JPS63302318A - Support apparatus for forming operation program of nuclear power plant - Google Patents

Support apparatus for forming operation program of nuclear power plant

Info

Publication number
JPS63302318A
JPS63302318A JP13810887A JP13810887A JPS63302318A JP S63302318 A JPS63302318 A JP S63302318A JP 13810887 A JP13810887 A JP 13810887A JP 13810887 A JP13810887 A JP 13810887A JP S63302318 A JPS63302318 A JP S63302318A
Authority
JP
Japan
Prior art keywords
plan
evaluation
knowledge
core
operation plan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13810887A
Other languages
Japanese (ja)
Inventor
Junichi Tanji
順一 丹治
Kanji Kato
加藤 監治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP13810887A priority Critical patent/JPS63302318A/en
Publication of JPS63302318A publication Critical patent/JPS63302318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To enable reduction in required time for preparation of an operation program according to a demand for the preparation of an urgent and quick operation program, by performing a learning using an achievement data for optimization of programs with respect to knowledge for the preparation of programs. CONSTITUTION:When an urgent corrected operation program is prepared, a rough operation program formed at an operation program preparing section 1 is provided to a user through an interface section 4. An operation program is optimized by a program evaluating/correcting section 2 and the results are provided to the user. Then, the correcting section 2 analyzes the condition of a core using a core simulator 5 at each of operating points serving as reference for alteration of an outputs of the rough operation program and the results are processed in terms of various quantities of state, thermal margin and the like of the core. Subsequently, the results are converted into an evaluation index using an evaluation correcting knowledge base 7 from these quantities of state to calculate a desired function for optimization. Moreover, knowledge of program evaluation and correction methods is learned 3 from an achievement data for the optimization of programs to improve the evaluation and correction methods automatically to reduce the frequency of repeated calculation thereby enabling the shortening of the required time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、原子力発電所の運転計画作成に係り、特に、
運転計画作成のための炉心解析・評価・修正の繰返し計
算に要する時間を短縮可能な、運転計画作成支援装置に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the creation of an operation plan for a nuclear power plant, and in particular,
The present invention relates to an operation plan creation support device that can reduce the time required for repeated calculations of core analysis, evaluation, and correction for operation plan creation.

〔従来の技術〕[Conventional technology]

原子力発電所の運転計画作成に関する発明には、例えば
、特開昭57−37296号公報がある。この例では、
負荷追従運転に際しての、炉心の運転制限条件を満たす
負荷変更パターンを求める最適炉出カバターンの決定に
関する方法と装置の構成が示されている。
An example of an invention related to creating an operation plan for a nuclear power plant is Japanese Patent Application Laid-Open No. 57-37296. In this example,
A method and apparatus configuration for determining an optimal outlet cover pattern for determining a load change pattern that satisfies core operation restriction conditions during load following operation are shown.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

公知例では、最適炉出カバターン決定に際して炉心シミ
ュレータを用いて炉心状態の予測計算を行ない、炉心の
熱的余裕、運転領域等の制限条件を満足しつつ負荷変更
要求パターンに最も近い負荷変更パターンを求める最適
化のために、運転計画を評価・修正し、これを繰返して
最終的な運転計画を作成する。しかし、このような従来
手法では、プラントの出力制御装置の異常や中給からの
予定外負荷変更要求など、緊急、かつ、迅速な運転11
1画作成の要求があった場合に、計画作成の所要時間が
必ずしも満足できる程、短くないという問題がある。そ
の原因は、主に、運転計画上の複数の基準運転点に対し
て炉心シミュレータを用いた炉心状態解析を繰返すのに
要する計算時間である。シミュレータの計算時間を短縮
するには、簡単化した炉心モデル、例えば、−次元炉心
シミュレータを用いることができるが、詳細な三次元炉
心シミュレータと比較すると、炉心の熱的余裕等の計算
精度がやや犠牲となる。
In a known example, when determining the optimal reactor discharge cover turn, a core simulator is used to perform predictive calculations on the state of the core, and a load change pattern that is closest to the load change request pattern is determined while satisfying the limiting conditions such as the thermal margin of the core and the operating range. In order to achieve the desired optimization, the operation plan is evaluated and revised, and this process is repeated to create the final operation plan. However, with this conventional method, emergency and quick operations such as an abnormality in the plant's output control device or an unscheduled load change request from intermediate supply, etc.
There is a problem in that when there is a request to create a single drawing, the time required to create a plan is not necessarily short enough to satisfy the requirement. The main reason for this is the calculation time required to repeat the core state analysis using a core simulator for multiple reference operating points on the operation plan. In order to reduce the calculation time of the simulator, a simplified core model such as a -dimensional core simulator can be used, but compared to a detailed three-dimensional core simulator, the calculation accuracy of the core thermal margin etc. is slightly lower. It becomes a sacrifice.

