JPS63302360A - Electromagnetic ultrasonic transducer - Google Patents

Electromagnetic ultrasonic transducer

Info

Publication number
JPS63302360A
JPS63302360A JP13865587A JP13865587A JPS63302360A JP S63302360 A JPS63302360 A JP S63302360A JP 13865587 A JP13865587 A JP 13865587A JP 13865587 A JP13865587 A JP 13865587A JP S63302360 A JPS63302360 A JP S63302360A
Authority
JP
Japan
Prior art keywords
conductor
transmission
transmitting
reception
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13865587A
Other languages
Japanese (ja)
Other versions
JP2538596B2 (en
Inventor
Michio Sato
道雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62138655A priority Critical patent/JP2538596B2/en
Publication of JPS63302360A publication Critical patent/JPS63302360A/en
Application granted granted Critical
Publication of JP2538596B2 publication Critical patent/JP2538596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To prevent the interference of a transmission pulse with a reflection pulse and thereby to enable the implementation of accurate flaw detection, by conducting the transmission and reception of an ultrasonic wave by separate conductors. CONSTITUTION:A permanent magnet 1 is magnetized in the direction of thickness, and a conductor 3 for transmission is laminated and fixed on one side surface perpendicular to the direction of magnetization of the magnet 1, with a thin electric insulator 2 interposed therebetween. This conductor 3 is formed zigzag of a conductor strip so that U-shaped parts thereof alternate and are continuous, and its branch conductors 3a, 3b... for transmission are arranged at a prescribed distance between them. Besides, a conductor 6 for reception is laminated and fixed on the conductor 3 with a thin electric insulator 5 interposed therebetween. This conductor 6 is formed zigzag of a conductive strip so that U-shaped parts thereof alternate and are continuous, and its branch conductors 6a, 6b... for reception are arrange at a prescribed distance between them. The transmission of an ultrasonic wave is implemented by making a high-frequency current flow through the conductor 3, while the reception of the ultrasonic wave is implemented by a voltage being induced in the conductor 6. The interference of a transmission pulse with a reflection pulse is prevented in this way, and thereby accurate flaw detection can be executed.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、超音波探傷試験に使用する電磁超音波トラン
スジューサに係り、とりわけ精度よく探傷試験を行なう
ことができる電磁超音波トランスジューサに関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to an electromagnetic ultrasonic transducer used for ultrasonic flaw detection testing, and in particular an electromagnetic ultrasonic transducer that can perform flaw detection tests with high accuracy. Regarding transducers.

(従来の技術) 被検査材の溶接部等の超音波探傷試験を実施するには、
超音波トランスジューサを必要とする。
(Conventional technology) In order to perform an ultrasonic flaw detection test on welded parts of the inspected material,
Requires ultrasound transducer.

このような超音波トランスジューサとしては、従来、種
々のタイプのものが提案されている。これら超音波トラ
ンスジューサの1つとして電磁超音波トランスジューサ
が知られている。この電磁超音波トランスジューサは、
磁歪素子や電歪素子を用いたものとは違って、ローレン
ッカで被検査材中に超音波を生起させるようにしたもの
で、被検査材とは非接触状態にセットできるという特徴
を備えている。したがって、被検査材の表面に凹凸が存
在しているような場合でも格別な処置などを施すことな
く試験を実施することができる。
Various types of ultrasonic transducers have been proposed in the past. An electromagnetic ultrasonic transducer is known as one of these ultrasonic transducers. This electromagnetic ultrasound transducer is
Unlike those that use magnetostrictive elements or electrostrictive elements, this device uses a low roller to generate ultrasonic waves in the material to be inspected, and has the feature that it can be set without contacting the material to be inspected. . Therefore, even if the surface of the material to be inspected has irregularities, the test can be carried out without any special measures.

