no improvement in the S/N ratio can be expected. In addition, when using a TbFe film in which Fe sublattice magnetization is dominant and a GdFe film in which Fe sublattice magnetization is dominant, the noise level increases and an improvement in the S/N ratio cannot be expected.

この発明は、かかる問題点を解決するためになされたも
ので、得られる最大のカー回転角を有効に利用して効率
よく光再生出力をとり出し得る光熱磁気記録媒体を提供
するものである。
The present invention has been made to solve these problems, and provides a photothermal magnetic recording medium that can efficiently extract optical reproduction output by effectively utilizing the maximum obtainable Kerr rotation angle.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の光熱磁気記録媒体は、膜面に垂直方向に磁化
容易軸を有し、一般式Tbx(Fe+  yCoy)+
−8で示されるTbFeCo 3元系第1非晶質磁性合
金層、および膜面に垂直方向に磁化容易軸軸を有し、一
般式Tby(Fe、V Coy)+−xで示されるTb
FeCo 3元系第2非晶質磁性合金層を基板に積層し
、上記第1と第2非質磁性合金層とは交換結合されてい
る磁性層を備え、上記第1非晶質磁性合金層において、
0.1≦X≦0.2、o<y<o、s、上記第2非晶質
磁性合金層において、0.2<X≦0.35.0≦y<
o、sであり、室温において上記第1非晶質磁性合金層
がFeCo副格子磁化優勢で、上記第2非晶質磁性合金
層がTb副格子磁化優勢のものである。
The photothermal magnetic recording medium of the present invention has an axis of easy magnetization perpendicular to the film surface, and has a general formula Tbx(Fe+yCoy)+
TbFeCo ternary system first amorphous magnetic alloy layer represented by -8, and Tb having an axis of easy magnetization perpendicular to the film surface and represented by the general formula Tby (Fe, V Coy) + -x.
A FeCo ternary-based second amorphous magnetic alloy layer is laminated on a substrate, the first and second amorphous magnetic alloy layers are exchange-coupled, and the first amorphous magnetic alloy layer is In,
0.1≦X≦0.2, o<y<o, s, in the second amorphous magnetic alloy layer, 0.2<X≦0.35.0≦y<
o, s, and the first amorphous magnetic alloy layer has FeCo sublattice magnetization predominant, and the second amorphous magnetic alloy layer has Tb sublattice magnetization predominant at room temperature.

〔作 用〕[For production]

この発明の光熱磁気記録媒体は、基板に得られる最大の
カー回転角を有する室温でFeCo副格子磁化優勢のT
bFeCo 3元系第1非晶質磁性合金層を配したこと
により大きなシグナルレベルが得られ、 ゛さらに室温
でTb副格子磁化優勢のTbFeCo 3元系第2非晶
質磁性合金層を配設し、交換結合を利用することにより
ノイズレベルの上昇をおさえ、大きなSN比を得ること
ができた。さらに交換結合を利用した結果書き込みエネ
ルギーを小さくすることが可能となった。
The photothermal magnetic recording medium of the present invention has a T
A large signal level can be obtained by disposing the bFeCo ternary first amorphous magnetic alloy layer, and further by disposing the TbFeCo ternary second amorphous magnetic alloy layer in which Tb sublattice magnetization is dominant at room temperature. By using exchange coupling, we were able to suppress the increase in noise level and obtain a large signal-to-noise ratio. Furthermore, as a result of using exchange coupling, it has become possible to reduce the write energy.

〔実施例〕〔Example〕

第1図はこの発明の一実施例の光熱磁気記録媒体の断面
図でありfilは基板、(2)はTbFeCo 3元系
第1非晶質磁性合金層、(3)はTbFeCo 3元系
第2非晶質磁性合金層で、上記第1.第2非晶質磁性合
金層で磁性層(4)を形成する。基板filとしては、
ガラス、セラミックス、プラスチック等の非磁性体が材
料として用いられる。
FIG. 1 is a sectional view of a photothermal magnetic recording medium according to an embodiment of the present invention, in which fil is a substrate, (2) is a TbFeCo ternary first amorphous magnetic alloy layer, and (3) is a TbFeCo ternary first amorphous magnetic alloy layer. 2 amorphous magnetic alloy layer, the above-mentioned 1. A magnetic layer (4) is formed from the second amorphous magnetic alloy layer. As the substrate fil,
Non-magnetic materials such as glass, ceramics, and plastics are used as materials.