本発明の目的は、緊急、かつ、迅速な運転計画作成の要
求に対応するため、計画作成の所要時間を短縮するとい
う問題を解決する原子力発電所の運転計画作成支援装置
を提供することにある。
An object of the present invention is to provide an operation plan creation support device for a nuclear power plant that solves the problem of shortening the time required to create a plan in order to meet the demand for urgent and quick operation plan creation. .

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は。 The above purpose is.

1)計画作成要求の緊急度が非常に高い場合には、炉心
シミュレータを用いた炉心特性の解析・評価・修正を繰
返す計画最適化を行わず、あらかじめ用意しておく計画
作成専門家の知識のみを用いて運転計画を作成し提供す
ること。
1) When the urgency of the plan creation request is extremely high, plan optimization using a core simulator that repeatedly analyzes, evaluates, and corrects core characteristics is not performed, but only the knowledge of planning experts prepared in advance is used. Create and provide operation plans using

2)計画最適化の実績データから計画評価・修正の方法
を決めている知識を学習させて、評価・修正方法を自動
的に改良させることにより、繰返し計算の回数を低減す
ること。
2) Reduce the number of repeated calculations by learning the knowledge that determines the plan evaluation/correction method from plan optimization performance data and automatically improving the evaluation/correction method.

という二つの方法を用いることにより達成できる。This can be achieved by using two methods.

特に、計画作成の知識に対しても、計画最適化の実績デ
ータを用いた学習を行わせることにより、炉心シミュレ
ータを使用せず知識のみで作成した運転計画の質を向上
させることが可能となり、実用に耐える機能を実現でき
る。
In particular, by training plan creation knowledge using actual plan optimization data, it is possible to improve the quality of operation plans created using only knowledge without using a core simulator. Functions that can withstand practical use can be realized.

〔作用〕[Effect]

プラントで予定外の負荷変更を実施する時、熟練した炉
心管理技術者によれば、炉心シミュレータによる解析を
行わなくても、十分実用に耐えるだけの運転計画(すな
わち、炉心流量と制御棒パターンの変更計画)を作成可
能である。従って、この運転計画作成の知識が計画最適
化の過程を学習することによって更に改良されるならば
、要求の緊急度に応じて、炉心シミュレータを使用せず
に迅速に運転計画を提供する計画作成支援装置を構築で
きる。また、知識の学習方法には、種々の方法があるが
、計画作成・評価・修正で用いる知識は特定の形式で表
現できる専門知識に整理されるので、類推による学習が
適用可能である。この学習方式の具体的適用にあたって
は、 1)計画最適化により作用した修正内容の計画作成知識
への反映、 2)最適化過程の繰返し修正ステップ毎に用いた知識の
効果評価による修正、 3)最適化戦略を決定するため知識を、最適化過程の実
績データを集約して生成・追加するの3つの方法を考案
した。
When implementing an unscheduled load change in a plant, experienced core management engineers say that an operational plan (i.e., core flow rate and control rod pattern Change plans) can be created. Therefore, if this knowledge of operation planning can be further improved by learning the process of plan optimization, plans can be created to quickly provide operation plans without using a core simulator, depending on the urgency of the request. Support equipment can be constructed. Furthermore, although there are various methods for learning knowledge, learning by analogy is applicable because the knowledge used in plan creation, evaluation, and modification is organized into specialized knowledge that can be expressed in a specific format. In the specific application of this learning method, the following steps are required: 1) Reflection of the modification contents affected by plan optimization in the planning knowledge, 2) Modification by evaluating the effect of the knowledge used at each iterative modification step of the optimization process, 3) We have devised three methods for generating and adding knowledge by aggregating performance data from the optimization process to determine optimization strategies.