ところで、このような電磁超音波トランスジューサは、
通常、第7図に符号3oで示すように、永久磁石4と、
永久磁石4の着磁方向と直交する−側面に薄い電気絶縁
体2を介して積層固着された高周波電流路形成用の導電
体3とで構成されている。上記永久磁石4は厚み方法に
磁化されている。また上記導電体3は、第8図に示す如
く導電性帯片によりコ字形部分が互い違いに連続するよ
うジグザグ状に屈曲形成され、その分岐導電体3a、3
b、3c、・・・が一定距離(ピッチp)をおいて配置
されている。
By the way, such an electromagnetic ultrasonic transducer is
Usually, as shown by reference numeral 3o in FIG. 7, a permanent magnet 4 and
A conductor 3 for forming a high frequency current path is laminated and fixed to the side surface of the permanent magnet 4 with a thin electric insulator 2 interposed therebetween, which is perpendicular to the magnetization direction of the permanent magnet 4. The permanent magnet 4 is magnetized in the thickness direction. Further, as shown in FIG. 8, the conductor 3 is bent in a zigzag shape using conductive strips so that the U-shaped portions are alternately continuous, and the branch conductors 3a, 3
b, 3c, . . . are arranged at a constant distance (pitch p).

そして、以上のように構成された電磁超音波トランスジ
ューサ30を用いて被検査材20の探傷試験を行なう場
合には、第7図に示すように高周波電流路を形成する導
電体3を、被検査材4の表面に所定の間隙18をあけて
対向させ、導電体3の両端7,8を高周波電源および信
号送受信装置(いずれも図示せず)に接続する。
When performing a flaw detection test on the material 20 to be inspected using the electromagnetic ultrasonic transducer 30 configured as described above, as shown in FIG. The conductor 3 is placed facing each other with a predetermined gap 18 on its surface, and both ends 7 and 8 of the conductor 3 are connected to a high frequency power source and a signal transmitting/receiving device (none of which are shown).

ここで、上記電磁超音波トランスジューサ30の動作は
次の通りである。
Here, the operation of the electromagnetic ultrasonic transducer 30 is as follows.

電磁超音波トランスジューサ30を、その導電体3を被
検査+4’ 20の表面に対向させてセットすると、第
9図に破線矢印で示すように、永久磁石4から出た磁力
線13が被検査材20の表面に直角に入射する。従って
、被検査材20の表面では、これと垂直なバイアス磁界
15が印加された状態となる。次に、導電体3に高周波
電流を流すと、導電体3の、互いに平行な分岐導電体3
a、3b。
When the electromagnetic ultrasonic transducer 30 is set with its conductor 3 facing the surface of the material to be inspected 20, the lines of magnetic force 13 coming out of the permanent magnet 4 are directed to the surface of the material to be inspected 20, as shown by the dashed arrow in FIG. incident at right angles to the surface of Therefore, the bias magnetic field 15 perpendicular to the surface of the inspected material 20 is applied thereto. Next, when a high frequency current is passed through the conductor 3, the branch conductors 3 parallel to each other of the conductor 3
a, 3b.

3c、・・・には、交互に逆向きの電流12が流れる。3c, . . ., currents 12 in opposite directions alternately flow through them.

そこで、この電流12により被検査材20の表面には、
電流12とは反対向きとなる、交互に逆向きの高周波の
誘導渦電流14が流れる。そしてこの誘導渦電流14と
バイアス磁界15との相互作用によって、被検査材20
内には、この被検査材20の表面と平行となるローレン
ツ力16が発生するが、このローレンツ力16も交互に
逆位1目となる。この結果、被検査材20に生起される
送信用超音波17は横波で、かつ被検査材20の表面に
垂直な方向に対して斜めの斜角ビームとなって伝播する
こととなる。
Therefore, due to this current 12, on the surface of the material to be inspected 20,
Alternating high-frequency induced eddy currents 14 flow in opposite directions to the current 12 . The interaction between the induced eddy current 14 and the bias magnetic field 15 causes the inspected material 20 to
Inside, a Lorentz force 16 is generated that is parallel to the surface of the material to be inspected 20, but this Lorentz force 16 is also alternately reversed. As a result, the transmission ultrasonic waves 17 generated in the material to be inspected 20 are transverse waves and propagate as oblique beams oblique to the direction perpendicular to the surface of the material to be inspected 20 .