TbFeCo 3元系第1非晶質磁性合金層(2)は、
Tbx(Fe+  y CoyL−++としたときXが
0.1≦X≦0.2の範囲であり、yが0 < y<0
.5の範囲であり、室温でFeCo副格子磁化優勢であ
る。
The TbFeCo ternary first amorphous magnetic alloy layer (2) is
When Tbx(Fe+ y CoyL-++, X is in the range of 0.1≦X≦0.2, and y is in the range of 0<y<0
.. 5, and the FeCo sublattice magnetization is dominant at room temperature.

TbPeCo 3元系第2非晶質磁性合金層(3)は、
Tbx(Fe+  y Coy)+−++としたときの
Xが0.2< X≦0.35の範囲であり、yが05 
y<0.5の範囲であり、室温でTb副格子磁化優勢で
ある。そして、TbFeC。
The TbPeCo ternary-based second amorphous magnetic alloy layer (3) is
When Tbx(Fe+y Coy)+-++, X is in the range of 0.2<X≦0.35, and y is 05
The range is y<0.5, and Tb sublattice magnetization is dominant at room temperature. and TbFeC.

3元系第1非晶質磁性合金層とTbFeCo 3元系第
2非晶質磁性合金層とが交換結合していることが必要で
ある。
It is necessary that the first ternary amorphous magnetic alloy layer and the second TbFeCo ternary amorphous magnetic alloy layer are exchange-coupled.

なお、上記のような構成の磁性層を形成するには、例え
ばスパッタリング法や真空蒸着法などによって製膜する
Note that in order to form the magnetic layer having the above structure, a film is formed by, for example, a sputtering method, a vacuum evaporation method, or the like.

以下、この発明を実施例によって詳細に説明する。Hereinafter, this invention will be explained in detail by way of examples.

実施例1 基板 :1.2m厚プラスチック基板 TbPeCo 3元系第1非晶質磁性合金層:Tb+s
、1(FeyoCOso)ez、n膜厚:200 人保
磁カニ llc z 2 KOeキュリ一温度:250
℃ TbFeCo 3元系第2非晶′Jf磁性合金層:Tb
zs、h(FewoGO+o)vi、a膜厚:600 
人保磁カニ Hc210KOeキュリ一温度:180℃ 上記構成材料を用い、スパッタリング法によってこの発
明の一実施例の光熱磁気記録媒体を得た。
Example 1 Substrate: 1.2m thick plastic substrate TbPeCo Ternary first amorphous magnetic alloy layer: Tb+s
, 1 (FeyoCOso) ez, n Film thickness: 200 Coercive crab llc z 2 KOe Curie temperature: 250
℃ TbFeCo Ternary system second amorphous 'Jf magnetic alloy layer: Tb
zs, h(FewoGO+o) vi, a Film thickness: 600
A photothermal magnetic recording medium according to an embodiment of the present invention was obtained by a sputtering method using the above-mentioned constituent materials.

比較例1 実施例1におけるTbFeCo 3元系第1非晶質磁性
合金層を省略し、Tb+ e、 h (FetoCos
o) sz、 aのものを800 人のみを実施例1と
同様に積層して光熱磁気記録媒体を得た。第2図にその
断面図を示す。
Comparative Example 1 The TbFeCo ternary first amorphous magnetic alloy layer in Example 1 was omitted, and Tb+e, h (FetoCos
o) A photothermal magnetic recording medium was obtained by laminating only 800 people of sz and a in the same manner as in Example 1. FIG. 2 shows its cross-sectional view.