〔実施例〕〔Example〕

以下1本発明の原子力発電所の運転計画作成支援装置の
実施例を説明する。第1図は、実施例の基本構成を示す
もので、知識工学と呼ばれる知識処理技術を活用し、計
画作成のアルゴリズムを推論部分と知識ベースに分離し
て実現する。運転計画作成部1では、インターフェース
部4からのユーザの計画作成要求を受けて、計画作成知
識ベース6を用いて概略運転計画を作成する。運転計画
作成の種類は、プラントの再起動、負荷追従、制御棒パ
ターン交換・調整、及び制御装置異常発生に対応した修
正運転計画の作成等があり、ユーザが要求仕様を入力す
る。ユーザの要求が、緊急を要する修正運転計画の作成
の場合には、運転計画作成部1で作成した概略運転計画
がインターフェースを通してユーザに提供される。これ
以外では、計画評価修正部2で運転計画を最適化して、
結果をユーザに提供する。
An embodiment of the nuclear power plant operation plan creation support device of the present invention will be described below. FIG. 1 shows the basic configuration of the embodiment, which utilizes knowledge processing technology called knowledge engineering and separates the planning algorithm into an inference part and a knowledge base. The driving plan creation unit 1 receives a user's plan creation request from the interface unit 4 and creates a rough driving plan using the planning knowledge base 6. Types of operation plan creation include plant restart, load following, control rod pattern exchange/adjustment, and creation of a revised operation plan in response to the occurrence of a control device abnormality, and the user inputs required specifications. If the user's request is to create an urgently revised driving plan, the rough driving plan created by the driving plan creation unit 1 is provided to the user through the interface. Other than this, the plan evaluation correction unit 2 optimizes the operation plan,
Provide the results to the user.

計画評価修正部2では、まず、概略運転計画の出力変更
の基準となる複数の運転点毎に、炉心シミュレータ5を
用いて炉心状態を解析する。解析結果は、炉心の各種状
gffi (例えば、出力分布。
The plan evaluation modification unit 2 first analyzes the core state using the core simulator 5 for each of a plurality of operating points that serve as a reference for changing the output of the rough operating plan. The analysis results are based on various states of the core, gffi (for example, power distribution).

クォリティ、局所ピーキング係数等)、熱的余裕(例え
ば最小限界熱出力比、最大線出力密度の制限値に対する
余裕)等で整理する。次に、これらの状態量から評価修
正知識ベース7を用いて評価指標に変換し、最適化のた
めの目的関数を計算する。計画最適化は、この目的関数
を最大化する方向に計画を修正し、再度の炉心状態の解
析・評価・修正を繰返して実現する。
(quality, local peaking coefficient, etc.), thermal margin (for example, minimum critical heat output ratio, margin for maximum linear power density limit value), etc. Next, these state quantities are converted into evaluation indicators using the evaluation correction knowledge base 7, and an objective function for optimization is calculated. Plan optimization is achieved by modifying the plan in a direction that maximizes this objective function, and repeating analysis, evaluation, and modification of the core state.

学習部3の詳細構成ブロックを第2図に示す。A detailed configuration block of the learning section 3 is shown in FIG.

計画作成知識の学習の手順は、まず、計画修正点抽出部
11で概略運転計画18と、最適化を終了した詳細運転
計画19を各運転点毎に比較照合し、最適化により計画
が修正された点を抽出する。次に計画作成知識学習部1
2で、上記計画修正点で使われた知識を検索し、計画修
正内容に合わせるように知識を修正して計画作成知識ベ
ース6を置き換える。これらの学習手順は第3図に示す
The procedure for learning planning knowledge is as follows: First, the plan correction point extraction unit 11 compares and matches the general operation plan 18 and the detailed operation plan 19 that has been optimized for each operation point, and the plan is corrected by optimization. Extract the points. Next, planning knowledge learning part 1
2, the knowledge used in the above-mentioned plan modification points is searched, the knowledge is modified to match the plan modification contents, and the plan creation knowledge base 6 is replaced. These learning procedures are shown in FIG.