このような電磁超音波トランスジューサ30を用いて溶
接部近傍の超音波探傷試験を行なう場合には、第10図
に示すように電磁超音波トランスジューサ30を配置す
る。すなわち、被検査材20の溶接部35の近傍に電磁
超音波トランスジューサ30を配置し、送信用超音波1
7を送信する。送信用超音波17は、欠陥32があると
、反射をおこし受信用超音波22として電磁超音波トラ
ンスジューサ30に戻ってくる。このとき電磁超音波ト
ランスジューサ30の導電体3の両端7゜8の電気波形
を観測すると、第11図に示した電気波形が得られる。
When conducting an ultrasonic flaw detection test near a weld using such an electromagnetic ultrasonic transducer 30, the electromagnetic ultrasonic transducer 30 is arranged as shown in FIG. That is, the electromagnetic ultrasonic transducer 30 is placed near the welded part 35 of the inspected material 20, and the transmitting ultrasonic wave 1 is
Send 7. When the transmitting ultrasonic wave 17 has a defect 32, it is reflected and returns to the electromagnetic ultrasonic transducer 30 as a receiving ultrasonic wave 22. At this time, when observing the electrical waveform at 7.8 degrees from both ends of the conductor 3 of the electromagnetic ultrasonic transducer 30, the electrical waveform shown in FIG. 11 is obtained.

第11図で符号33は電磁超音波トランスジューサ30
を用いて超音波を送信するための送信パルスであり、符
号34は欠陥32からの反射パルスである。超音波探傷
試験においては反射パルス34を検出して欠陥の有無を
判定すると同時に、送信パルス33と反射パルス34の
間の時間Tを測定して欠陥32の位置を判別している。
In FIG. 11, reference numeral 33 is an electromagnetic ultrasonic transducer 30.
This is a transmission pulse for transmitting an ultrasonic wave using , and reference numeral 34 is a reflected pulse from the defect 32 . In the ultrasonic flaw detection test, the presence or absence of a defect is determined by detecting the reflected pulse 34, and at the same time, the position of the defect 32 is determined by measuring the time T between the transmitted pulse 33 and the reflected pulse 34.

(発明が解決しようとする問題点) 上述したように、超音波探傷試験においては、第11図
の反射パルス34を検出して欠陥の有無を判断すると同
時に送信パルス33と反射パルス34の間の時間Tを測
定している。
(Problems to be Solved by the Invention) As described above, in the ultrasonic flaw detection test, the reflected pulse 34 in FIG. 11 is detected to determine the presence or absence of a defect, and at the same time, the Time T is being measured.

一方、電磁超音波トランスジューサ30の送信パルス3
3は、一般的にいって一定の持続時間T′を何している
。しかしながら、例えば薄板材等の探傷を行う場合には
送信パルス33と反射パルス34との時間Tが短くなり
、第12図に示すようにT<T’ となって反射パルス
34が送信パルス33の中に隠れてしまうことがある。
On the other hand, the transmission pulse 3 of the electromagnetic ultrasonic transducer 30
3. Generally speaking, what is the constant duration T'? However, when performing flaw detection on thin plate materials, for example, the time T between the transmitted pulse 33 and the reflected pulse 34 becomes shorter, and as shown in FIG. Sometimes it hides inside.

このように反射パルス34が送信パルス33の中に隠れ
てしまうと、反射パルス34が検出できず、精度よく超
音波探傷試験を行うことができないという問題がある。
If the reflected pulse 34 is hidden in the transmitted pulse 33 in this way, there is a problem in that the reflected pulse 34 cannot be detected and an ultrasonic flaw detection test cannot be performed with high accuracy.

本発明はこのような点を考慮してなされたものであり、
精度よく探傷試験を行うことができる電磁超音波トラン
スジューサを提供することを1」的とする。
The present invention has been made in consideration of these points,
Our objective is to provide an electromagnetic ultrasonic transducer that can perform flaw detection tests with high accuracy.