実施例2〜11 表2に示したような構成材料を用いる他は実施例1と同
様にこの発明の他の実施例の光熱磁気記録媒体を得た。
Examples 2 to 11 Other examples of photothermal magnetic recording media of the present invention were obtained in the same manner as in Example 1, except that the constituent materials shown in Table 2 were used.

比較例2〜9 表2に示したような構成材料を用いる他は実施例1と同
様に光熱磁気記録媒体を得た。
Comparative Examples 2 to 9 Photothermal magnetic recording media were obtained in the same manner as in Example 1, except that the constituent materials shown in Table 2 were used.

記録再生特性試験 上記のようにして得られたこの発明の実施例の光熱磁気
記録媒体および比較例の光熱磁気記録媒体について、デ
ィスクスピード9.8m/s、記録周波数IMHzで記
録再生特性試験を行った。その結果を第3図および第4
図に示す。第3図は書き込みパワー(mW)によるS 
/ N (dB)変化を示す特性図であり、図中(n+
)は実施例の特性、(n)は比較例1の特性である。こ
こで、横軸は書き込みパワー (mW)を、縦軸はS 
/ N (dB)を示す。第4図は読み出しパワー(m
W)によるS / N (dB)変化を示す特表2 性図であり、図中(Al) (A2)は実施例の特性、
(Bl)(B2)は比較例1の特性である。ここで、横
軸は読み出しパワー(−)を、縦軸はS / N (d
B)を示す。
Recording/Reproduction Characteristic Test A recording/reproduction characteristic test was conducted on the photothermal magnetic recording medium of the example of the present invention and the photothermal magnetic recording medium of the comparative example obtained as described above at a disk speed of 9.8 m/s and a recording frequency of IMHz. Ta. The results are shown in Figures 3 and 4.
As shown in the figure. Figure 3 shows S by write power (mW).
/N (dB) change, and in the figure (n+
) is the characteristic of Example, and (n) is the characteristic of Comparative Example 1. Here, the horizontal axis is the write power (mW), and the vertical axis is S
/N (dB). Figure 4 shows the readout power (m
This is a special table 2 characteristic chart showing the change in S/N (dB) due to W), in which (Al) (A2) is the characteristic of the example,
(Bl) (B2) are the characteristics of Comparative Example 1. Here, the horizontal axis represents read power (-), and the vertical axis represents S/N (d
B) is shown.

又、表2に、用いた構成材料と、得られた光熱磁気記録
媒体のS/Nを示す。
Further, Table 2 shows the constituent materials used and the S/N of the obtained photothermal magnetic recording medium.

それによると、実施例は、比較例より低いパワーからS
N比は高く、即ち、より小さなエネルギーで書き込むこ
とができる、又、実施例においては、大きな読み出しパ
ワーまで高いSN比を保つことができる。またTbの組
成を変化させたことによるS / N (dB)の変化
は第5図に示す、この図からの0.1 ≦X≦0,2で
S/Nが良いことがわかる。
According to this, the example has S from a lower power than the comparative example.
The N-ratio is high, ie, it can be written with less energy, and in embodiments a high SNR can be maintained up to high read powers. Further, the change in S/N (dB) due to changing the composition of Tb is shown in FIG. 5. From this figure, it can be seen that the S/N is good when 0.1≦X≦0,2.

このようにこの発明の実施例の光熱磁気記録媒体を用い
ると小さなエネルギーで書き込むことが可能であり、又
、大きな読み出しパワーまで高いSN比を保つことがで
き、光再生出力は従来よりも大きい。従って、光ビーム
を用いて書き込みカー効果を利用して読み出しを行なう
いわゆるビームアドレッサブルファイルメモリ等の光熱
磁気メモリとして使用すれば、極めて高密度でSN比の
大きい優れたメモリ装置を実現できる。
As described above, by using the photothermal magnetic recording medium of the embodiment of the present invention, it is possible to write with small energy, maintain a high S/N ratio up to a large read power, and have a higher optical reproduction output than the conventional one. Therefore, if it is used as a photothermal magnetic memory such as a so-called beam-addressable file memory that performs reading using a writing Kerr effect using a light beam, an excellent memory device with extremely high density and a high signal-to-noise ratio can be realized.