評価修正知識の学習の手順を第4図に示す。運転計画の
評価・修正を繰返して最適化を終了後。
Figure 4 shows the procedure for learning evaluation correction knowledge. After completing optimization by repeatedly evaluating and modifying the operation plan.

評価指標計算部13で概略運転計画18と詳細運転計画
19の各運転点の炉心状態評価指標を計算し、その変化
分を求める。一方、状態量変化計算部14では計画最適
化の各繰返し計算ステップにおける、計画修正前の炉心
状態量と計画修正後の炉心状態量の変化分を各運転点毎
に求め、記憶部15に格納する。計画修正知識学習部1
7では、各繰返し計算ステップにおいて使用された計画
修正知識を検索し、炉心状態量の変化分と、計画修正の
変化分の対応関係実績データを統計的に処理して、計画
修正の知識を修正する。次に、計画評価知識学習部16
は計画最適化過程で発生した炉心状態量変化分の総和を
求め、これと評価指標計算部13から出力される計画最
適化開始時点の評価指標、及び目的関数と、これらの計
画最適化に伴う変化分を組合せて、計画を最適化する場
合の炉心状態量の修正目標を与える計画評価の知識を生
成し、評価修正知識ベース7に追加する。
The evaluation index calculation unit 13 calculates the core state evaluation index for each operating point of the general operation plan 18 and detailed operation plan 19, and determines the amount of change. On the other hand, the state quantity change calculation unit 14 calculates the change in the core state quantity before the plan modification and the core state quantity after the plan modification for each operating point in each iterative calculation step of plan optimization, and stores it in the storage unit 15. do. Plan revision knowledge learning part 1
In step 7, the knowledge of plan revisions used in each iterative calculation step is searched, and the knowledge of plan revisions is corrected by statistically processing the correspondence actual data between changes in core state quantities and changes in plan revisions. do. Next, the plan evaluation knowledge learning section 16
calculates the sum of changes in the core state quantity that occurred during the plan optimization process, and calculates this, the evaluation index at the start of plan optimization output from the evaluation index calculation unit 13, the objective function, and the sum of changes associated with these plan optimizations. The changes are combined to generate plan evaluation knowledge that provides correction targets for core state quantities when optimizing the plan, and is added to the evaluation correction knowledge base 7.

第5図は、本発明の運転計画支援装置の学習部により、
計画の評価・修正知識を学習させた場合の、計画最適化
の速度が改良される様子を示す。
FIG. 5 shows how the learning section of the operation plan support device of the present invention
This figure shows how the speed of plan optimization is improved when plan evaluation/correction knowledge is learned.

計画修正の学習があった場合には、炉心状態量の変化目
標を精度良く実現する計画修正(すなわち、炉心流量及
び制御棒パターン操作量の修正)を決定できるので、最
適化の進行が速くなり、繰返し計算の回数が少なくなっ
ている。更に、計画評価知識の学習が追加された場合に
は、目的関数を最大にするための、炉心状態量修正目標
の決定方法に関する最適化戦略の知識が、実績に基づい
て与えられるので、図に示すように、最適化の速度は増
大して繰返し計算のステップ数も減少している。
If the plan modification is learned, it is possible to determine the plan modification that accurately achieves the core state quantity change target (i.e., modification of the core flow rate and control rod pattern manipulated variable), which speeds up the optimization process. , the number of repeated calculations is reduced. Furthermore, when learning of planning evaluation knowledge is added, knowledge of optimization strategy regarding how to determine the core state modification target in order to maximize the objective function is provided based on the actual results, so the figure As shown, the optimization speed increases and the number of iterative calculation steps decreases.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、運転計画作成要求の緊急度に応じて、
迅速に運転計画を作成可能な計画作成の支援システムを
提供できる。
According to the present invention, depending on the urgency of the operation plan creation request,
It is possible to provide a plan creation support system that can quickly create an operation plan.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック図、第2図は学習
部の内部の計算ブロック図、第3図は計画作成知識の学
習手順を示す図、第4図は計画評価・修正知識の学習手
順を示す図、第5図は計画評価・修正知識を学習させた
場合に、計画最適化の速度が改良される様子を示した図
である。
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a calculation block diagram inside the learning section, Fig. 3 is a diagram showing the learning procedure of plan creation knowledge, and Fig. 4 is plan evaluation/correction knowledge. FIG. 5 is a diagram showing how the speed of plan optimization is improved when plan evaluation/correction knowledge is learned.