を発明の構成〕 (問題点を解決するだめの手段) 本発明は、導電性帯片によりコ字形部分が互い違いに連
続するようジグザグ状に屈曲形成された2種の導電体を
設け、永久磁石の着磁方向と直交する一側面に電気絶縁
体を介して一方の導電体を積層し、この一方の導電体に
電気絶縁体を介して他方の導電体をその分岐導電体が前
記一方の分岐導電体の間隔部分に整合するよう積層し、
さらに前記2種の導電体を送信用導電体および受信用導
電体に分けたことを特徴とする電磁超音波トランスジュ
ーサである。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides two types of conductors bent in a zigzag shape so that the U-shaped portions are alternately continuous by conductive strips, and a permanent magnet. One conductor is laminated on one side perpendicular to the magnetization direction with an electric insulator interposed therebetween, and the other conductor is connected to the one conductor through the electric insulator. Laminated to match the spacing of the conductor,
The electromagnetic ultrasonic transducer is further characterized in that the two types of conductors are divided into a transmitting conductor and a receiving conductor.

(作 用) 本発明によれば、超音波の送信と受信とを別個の導電体
によって行うので、送信パルスと反射パルスの干渉が防
止される。また受信用導電体はその分岐導電体が送信用
導電体の分岐導電体の間隔部分に整合するよう配置され
ているので、受信用導電体が送信用導電体に入力された
高周波によって影響を受けることはない。
(Function) According to the present invention, since ultrasonic waves are transmitted and received by separate conductors, interference between transmitted pulses and reflected pulses is prevented. In addition, the receiving conductor is arranged so that its branch conductors match the spacing between the branch conductors of the transmitting conductor, so the receiving conductor is affected by the high frequency input to the transmitting conductor. Never.

(実施例) 以下、図面を参照して本発明の実施例について説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図乃至第6図は本発明による電磁超音波トランスジ
ューサの一実施例を示す図である。第1図乃至第3図に
示すように、永久磁石1は厚み方向に磁化されており、
永久磁石1の着磁方向と直交する一側面に薄い電気絶縁
体2を介して送信用導電体3が積層固着されている。こ
の送信用導電体3は、導電性帯片によりコ字形部分が互
い違いに連続するようジグザグ状に屈曲形成され、その
送信用分岐導電体3a、 3b、  3c、・・・が一
定距離をおいて配置されている。
1 to 6 are views showing one embodiment of an electromagnetic ultrasonic transducer according to the present invention. As shown in FIGS. 1 to 3, the permanent magnet 1 is magnetized in the thickness direction,
A transmission conductor 3 is laminated and fixed on one side of the permanent magnet 1 perpendicular to the magnetization direction with a thin electric insulator 2 interposed therebetween. This transmitting conductor 3 is bent in a zigzag shape using conductive strips so that the U-shaped portions are alternately continuous, and the transmitting branch conductors 3a, 3b, 3c, . . . are arranged at a certain distance. It is located.

また、送信用導電体3に薄い電気絶縁体5を介して受信
用導電体6が積層固着されている。この受信用導電体6
は送信用導電体3と同様、導電性帯片によりコ字形部分
が互い違いに連続するようジグザグ状に屈曲形成され、
その受信用分岐導電体6a、6b、6c、・・・が一定
距離をおいて配置されている。
Further, a receiving conductor 6 is laminated and fixed to the transmitting conductor 3 with a thin electrical insulator 5 interposed therebetween. This receiving conductor 6
Similar to the transmitting conductor 3, the conductive strips are bent in a zigzag shape so that the U-shaped portions are alternately continuous.
The receiving branch conductors 6a, 6b, 6c, . . . are arranged at a certain distance.

この受信用導電体6は、受信用分岐導電体6a。This receiving conductor 6 is a receiving branch conductor 6a.

6b、6c、・・・が送信用導電体3の分岐導電体3a
、3b、3c、・・・の間隔部分に整合するよう配置さ
れている。すなわち、第3図に示すように、受信用導電
体6は送信用導電体3に対して半ビ・ソチずらしたもの
である。
6b, 6c, . . . are branch conductors 3a of the transmitting conductor 3
, 3b, 3c, . . . That is, as shown in FIG. 3, the receiving conductor 6 is shifted by half a centimeter with respect to the transmitting conductor 3.