なお、基板filとTbFeCo 3元系第1非晶質磁
性合金層(2)の間に窒化ケイ素膜などの誘電体層を設
けて、カー回転角増大効果をもたせる構成をとっても良
いことはいうまでもない。
It goes without saying that a dielectric layer such as a silicon nitride film may be provided between the substrate fil and the TbFeCo ternary first amorphous magnetic alloy layer (2) to provide an effect of increasing the Kerr rotation angle. Nor.

又、上記実施例においては、基板側からの記録再生を行
っているが、膜面側から記録再生を行う場合においては
、TbFeCo 3元系第1非晶貢磁性合金層とTbF
eCo 3元系第2非晶質磁性合金層を逆に形成し、実
施する構成についても、この発明の実施例と同様である
ことはいうまでもない。
In the above embodiment, recording and reproduction are performed from the substrate side, but when recording and reproduction is performed from the film surface side, the TbFeCo ternary first amorphous magnetic alloy layer and the TbF
It goes without saying that the configuration in which the eCo ternary-based second amorphous magnetic alloy layer is formed and implemented in reverse is the same as in the embodiment of the present invention.

即ち、TbFeCo 3元系第1非晶質磁性合金層とT
bFeCo S元系第2非晶賓磁性合金層はどちらを読
み出し層、書き込み層と規定するものではない。
That is, the TbFeCo ternary first amorphous magnetic alloy layer and the TbFeCo ternary amorphous magnetic alloy layer
The bFeCo S-based second amorphous magnetic alloy layer does not specify which layer is the read layer and which is the write layer.

また、高保磁力層と低保磁力層とを規定するものでもな
い。
Further, it does not define a high coercive force layer and a low coercive force layer.