Claims (1)

【特許請求の範囲】 1、インターフェースを通して負荷変更要求パターンを
取り込み、計画作成知識ベースを用いて制御棒パターン
と炉心流量操作の目標値を時間の関数として作成する運
転計画作成部と、前記運転計画作成部から出力される概
略運転計画を取り込んで、炉心シミュレータを用いて基
準となる複数の運転点の炉心状態を解析し、運転計画の
評価・修正知識ベースと、前記インターフェースを通し
ての計画作成者の評価・修正入力を用いて、運転計画を
評価・修正し、再び炉心状態の解析から同様な処理を繰
返すことにより運転計画を最適化する計画評価修正部と
、計画作成知識ベースと評価・修正知識ベースと前記計
画評価修正部の計画最適化過程で発生する運転計画の評
価・修正のデータを取り込み、計画作成知識ベースと評
価・修正知識ベースを、追加・修正する学習部からなる
ことを特徴とする原子力発電所の運転計画作成支援装置
。 2、特許請求の範囲第1項において、 前記概略運転計画と最適化運転計画を比較照合して計画
修正点を抽出し、次に、前記計画修正点部分の前記概略
運転計画を作成するのに用いた計画作成知識を検索し、
次に計画修正内容から検索した前記計画作成知識の修正
内容を決定し、前記修正内容で前記計画作成知識を置換
えることを特徴とする原子力発電所の運転計画作成支援
装置。 3、特許請求の範囲第1項において、 前記計画評価修正部の運転計画の評価・修正繰返しで用
いた修正前と修正後の炉心状態量の変化を取り込んで前
記炉心状態量を変化させるための炉心流量又は制御棒パ
ターンの操作量変化を決定するのに用いた計画修正の知
識を、前記炉心状態量の変化をもたらすような操作量変
化を与えるように修正し、次に、前記概略運転計画と前
記最適化運転計画の評価指標を取込んで、前記計画最適
化過程で発生した前記炉心状態量の変化総和と、概略運
転計画の評価指標と、最適化による前記評価指標の変化
分とからなるデータの組合せで、計画評価にもとづいて
炉心状態量の修正目標を決定する新らたな知識を計画評
価知識に追加することを特徴とする原子力発電所の運転
計画作成支援装置。
[Scope of Claims] 1. An operation plan creation unit that takes in a load change request pattern through an interface and creates target values for control rod patterns and core flow rate manipulation as a function of time using a plan creation knowledge base; and the operation plan. The rough operation plan output from the creation section is taken in, the core state at multiple reference operating points is analyzed using a core simulator, and the operation plan is evaluated and corrected using the knowledge base and the plan creator through the interface. A plan evaluation and correction unit that uses evaluation and correction input to evaluate and correct the operation plan, and then repeats the same process from core state analysis to optimize the operation plan, as well as a plan creation knowledge base and evaluation and correction knowledge. The invention is characterized by comprising a learning section that adds to and corrects the plan creation knowledge base and the evaluation/correction knowledge base by taking in the operation plan evaluation/correction data generated in the plan optimization process of the plan evaluation/correction section. A support device for creating operation plans for nuclear power plants. 2. In claim 1, the general operation plan and the optimized operation plan are compared and matched to extract plan correction points, and then the general operation plan of the plan correction point portion is created. Search for the planning knowledge used,
An operation plan creation support device for a nuclear power plant, characterized in that the content of modification of the planning knowledge retrieved from the content of modification of the plan is determined, and the content of modification of the planning knowledge is replaced with the content of modification. 3. In claim 1, for changing the core state quantity by incorporating changes in the core state quantity before and after the modification used in the repetition of evaluation and modification of the operation plan by the plan evaluation modification unit. The knowledge of the plan modification used to determine the manipulated variable change in the core flow rate or control rod pattern is modified to give a manipulated variable change that brings about a change in the core state quantity, and then the rough operation plan and the evaluation index of the optimized operation plan, and from the sum total of changes in the core state quantity that occurred in the plan optimization process, the evaluation index of the rough operation plan, and the change in the evaluation index due to optimization. 1. A nuclear power plant operation planning support device characterized by adding new knowledge to plan evaluation knowledge for determining correction targets for core state quantities based on plan evaluation using a combination of data.
JP13810887A 1987-06-03 1987-06-03 Support apparatus for forming operation program of nuclear power plant Pending JPS63302318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13810887A JPS63302318A (en) 1987-06-03 1987-06-03 Support apparatus for forming operation program of nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13810887A JPS63302318A (en) 1987-06-03 1987-06-03 Support apparatus for forming operation program of nuclear power plant