また、送信用導電体3の両端7,8は超音波送信器(図
示せず)に接続され、また受信用導電体6の両端9.1
0は超音波受信器(図示せず)に接続されている。
Further, both ends 7 and 8 of the transmitting conductor 3 are connected to an ultrasonic transmitter (not shown), and both ends 9.1 of the receiving conductor 6 are connected to an ultrasonic transmitter (not shown).
0 is connected to an ultrasound receiver (not shown).

次にこのような構成からなる本実施例の作用について説
明する。
Next, the operation of this embodiment having such a configuration will be explained.

第4図は電磁超音波トランスジューサ1を用いて超音波
を送信する場合の動作を示した図である。
FIG. 4 is a diagram showing the operation when transmitting ultrasonic waves using the electromagnetic ultrasonic transducer 1.

電磁超音波トランスジューサ1を、その送信用導電体3
を被検査材20の表面に対向させてセットすると、第4
図に破線矢印で示すように、永久磁石4から出た磁力線
13が被検査材20の表面に直角に入射する。従って、
被検査材20の表面では、これと垂直なバイアス磁界1
5が印加された状態となる。次に、送信用導電体3に高
周波電流を流すと、送信用導電体3の、互いに平行な送
信用分岐導電体3a、3b、3c、・・・には、交互に
逆向きの電流12が流れる。そこで、この電流12によ
り被検査材20の表面には、電流12とは反対向きとな
る。交互に逆向きの高周波の誘導渦電流14が流れる。
The electromagnetic ultrasonic transducer 1 is connected to its transmitting conductor 3.
When set facing the surface of the material to be inspected 20, the fourth
As shown by the broken line arrow in the figure, the lines of magnetic force 13 coming out of the permanent magnet 4 are incident on the surface of the material to be inspected 20 at right angles. Therefore,
On the surface of the material to be inspected 20, a bias magnetic field 1 perpendicular to the surface is applied.
5 is applied. Next, when a high-frequency current is passed through the transmitting conductor 3, currents 12 in opposite directions alternately flow through the transmitting branch conductors 3a, 3b, 3c, etc., which are parallel to each other, of the transmitting conductor 3. flows. Therefore, this current 12 causes the surface of the inspected material 20 to flow in the opposite direction to the current 12. High-frequency induced eddy currents 14 alternately flow in opposite directions.

そしてこの誘導渦電流14とバイアス磁界15との相互
作用によって、被検査材20内には、この被検査材20
の表面に平行となるローレンツ力16が発生するが、こ
のローレンツ力16も交互に逆位相となる。この結果、
被検査材20に生起される送信用超音波17は横波で、
かつ被検査材20の表面に直交する方向に対して斜めの
斜角ビームとなって伝播することとなる。
Due to the interaction between the induced eddy current 14 and the bias magnetic field 15, the inside of the inspected material 20 is
Lorentz forces 16 are generated that are parallel to the surface of , but these Lorentz forces 16 also alternately have opposite phases. As a result,
The transmission ultrasonic wave 17 generated in the inspected material 20 is a transverse wave,
In addition, the beam propagates as an oblique beam oblique to the direction perpendicular to the surface of the material 20 to be inspected.

次に、被検査材20内を伝播する送信用超音波17は被
検査材20内の欠陥に反射して受信用超音波22として
戻ってくる。
Next, the transmitting ultrasonic waves 17 propagating within the inspected material 20 are reflected by defects within the inspected material 20 and return as receiving ultrasonic waves 22 .

第5図は超音波を受信する場合の動作を示した図である
。第5図に示すように、被検査材20の内部を伝搬して
きた受信用超音波22が被検査材20の表面に到達する
と、被検査材20の表面では第5図に示すように振動2
3が発生する。続いてこの振動23とバイアス磁界15
が相互作用し、被検査材20の表面に誘導渦電tTt2
4が流れる。
FIG. 5 is a diagram showing the operation when receiving ultrasonic waves. As shown in FIG. 5, when the receiving ultrasonic wave 22 that has propagated inside the material to be inspected 20 reaches the surface of the material to be inspected 20, the surface of the material to be inspected 20 produces vibrations 2 as shown in FIG.
3 occurs. Next, this vibration 23 and bias magnetic field 15
interact, and an induced eddy current tTt2 is generated on the surface of the inspected material 20.
4 flows.