(発明の効果〕 以上説明したとおり、この発明は、膜面に垂直方向に磁
化容易軸を有し、一般式Tbx(Fe+ −y Coy
)し、で示されるTbFeCo 3元系第1非晶1磁性
合金層、および膜面に垂直方向に磁化容易軸を有し、一
般式Tbx(Fe、 −y Coy) +4で示される
TbFeCo 3元系第2非晶質磁性合金層を基板に積
層し、上記第1と第2非晶質磁性合金層とは交換結合さ
れている磁性層を備え、上記第1非晶質磁性合金層にお
いて、0.1≦X≦0.2 、  O< 7 <0.5
、上記第2非晶質磁性合金層において、0.2<X≦0
.35 、  O≦y<0.5であり、室温において上
記第1非晶質磁性合金層が、FeCo副格子磁化優勢で
、上記第2非晶質磁性合金層がTb副格子磁化優勢であ
るものを用いることにより、得られる最大のカー回転角
を有効に利用して効率良(光再生出力をとり出し得る光
熱磁気記録媒体を得ることができる。
(Effects of the Invention) As explained above, the present invention has an axis of easy magnetization perpendicular to the film surface, and has a general formula Tbx(Fe+ -y Coy
), and a TbFeCo ternary first amorphous monomagnetic alloy layer represented by , and a TbFeCo ternary having an axis of easy magnetization perpendicular to the film surface and represented by the general formula Tbx (Fe, -y Coy) +4. A system second amorphous magnetic alloy layer is laminated on a substrate, the first and second amorphous magnetic alloy layers are exchange-coupled, and the first amorphous magnetic alloy layer includes: 0.1≦X≦0.2, O<7<0.5
, in the second amorphous magnetic alloy layer, 0.2<X≦0
.. 35, O≦y<0.5, and at room temperature, the first amorphous magnetic alloy layer has dominant FeCo sublattice magnetization, and the second amorphous magnetic alloy layer has dominant Tb sublattice magnetization. By using this method, it is possible to obtain a photothermal magnetic recording medium that can efficiently utilize the maximum Kerr rotation angle that can be obtained to obtain optical reproduction output.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の光熱磁気記録媒体の断面
図、第2図は従来の光熱磁気記録媒体の断面図、第3図
は書き込みパワー(m−)によるS/N(dR)変化を
示す特性図、第4図は読み出しパワー(1)によるS 
/ N (dB)変化を示す特性図、第5図はTbの組
成を変化させた時のS / N (dB)変化を示す特
性図、第6図(a)および(b)は、Tbx(Fe+ 
 ’ICoy)+−x膜の各々組成(x)によるカー回
転角(deg、)変化および組成(x)によるキュリ一
温度(’C)変化を示す特性図である。 図において、(1)は基板、屡2)はTbFeCo 3
元系第1非晶質磁性合金層、(3)はTbFeCo 3
元系第2非晶質磁性合金層、(4)は磁性層である。 なお、各図中同一符号は同−又は相当部分を示す。 代理人    大  岩  増  雄 第1図 1:基板 第2図 第3図       第4図 1「きこHパワー(11l/J)          
    DIEh出 Lノ17−(ynW’)第5図 X((at′A) Tbx(Feo、7Coo3)l−x 第6図 (b)
Fig. 1 is a cross-sectional view of a photothermal magnetic recording medium according to an embodiment of the present invention, Fig. 2 is a cross-sectional view of a conventional photothermal magnetic recording medium, and Fig. 3 is S/N (dR) depending on writing power (m-). A characteristic diagram showing changes in S
/N (dB) change, Figure 5 is a characteristic diagram showing S/N (dB) change when the composition of Tb is changed, and Figures 6 (a) and (b) are Tbx ( Fe+
FIG. 3 is a characteristic diagram showing changes in the Kerr rotation angle (deg, ) depending on the composition (x) and changes in the Curie temperature ('C) depending on the composition (x) of each of the 'ICoy)+-x films. In the figure, (1) is the substrate, and 2) is TbFeCo 3
The first amorphous magnetic alloy layer (3) is TbFeCo 3
The second amorphous magnetic alloy layer (4) is a magnetic layer. Note that the same reference numerals in each figure indicate the same or corresponding parts. Agent Masuo Oiwa Fig. 1 1: Board Fig. 2 Fig. 3 Fig. 4 1 “Kiko H Power (11l/J)
DIEh output Lno17-(ynW') Fig. 5 X ((at'A) Tbx (Feo, 7Coo3) l-x Fig. 6 (b)

Claims (1)

【特許請求の範囲】[Claims] (1)膜面に垂直方向に磁化容易軸を有し、一般式Tb
_X(Fe_1_−_yCo_y)_1_−_Xで示さ
れるTbFeCo3元系第1非晶質磁性合金層、および
膜面に垂直方向に磁化容易軸を有し、一般式Tb_X(
Fe_1_−_yCo_y)_1_−_Xで示されるT
bFeCo3元系第2非晶質磁性合金層を基板に積層し
、上記第1と第2非晶質磁性合金層とは交換結合されて
いる磁性層を備え、上記第1非晶質磁性合金層において
、0.1≦X≦0.2、0<y<0.5、上記第2非晶
質磁性合金層において、0.2<X≦0.35、0≦y
<0.5であり、室温において上記第1非晶質磁性合金
層がFeCo副格子磁化優勢で、上記第2非晶質磁性合
金層がTb副格子優勢である光熱磁気記録媒体。
(1) Has an axis of easy magnetization perpendicular to the film surface, and has the general formula Tb
It has a TbFeCo ternary first amorphous magnetic alloy layer represented by _X(Fe_1_-_yCo_y)_1_-_X and an axis of easy magnetization perpendicular to the film surface, and has a general formula Tb_X(
T denoted by Fe_1_-_yCo_y)_1_-_X
a bFeCo ternary-based second amorphous magnetic alloy layer is laminated on a substrate, the first and second amorphous magnetic alloy layers are exchange-coupled, the first amorphous magnetic alloy layer , 0.1≦X≦0.2, 0<y<0.5, and in the second amorphous magnetic alloy layer, 0.2<X≦0.35, 0≦y
<0.5, and the first amorphous magnetic alloy layer has a dominant FeCo sublattice magnetization, and the second amorphous magnetic alloy layer has a dominant Tb sublattice magnetization at room temperature.
JP63016122A 1987-01-26 1988-01-26 Photothermal magnetic recording medium Expired - Lifetime JP2550633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63016122A JP2550633B2 (en) 1987-01-26 1988-01-26 Photothermal magnetic recording medium