Publications (1)

Publication Number Publication Date
JPS63302318A true JPS63302318A (en) 1988-12-09

Family

ID=15214137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13810887A Pending JPS63302318A (en) 1987-06-03 1987-06-03 Support apparatus for forming operation program of nuclear power plant

Country Status (1)

Country Link
JP (1) JPS63302318A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02244203A (en) * 1989-03-17 1990-09-28 Hitachi Ltd Control system and optimum property deciding device
US5467265A (en) * 1993-02-10 1995-11-14 Hitachi, Ltd. Plant operation method and plant operation control system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02244203A (en) * 1989-03-17 1990-09-28 Hitachi Ltd Control system and optimum property deciding device
US5467265A (en) * 1993-02-10 1995-11-14 Hitachi, Ltd. Plant operation method and plant operation control system

Similar Documents

Publication Publication Date Title
JPH0789283B2 (en) Formula processing control system
CN101339404B (en) Aircraft posture kinetics simplified model gain switching proportion-differential control design method
KR950007882B1 (en) Apparatus and method for automatically generating membership function and/or fuzzy inference rule for fuzzy inference system
JPH10123284A (en) Device for determining control blade disposition for reactor core
US5317606A (en) Automation system for nuclear power plants
CN113269479B (en) Fault disposal plan on-line checking generation method, system, equipment and storage medium
CN109212999B (en) Intelligent generation method and system for digital satellite simulation working condition
JP3462570B2 (en) How to create a robot operation program
JPS63302318A (en) Support apparatus for forming operation program of nuclear power plant
JPH07210208A (en) Autotuning method for thermal power plant and thermal power plant controller utilizing the same
CN113111588B (en) NO of gas turbine X Emission concentration prediction method and device
CN110825051B (en) Multi-model control method of uncertainty system based on gap metric
JP2001037087A (en) Apparatus and method for deciding generator output
JPH02183335A (en) Quality diagnosis knowledge correcting method
JP2678216B2 (en) Thermal power plant startup operation support device
CN112653131B (en) Transient voltage safety stability margin estimation method, device and system
JP2695914B2 (en) Nuclear power plant operation guide system
CN115328044A (en) Identification model-based industrial device variable load man-machine fusion operation evaluation method
JP2006031488A (en) Design support method
CN116450991B (en) Rocket test data automatic interpretation method, system, electronic equipment and storage medium
CN108732940A (en) Optimize the method and system of the top cycle oil stream amount of the catalytic cracking fractionating tower of gasoline, diesel cutting process
CN110707695B (en) Transient power angle stability margin calculation method and system based on artificial intelligence
JP3114031B2 (en) Reactor operation plan creation device
CN116776629A (en) System efficiency analysis method for comprehensive coupling degree model and N-K model
Moraga et al. Fuzzy knowledge-based genetic algorithms