この渦電流24により間隙18には高周波磁界25が発
生する。この高周波磁界25は、対応する受信用分岐導
電体6a、6b、6c、・・・毎に交互に逆向きとなる
This eddy current 24 generates a high frequency magnetic field 25 in the gap 18 . This high frequency magnetic field 25 is alternately directed in opposite directions for each corresponding receiving branch conductor 6a, 6b, 6c, . . . .

高周波磁界25が受信用導電体6の受磁部29(受信用
分岐導電体6の相互間の部分)を通過すると、受信用導
電体6の両端9,10に電圧が誘起され受信用超音波2
2が受信される。
When the high-frequency magnetic field 25 passes through the magnetic receiving part 29 of the reception conductor 6 (the part between the reception branch conductors 6), a voltage is induced at both ends 9 and 10 of the reception conductor 6, and the reception ultrasonic wave is 2
2 is received.

このように、超音波の送信は送信用導電体3に高周波電
流を流すことによって行なわれ、また超音波の受信は受
信用導電体6に電圧が誘起されることによって行なわれ
る。従って、超音波の送信と受信を別個の導電体3,6
によって行なうので、反射ペルスが送信パルスと千1歩
して隠れてしまうということはない。
In this way, ultrasonic waves are transmitted by passing a high frequency current through the transmitting conductor 3, and ultrasonic waves are received by inducing a voltage in the receiving conductor 6. Therefore, ultrasonic waves are transmitted and received using separate conductors 3 and 6.
Therefore, there is no possibility that the reflected pulse will be hidden behind the transmitted pulse.

また、超音波の受信は受信用導電体6の受磁部29によ
って行なわれるが、この受磁部29は送信用導電体3に
入力された高周波電流によっては影響を受けない構造と
なっている。
Further, reception of ultrasonic waves is performed by the magnetic receiving part 29 of the receiving conductor 6, but this magnetic receiving part 29 has a structure that is not affected by the high frequency current input to the transmitting conductor 3. .

すなわち、第6図に示すように、送信用導電体3に高周
波電流12を流すと、高周波磁束27が送信用分岐導電
体3a、3b+  3C1・・・に対応してそれぞれ交
互に逆向きに発生する。この場合、受信用導電体6は送
信用導電体3と半ピツチずれて配置されているため、高
周波磁束27は受信用導電体6の受磁部を通過しない。
That is, as shown in FIG. 6, when high-frequency current 12 is passed through the transmitting conductor 3, high-frequency magnetic flux 27 is generated alternately in opposite directions corresponding to the transmitting branch conductors 3a, 3b+3C1, etc. do. In this case, since the receiving conductor 6 is arranged half a pitch away from the transmitting conductor 3, the high frequency magnetic flux 27 does not pass through the magnetic receiving portion of the receiving conductor 6.

このため、受信用導電体6の両端9.10には、高周波
磁束27による電圧は発生せず、送信用導電体3に人力
された高周波電流12によっては影響を受けないことに
なる。
Therefore, no voltage is generated at both ends 9.10 of the receiving conductor 6 due to the high frequency magnetic flux 27, and the receiving conductor 6 is not affected by the high frequency current 12 manually applied to the transmitting conductor 3.