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1570287 1987-01-26
JP62-15702 1987-01-26
JP63016122A JP2550633B2 (en) 1987-01-26 1988-01-26 Photothermal magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS63302448A true JPS63302448A (en) 1988-12-09
JP2550633B2 JP2550633B2 (en) 1996-11-06

Family

ID=26351888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63016122A Expired - Lifetime JP2550633B2 (en) 1987-01-26 1988-01-26 Photothermal magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2550633B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02177148A (en) * 1988-12-28 1990-07-10 Canon Inc Information recording method and information recording and reproducing method
US5418076A (en) * 1990-11-20 1995-05-23 Canon Kabushiki Kaisha Magnetic-optical recording medium
CN103692705A (en) * 2013-12-16 2014-04-02 杨全民 Composite magnetic material and preparation method and use thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6687197B1 (en) 1999-09-20 2004-02-03 Fujitsu Limited High density information recording medium and slider having rare earth metals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128040A (en) * 1985-11-28 1987-06-10 Sony Corp Photomagnetic recording medium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128040A (en) * 1985-11-28 1987-06-10 Sony Corp Photomagnetic recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02177148A (en) * 1988-12-28 1990-07-10 Canon Inc Information recording method and information recording and reproducing method
US5418076A (en) * 1990-11-20 1995-05-23 Canon Kabushiki Kaisha Magnetic-optical recording medium
CN103692705A (en) * 2013-12-16 2014-04-02 杨全民 Composite magnetic material and preparation method and use thereof

Also Published As

Publication number Publication date
JP2550633B2 (en) 1996-11-06

Similar Documents

Publication Publication Date Title
JP3072812B2 (en) Magneto-optical recording medium and method of reproducing information from the medium
US5420833A (en) Magneto-optical recording medium having first and second magnetic layers
JP3078145B2 (en) Method for manufacturing magneto-optical recording medium
US5663935A (en) Magneto-optical recording medium having two magnetic layers of exchange-coupled at ferromagnetic phase
US5248565A (en) Optical-thermal magnetic storage medium
JPH01237945A (en) Magneto-optical recording medium
JPS63302448A (en) Optical thermomagnetic recording medium
US5989705A (en) Magneto-optical recording medium
JPH0795376B2 (en) Photothermal magnetic recording medium
JPH0550400B2 (en)
JPH056588A (en) Magneto-optical recording medium and magneto-optical recording method
JPH07230637A (en) Magneto-optical recording medium and information recording and reproducing method using this medium
EP0524799A2 (en) Magnetooptic recording medium
JPH0232690B2 (en)
US5529854A (en) Magneto-optic recording systems
JPH0795377B2 (en) Photothermal magnetic recording medium
JP2647958B2 (en) Magneto-optical recording medium
JPS63308751A (en) Optical thermomagnetic recording medium
JP2957260B2 (en) Magneto-optical recording medium
JPS62172547A (en) Photomagnetic recording medium
KR930002168B1 (en) Magneto-optic memory medium
JPH0453047A (en) Optical memory element
JPS61243977A (en) Photomagnetic recording medium
JPH03276448A (en) Magneto-optical recording method
JPH08194976A (en) Magnetooptic recording medium and magnetooptic recording method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070822

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12