このように、本実施例によれば、超音波の送信と受信を
別個の導電体3.6によって行なうので、反射パルスが
送信パルスと干渉してしまうことはない。また、受信用
導電体6は送信用導電体3と半ピツチずれて配置されて
いるため、受信用導電体6の受磁部29は送信用導電体
に入力された高周波12によっては影響を受けることは
ない。
In this manner, according to this embodiment, since the ultrasonic waves are transmitted and received by separate conductors 3.6, the reflected pulses do not interfere with the transmitted pulses. In addition, since the receiving conductor 6 is arranged half a pitch apart from the transmitting conductor 3, the magnetic receiving part 29 of the receiving conductor 6 is affected by the high frequency 12 input to the transmitting conductor. Never.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、超音波の送信と受信とを別個の導電体
によって行なうので、反射パルスが送信パルスと干ルし
てかくれてしまうことはない。また、受信用導電体が送
信用導電体に入力された高周波によって影響を受けるこ
とはない。このため被検査材の表面近傍の欠陥箇所であ
っても適確かつ正確に探傷することができる。
According to the present invention, since ultrasonic waves are transmitted and received using separate conductors, reflected pulses are not hidden behind transmitted pulses. Further, the receiving conductor is not affected by the high frequency input to the transmitting conductor. Therefore, even a defective location near the surface of the material to be inspected can be properly and accurately detected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による電磁超音波トランスジューサの一
実施例を示す側面図、第2図は第1図■−■線矢視図、
第3図は送信用導電体と受信用導電体の配置関係を示す
図、第4図は超音波を送信する場合の動作を示す図、第
5図は超音波を受信する場合の動作を示す図、第6図は
受信用導電体が送信用導電体に人力された高周波電流に
よって影響を受けないことを示す図、第7図は従来の電
磁超音波トランスジューサの側面図、第8図は第7図の
■−■線矢視図、第9図は超音波を送信する場合の動作
を示す図、第10図は溶接部近傍の欠陥を探傷する場合
を示す図、第11図は導電体の両端の電気波形を示す図
、第12図は反射パルスが送信パルスに隠れてしまった
状態を示す図である。 1・・・電磁超音波トランスジューサ、2・・・電気絶
縁体、3・・・送信用導電体、4・・・永久磁石、5・
・・電気絶縁体、6・・・受信用導電体、]2・・・高
周波電流、14・・・誘導渦電流、15・・・バイアス
磁界、16・・・ローレンツ力、17・・送信用超音波
、20・・・被検査材、22・・・受信用超音波、23
・・・振動、24・・・誘導渦電流、25・・・高周波
磁界、2つ・・・受磁部。 出願人代理人  佐  藤  −雄 111nJ 高2図 涜3 図 消5図 泊6図 67図 処8図 佑9図 ′32 躬10図
FIG. 1 is a side view showing an embodiment of the electromagnetic ultrasonic transducer according to the present invention, FIG. 2 is a view taken along the line ■-■ in FIG.
Figure 3 is a diagram showing the arrangement relationship between the transmitting conductor and the receiving conductor, Figure 4 is a diagram showing the operation when transmitting ultrasonic waves, and Figure 5 is a diagram showing the operation when receiving ultrasonic waves. Figure 6 is a diagram showing that the receiving conductor is not affected by the high frequency current manually applied to the transmitting conductor, Figure 7 is a side view of a conventional electromagnetic ultrasonic transducer, and Figure 8 is a diagram showing that the receiving conductor is not affected by the high frequency current manually applied to the transmitting conductor. Figure 7 is a view taken along the ■-■ line in Figure 7, Figure 9 is a diagram showing the operation when transmitting ultrasonic waves, Figure 10 is a diagram showing the case of detecting defects near the weld, and Figure 11 is a diagram showing the operation when transmitting ultrasonic waves. FIG. 12 is a diagram showing the electrical waveforms at both ends of , and FIG. 12 is a diagram showing a state in which the reflected pulse is hidden by the transmitted pulse. DESCRIPTION OF SYMBOLS 1... Electromagnetic ultrasonic transducer, 2... Electric insulator, 3... Transmission conductor, 4... Permanent magnet, 5...
... Electrical insulator, 6 ... Conductor for reception, ] 2 ... High frequency current, 14 ... Induced eddy current, 15 ... Bias magnetic field, 16 ... Lorentz force, 17 ... For transmission Ultrasonic wave, 20... Material to be inspected, 22... Ultrasonic wave for reception, 23
... Vibration, 24... Induced eddy current, 25... High frequency magnetic field, 2... Magnetic receiving part. Applicant's agent Sato - Yu 111nJ High school 2nd figure, 3rd figure, 5th figure, 6th figure, 67th figure, 8th figure, Yu9 figure'32, 10th figure

Claims (1)

【特許請求の範囲】[Claims] 導電性帯片によりコ字形部分が互い違いに連続するよう
ジグザグ状に屈曲形成された2種の導電体を設け、永久
磁石の着磁方向と直交する一側面に電気絶縁体を介して
一方の導電体を積層し、この一方の導電体に電気絶縁体
を介して他方の導電体をその分岐導電体が前記一方の分
岐導電体の間隔部分に整合するよう積層し、さらに前記
2種の導電体を送信用導電体および受信用導電体に分け
たことを特徴とする電磁超音波トランスジューサ。
Two types of conductors are provided with conductive strips bent in a zigzag pattern so that the U-shaped portions are alternately continuous. the other conductor is laminated on one conductor through an electrical insulator such that the branch conductor matches the interval between the one branch conductor, and the two types of conductor An electromagnetic ultrasonic transducer characterized in that the transducer is divided into a transmitting conductor and a receiving conductor.
JP62138655A 1987-06-02 1987-06-02 Electromagnetic ultrasonic transducer Expired - Fee Related JP2538596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62138655A JP2538596B2 (en) 1987-06-02 1987-06-02 Electromagnetic ultrasonic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62138655A JP2538596B2 (en) 1987-06-02 1987-06-02 Electromagnetic ultrasonic transducer

Publications (2)

Publication Number Publication Date
JPS63302360A true JPS63302360A (en) 1988-12-09
JP2538596B2 JP2538596B2 (en) 1996-09-25

Family

ID=15227052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62138655A Expired - Fee Related JP2538596B2 (en) 1987-06-02 1987-06-02 Electromagnetic ultrasonic transducer

Country Status (1)

Country Link
JP (1) JP2538596B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384455A (en) * 1989-08-29 1991-04-10 Toshiba Corp Electromagnetic ultrasonic transducer
JP2011220972A (en) * 2010-04-14 2011-11-04 Kyushu Electric Power Co Inc Electromagnetic ultrasonic sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384455A (en) * 1989-08-29 1991-04-10 Toshiba Corp Electromagnetic ultrasonic transducer
JP2011220972A (en) * 2010-04-14 2011-11-04 Kyushu Electric Power Co Inc Electromagnetic ultrasonic sensor

Also Published As

Publication number Publication date
JP2538596B2 (en) 1996-09-25

Similar Documents

Publication Publication Date Title
US4127035A (en) Electromagnetic transducer
KR101061590B1 (en) Magnetostrictive transducers, structural diagnostic devices and structural diagnostic methods using the same
Isla et al. EMAT phased array: A feasibility study of surface crack detection
US6920792B2 (en) Transducer guided wave electromagnetic acoustic
CA2592094C (en) Device for testing ferromagnetic component walls without destruction of the same
US4727321A (en) Method and device for magnetic and ultrasonic testing of ferro-magnetic objects
US4307616A (en) Signal processing technique for ultrasonic inspection
KR100561215B1 (en) Magnetostrictive Transducer for Generating and Sensing Elastic Ultrasonic waves, and Apparatus for Structural Diagnosis Using It
EP0024707B1 (en) Electromagnetic ultrasonic apparatus
US4523473A (en) Magneto-elastic material defect detector
US4380931A (en) Apparatus and method for quantitative nondestructive wire testing
US20240013767A1 (en) Multi-element electromagnetic acoustic transducer for guided wave generation and detection
US20060173341A1 (en) Electromagnetic ultrasound converter
JP3886843B2 (en) Electromagnetic ultrasonic transducer
JPS63302360A (en) Electromagnetic ultrasonic transducer
US7395715B2 (en) Electromagnetic ultrasound probe
JP4465420B2 (en) Magnetostrictive ultrasonic element and nondestructive inspection method using the same
JPH11125622A (en) Sh wave electromagnetic ultrasonic transducer and measuring method
JP3608423B2 (en) Electromagnetic ultrasonic measurement method and apparatus
WO2004106913A1 (en) Guided wave electromagnetic acoustic transducer
KR102203609B1 (en) Electromagnetic acoustic transducer and pipe inspection apparatus comprising the same
JP2001013118A (en) Electromagnetic ultrasonic probe
US20240125742A1 (en) Defect sizing combining fixed wavelength and variable wavelength guided waves
JPS62277556A (en) Electromagnetic ultrasonic probe
RU2584274C1 (en) Electromagnetic acoustic converter for control of ferromagnetic materials

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees