JPH02183335A - Quality diagnosis knowledge correcting method - Google Patents

Quality diagnosis knowledge correcting method

Info

Publication number
JPH02183335A
JPH02183335A JP1003070A JP307089A JPH02183335A JP H02183335 A JPH02183335 A JP H02183335A JP 1003070 A JP1003070 A JP 1003070A JP 307089 A JP307089 A JP 307089A JP H02183335 A JPH02183335 A JP H02183335A
Authority
JP
Japan
Prior art keywords
quality
data
value
knowledge
demerit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1003070A
Other languages
Japanese (ja)
Other versions
JPH0750492B2 (en
Inventor
Harutoshi Okai
晴俊 大貝
Hiroshi Sato
弘 佐藤
Koji Ueyama
植山 高次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP307089A priority Critical patent/JPH0750492B2/en
Publication of JPH02183335A publication Critical patent/JPH02183335A/en
Publication of JPH0750492B2 publication Critical patent/JPH0750492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)
  • Devices For Executing Special Programs (AREA)
  • Feedback Control In General (AREA)

Abstract

PURPOSE:To correct a low knowledge base used for quality diagnosis even by a general technician or an operation technician by correcting a knowledge table, which is composed of specified data, by an editor. CONSTITUTION:The knowledge table is composed of the data, for which data for ranking operation data, evaluation demerit degree for each quality characteristic index and demerit pattern are expressed by the rank block and weight of the respective operation data, and a data file called as the knowledge table is corrected by the editor. The knowledge base to execute the next quality diagnosis processing is automatically generated by the knowledge table. Thus, the knowledge base for one fixed type of the quality diagnosis in a manufacture process can be corrected even by the general technician or operation technician and the fine maintenance of such a quality diagnosis system is easily executed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、鉄鋼プロセスなどの製造プロセスにおける品
質診断に用いる知識修正方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a knowledge modification method used for quality diagnosis in manufacturing processes such as steel processes.

品質診断は現在の操業状況から品質特性の予測・評価を
迅速に行ない、またその対応をとることにより品質特性
不良の発生防止に寄与する。その処理に利用される知識
ベースの保守を容易にし、品質診断の永続的な使用を可
能にする。
Quality diagnosis quickly predicts and evaluates quality characteristics based on current operating conditions, and by taking appropriate action, it contributes to the prevention of quality characteristic defects. It facilitates the maintenance of the knowledge base used for the process and enables permanent use of quality diagnostics.

[従来の技術] 従来、鉄鋼プロセスなどの製造プロセスにおける品質診
断は、品質特性が定量的に数式モデルで予測できるとき
に行なわれてきた。しかしながら、品質特性が定量的に
予測できないこともしばしばある。そのときには、ルー
ルベース等の知識工学的手法により、定性的な、あるい
は断片的な経験則により品質診断システ11が開発され
ている。
[Prior Art] Conventionally, quality diagnosis in manufacturing processes such as steel processes has been performed when quality characteristics can be quantitatively predicted using a mathematical model. However, quality characteristics often cannot be predicted quantitatively. At that time, the quality diagnosis system 11 is developed using qualitative or piecemeal empirical rules using a knowledge engineering method such as a rule base.

[発明が解決しようとする課題] しかしながら、この新しいタイプの品質診断システ11
に用いられる品質予測・診断方法には定まった方法が確
立しておらず、システムごとに異なっているのが現状で
ある。また、この新しいタイプの品質診断システシに用
いられる知識ベースは、通常KE(知識工学技術者)に
よって修正され、−膜技術者や操業技術者による修正は
困難なことも多く、きめ細かな保守ができないという不
都合がある。
[Problem to be solved by the invention] However, this new type of quality diagnosis system 11
Currently, there is no established method for quality prediction/diagnosis used for quality prediction and diagnosis, and it differs from system to system. Additionally, the knowledge base used in this new type of quality diagnostic system is typically modified by a KE (Knowledge Engineering Engineer) - often difficult to modify by membrane engineers or operational engineers, and does not allow detailed maintenance. There is this inconvenience.

本発明は、製造プロセスの専問家の経験則による品質診
断に用いる知識ベースを一般技術者や操業技術者であっ
ても修正できる知識修正方法を提供するものであり、ひ
とつの定型的な品質診断方法のもとての知識修正方法を
提供することを目的とする。
The present invention provides a knowledge modification method that allows even general engineers and operation engineers to modify the knowledge base used for quality diagnosis based on the empirical rules of manufacturing process experts. The purpose is to provide a method for correcting the original knowledge of diagnostic methods.

[課題を解決するための手段] 本発明の品質診断知識調整方法は、製造プロセスにおけ
る品質予測に使用する複数個の操業実績データをその狙
い値からのずれでランク分けすることと1診断する複数
個の品質特性項目ごとに操業データの狙い値からのずれ
に起因する品質特性の減点値を操業データのランク値と
減点値との関係を用いて求めることと、品質特性項目ご
とに各減点値を合計してその満点値から減算することに
よりその評価値を求めること、および操業データ項目ご
とに各減点の合計値を求めさらに高い順に並べかえるこ
とにより、各品質特性項目の評点表示と操業データの操
作指示を重要度の順に行なう品質診断において、操業デ
ータのランク分けのデータと品質特性項目ごとの評点悪
化度とその悪化パターンを各操業データのランク区間と
重みで表現したデータからなる知識テーブルと称するブ
タファイルをエディタで修正することと、その知識テー
ブルから先に述べた品質診断処理を行なう知識ベースを
自動生成することから構成される。
[Means for Solving the Problems] The quality diagnosis knowledge adjustment method of the present invention involves ranking a plurality of pieces of operational performance data used for quality prediction in a manufacturing process based on deviations from their target values, and ranking a plurality of pieces of operational performance data used for quality prediction in a manufacturing process based on the deviation from the target value. For each quality characteristic item, the demerit value of the quality characteristic due to the deviation from the target value of the operational data is calculated using the relationship between the rank value of the operational data and the demerit value, and each demerit point value for each quality characteristic item is determined. The evaluation value is obtained by summing up the points and subtracting them from the perfect score, and by calculating the total value of each demerit point for each operational data item and arranging them in descending order, it is possible to display the rating for each quality characteristic item and to calculate the operational data. In quality diagnosis, in which operational instructions are given in order of importance, a knowledge table is created that includes data that ranks operational data, and data that expresses the degree of deterioration in ratings for each quality characteristic item and its deterioration pattern using the rank interval and weight of each operational data. The method consists of modifying a pig file called ``Pig File'' with an editor, and automatically generating a knowledge base from the knowledge table to perform the quality diagnosis process described above.

[作用コ 一般技術者や操業技術者が知識テーブルの操業データの
ラング分けのデータと品質特性項目ごとの評点悪化度と
その悪化パターンを各操業データのランク区間と重みで
表現したデータをエディタで修正するとその後は次の品
質診断処理を行なう知識ベースが自動的に生成される。
[Operations] A general engineer or an operation engineer can use an editor to create data that expresses the rank division of operation data in the knowledge table, the degree of deterioration in ratings for each quality characteristic item, and its deterioration pattern using the rank interval and weight of each operation data. Once the correction is made, a knowledge base for the next quality diagnosis process is automatically generated.

品質予測に使用する複数個の操業実績データがその狙い
値からのずれでランク分けされ、知識ベースで表現され
たランク値と減点値の関係から品質特性項目ごとに各操
業データの減点値が求められ、それらの合計と満点値か
らの減算でその品質特性の評価値が求められ出力される
。また操業データ項目ごとに各減点値の合計を求めその
高い順に操業データの操作指示が出力される。
Multiple pieces of operational performance data used for quality prediction are ranked according to their deviation from the target value, and the demerit value of each operational data is calculated for each quality characteristic item from the relationship between the rank value and demerit value expressed in the knowledge base. The evaluation value of the quality characteristic is calculated by subtracting the total value from the perfect score value and outputs it. In addition, the sum of each deduction value is calculated for each operation data item, and operation instructions for the operation data are output in descending order of the sum.

[実施例コ 次に、本発明の実施例について図面を参照して説明する
[Embodiments] Next, embodiments of the present invention will be described with reference to the drawings.

実施例では、方向性電磁鋼板の被膜特性に関する品質診
断の知識修正について説明する。被膜の品質診断は、脱
炭ラインの操業実績データを基に専問家の経験則によっ
て行なわれ、その被膜の実績は、約10日後に得られる
。そのため、その間の被膜不良発生が、この品質診断に
よって防止される。
In this example, knowledge modification for quality diagnosis regarding film characteristics of grain-oriented electrical steel sheets will be described. The quality diagnosis of the coating is carried out by an expert's empirical rule based on the operational performance data of the decarburization line, and the coating performance is obtained after about 10 days. Therefore, the occurrence of coating defects during this period is prevented by this quality diagnosis.

第1図は、本発明の知識修正方法で調整された知識ベー
スを用いた被膜診断システムの構成を示す。操業実績デ
ータを入力してこの知識ベースを基に推論エンジンで品
質を評価する。評価値等は、品質診断結果の表示として
分かりやすく出力される。
FIG. 1 shows the configuration of a capsular diagnosis system using a knowledge base adjusted by the knowledge modification method of the present invention. Operation performance data is input and quality is evaluated using an inference engine based on this knowledge base. Evaluation values and the like are output in an easy-to-understand manner as a display of quality diagnosis results.

第2図に、この被膜品質診断方法の全体流れ図を示す。FIG. 2 shows an overall flowchart of this coating quality diagnosis method.

第2図のステップ1では、脱炭ラインの操業実績データ
をその狙い値からのずれでランク分けする。このランク
分けの各範囲は、鋼種規格ごとに与えられる・ 第3図に、被膜予測用の知識をランク分けするための各
ランクの範囲を一例として示す。この例では、10種類
の操業実績データが、狙い値からのずれによって、最大
7ランクまでに層別される。
In step 1 of FIG. 2, the operating performance data of the decarburization line is ranked according to its deviation from the target value. Each range of this ranking is given for each steel type standard. Figure 3 shows an example of the range of each rank for ranking knowledge for film prediction. In this example, 10 types of operational performance data are stratified into up to seven ranks depending on the deviation from the target value.

第2図のステップ2では、診断する被膜品質特性項目ご
とに減点値を計算する。この計算手法の詳細について、
次に第3図を参照しながら説明する。
In step 2 of FIG. 2, a deduction value is calculated for each coating quality characteristic item to be diagnosed. For details on this calculation method,
Next, a description will be given with reference to FIG.

簡単に言えば、被膜品質特性として、過酸化節。Simply put, peroxide nodes are a coating quality characteristic.

酸化不足、脱炭異常等を評価する。第3図は、過酸化節
Aについての評点予測知識を示しており、この品質不良
の発生する操業パターンを太線で示している。この品質
特性は80点満点で評価され最も大きいずれパターンを
示すときには40点という予測評点となる。
Evaluate insufficient oxidation, decarburization abnormalities, etc. FIG. 3 shows the score prediction knowledge for peroxide node A, and the operation pattern in which this quality defect occurs is shown by a thick line. This quality characteristic is evaluated on a scale of 80 points, and when the pattern exhibits the largest deviation, the predicted score is 40 points.

また、各操業データの不良化寄与率を70%。In addition, the defective contribution rate of each operational data is 70%.

5%、10%・・・と与えている。They give 5%, 10%, etc.

この知識を用いて、各操業データの狙い値からのずれ(
ランク値)が品質特性の評点にどのくらい減点になって
いるか求めることができる。例えば、操業実績データの
No、2の実績がランク6であれば、この部分の狙い値
のずれに起因する評価値の減点値は、 (80−40)X70・/100 の計算結果として28点と計算される。ランク6よりも
小さいずれについては、0〜1.0までの乗算係数が、
指定された関数で計算され、その値が減点値に乗算され
る。乗算係数は、実際の現象に対応して、第7図に示す
複数の関数の中から選択される。
Using this knowledge, the deviation from the target value of each operational data (
It is possible to find out how much points are subtracted by the rank value) from the quality characteristic score. For example, if the performance of No. 2 in the operation performance data is rank 6, the demerit value of the evaluation value due to the deviation of the target value in this part is 28 points as the calculation result of (80-40)X70・/100 It is calculated as follows. For ranks smaller than 6, the multiplication coefficient from 0 to 1.0 is
Calculated using the specified function, and the demerit value is multiplied by that value. The multiplication coefficient is selected from a plurality of functions shown in FIG. 7, depending on the actual phenomenon.

従って、先の例でランクが5の時に、第7図の第3番の
関数を選択すると、28点XQog43の割算結果とし
て、22.2が減点値となる。このようにして、1つの
被膜品質特性に対する操業実績データの狙い値からのず
れに起因する減点値が求められる。
Therefore, when the rank is 5 in the previous example, if the function No. 3 in FIG. 7 is selected, the deduction value will be 22.2 as the result of dividing 28 points XQog43. In this way, the demerit value resulting from the deviation of the operation performance data from the target value for one film quality characteristic is determined.

他の被膜品質特性についても、同様の予測知識により求
められる。
Similar predictive knowledge is used for other coating quality characteristics.

再び第2図を参照すると、ステップ3では、被膜品質特
性項目ごとに操業実績データの減点値を合計計算し、そ
れぞれの満点値からその合計値を減算する。また、次の
ステップ4では、操業データ項目ごとに、各被膜品質特
性項目に対する減点値を計算する。
Referring again to FIG. 2, in step 3, the sum of the demerit points of the operational performance data is calculated for each film quality characteristic item, and the sum is subtracted from the respective perfect score values. Further, in the next step 4, a deduction value for each coating quality characteristic item is calculated for each operation data item.

ステップ3及び4で行なう計算の一例を第4図に示す。An example of the calculations performed in steps 3 and 4 is shown in FIG.

第4図において、縦方向は被膜品質特性項目を表わし、
横方向は操業データ項目を示す。
In Figure 4, the vertical direction represents coating quality characteristic items;
The horizontal direction indicates operational data items.

中央部の各数値は、各項目の減点値を示し、各被一 膜品質特性項目に対する操業実績データの減点値の合計
が右端に示され、操業データ項目ごとの減点値の合計が
下端に示されている。この値が大きいものほど、品質特
性を改善するために重要であるので、操業データの操作
指示の際は、この大きい操業データ項目から列挙してい
る。
Each numerical value in the center indicates the demerit value for each item, the total demerit value of the operation performance data for each coating film quality characteristic item is shown at the right end, and the total demerit value for each operation data item is shown at the bottom end. has been done. The larger this value is, the more important it is for improving quality characteristics, so when giving operational instructions for operational data, the operational data items with the largest values are listed first.

第5図に示すのは、第3図の被膜予測用知識をデータフ
ァイルとして表現した知識テーブルと称するものである
。このテーブルの最初に、操業データのランク分けのデ
ータが表現されている。
What is shown in FIG. 5 is what is called a knowledge table in which the coating prediction knowledge shown in FIG. 3 is expressed as a data file. At the beginning of this table, data for ranking the operational data is expressed.

aplは操業データ項目、5はランク分けの数、その後
はランク分けの範囲を示している。*は、以上又は以下
を表わす。その他の操業データについても同様に表現す
る。
apl indicates the operation data item, 5 indicates the number of rankings, and the following indicates the range of rankings. * represents more than or less than. Other operational data are expressed in the same way.

その次に、品質特性項目の一覧を表現する。即ち、過酸
化A、過酸化B、酸化不良Aなどである。
Next, a list of quality characteristic items is expressed. That is, peroxidation A, peroxidation B, insufficient oxidation A, etc.

続いて、各品質特性項目ごとに評点悪化塵とその悪化パ
ターンを表現する。過酸化Aの例では、評点は80点か
ら40点まで悪化することを示している。dp2の“1
 、3.6.5.6.70.0”のうち1はパターン数
、3は乗算係数関数式番、6はランク数、次の5と6は
悪化パターンのランク区間、70,0は重み(不良化寄
与率)を示す。
Next, the score deterioration and its deterioration pattern are expressed for each quality characteristic item. The example of Peroxide A shows that the score deteriorates from 80 points to 40 points. “1” of dp2
, 3.6.5.6.70.0'', 1 is the number of patterns, 3 is the multiplication coefficient function equation number, 6 is the number of ranks, the next 5 and 6 are the rank intervals of worsening patterns, 70,0 is the weight (defect contribution rate).

この知識テーブルは、操業技術者や一般技術者によって
エディタで修正される。
This knowledge table is modified using an editor by an operating engineer or a general engineer.

この知識テーブルを入力データとして知識ベース生成プ
ログラムにより第6図に示す知識ベースが生成される。
The knowledge base shown in FIG. 6 is generated by the knowledge base generation program using this knowledge table as input data.

IF−THEN方式で、各々の条件判定を行なって操業
実績データのランク分け、各品質特性項目における減点
計算、減点合計計算。
Using the IF-THEN method, each condition is judged, the operational performance data is ranked, the deduction points are calculated for each quality characteristic item, and the total deduction points are calculated.

各操業データの減点合計計算の各ルールが生成される。Each rule for calculating the total deduction points for each operation data is generated.

[発明の効果] 以上説明したように、本発明によって製造プロセスのひ
とつの定型的な品質診断の知識ベースの修正が操業技術
者や一般技術者自身によって可能となり、この品質診断
システムのきめ細かな保守が容易となる。
[Effects of the Invention] As explained above, the present invention enables operation engineers and general engineers themselves to modify the knowledge base of a routine quality diagnosis of a manufacturing process, thereby facilitating detailed maintenance of this quality diagnosis system. becomes easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明を実施するシステムの構成を示すブロ
ック図である。 第2図は、実施例の被膜品質診断方法の全体流れ図であ
る。 第3図は、実施例の被膜予測用知識を示すマツプである
。 第4図は、実施例の減点予測値と合計値を示すマツプで
ある。 第5図及び第6図は、それぞれ実施例の修正用知識テー
ブル及び生成された知識ベースを示すマツプである。 第7図は、実施例における乗算係数の計算式の割当てを
示すマツプである。 肴 骨 ―
FIG. 1 is a block diagram showing the configuration of a system implementing the present invention. FIG. 2 is an overall flowchart of the coating quality diagnosis method of the embodiment. FIG. 3 is a map showing the coating prediction knowledge of the embodiment. FIG. 4 is a map showing the predicted demerit point value and the total value in the example. FIGS. 5 and 6 are maps showing the correction knowledge table and the generated knowledge base of the embodiment, respectively. FIG. 7 is a map showing the assignment of calculation formulas for multiplication coefficients in the embodiment. Side bone-

Claims (1)

【特許請求の範囲】[Claims]  製造プロセスにおいて、品質予測に使用する複数個の
操業実績データをその狙い値からのずれでランク分けす
ることと、診断する複数個の品質特性項目ごとに操業デ
ータの狙い値からのずれに起因する品質特性の減点値を
操業データのランク値と減点値との関係を用いて求める
ことと、品質特性項目ごとに各減点値を合計してその満
点値から減算することによりその評価値を求めること、
および操業データ項目ごとに各減点の合計値を求めさら
に高い順に並べかえることにより、各品質特性項目の評
点表示と操業データの操作指示を重要度の順に行なう品
質診断において、操業データのランク分けのデータと品
質特性項目ごとの評点悪化度とその悪化パターンを各操
業データのランク区間と重みで表現したデータからなる
知識テーブルと称するデータファイルをエディタで修正
することと、その知識テーブルから上記品質診断処理を
行なう知識ベースを自動生成することを特徴とする品質
診断知識修正方法。
In the manufacturing process, multiple pieces of operational performance data used for quality prediction are ranked based on the deviation from the target value, and the results are calculated based on the deviation of the operational data from the target value for each of the multiple quality characteristic items to be diagnosed. The demerit value of a quality characteristic is determined by using the relationship between the rank value of the operational data and the demerit value, and the evaluation value is determined by summing the demerit value for each quality characteristic item and subtracting it from the full score value. ,
By calculating the total value of each demerit point for each operational data item and arranging them in descending order, it is possible to rank operational data in a quality diagnosis that displays scores for each quality characteristic item and provides operation instructions for operational data in order of importance. Modify with an editor a data file called a knowledge table, which is made up of data expressing the degree of deterioration of ratings for each quality characteristic item and its deterioration pattern using rank intervals and weights for each operation data, and use the knowledge table to diagnose the above quality. A quality diagnosis knowledge correction method characterized by automatically generating a knowledge base for processing.
JP307089A 1989-01-10 1989-01-10 Quality diagnosis knowledge correction method Expired - Fee Related JPH0750492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP307089A JPH0750492B2 (en) 1989-01-10 1989-01-10 Quality diagnosis knowledge correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP307089A JPH0750492B2 (en) 1989-01-10 1989-01-10 Quality diagnosis knowledge correction method

Publications (2)

Publication Number Publication Date
JPH02183335A true JPH02183335A (en) 1990-07-17
JPH0750492B2 JPH0750492B2 (en) 1995-05-31

Family

ID=11547075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP307089A Expired - Fee Related JPH0750492B2 (en) 1989-01-10 1989-01-10 Quality diagnosis knowledge correction method

Country Status (1)

Country Link
JP (1) JPH0750492B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04201314A (en) * 1990-11-30 1992-07-22 Fanuc Ltd Deriving method for molding condition of injection molding machine
JPH05287342A (en) * 1991-05-31 1993-11-02 Nippon Steel Corp Device for designing quality of steel sheet
JPH05287343A (en) * 1991-05-31 1993-11-02 Nippon Steel Corp Device for designing quality of steel sheet
CN114865794A (en) * 2022-06-01 2022-08-05 南京瑞普思科技有限公司 Visual analysis system for configuration files of intelligent substation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04201314A (en) * 1990-11-30 1992-07-22 Fanuc Ltd Deriving method for molding condition of injection molding machine
JPH05287342A (en) * 1991-05-31 1993-11-02 Nippon Steel Corp Device for designing quality of steel sheet
JPH05287343A (en) * 1991-05-31 1993-11-02 Nippon Steel Corp Device for designing quality of steel sheet
JP3053252B2 (en) * 1991-05-31 2000-06-19 新日本製鐵株式会社 Steel plate quality design equipment
CN114865794A (en) * 2022-06-01 2022-08-05 南京瑞普思科技有限公司 Visual analysis system for configuration files of intelligent substation

Also Published As

Publication number Publication date
JPH0750492B2 (en) 1995-05-31

Similar Documents

Publication Publication Date Title
US9934470B2 (en) Production equipment including machine learning system and assembly and test unit
CN111612128A (en) Active early warning method and device for SF6 high-voltage circuit breaker state
CN115600992A (en) Project management method based on prediction algorithm
JP2019192199A (en) Expression learning and expression implementation methods of human's face by robot
JPH02183335A (en) Quality diagnosis knowledge correcting method
JP3638310B2 (en) Case reasoning support device
Kato et al. Falsification of cyber-physical systems with reinforcement learning
JPH02183334A (en) Quality diagnosis knowledge adjusting method
JPH0535308A (en) Device and method for identifying fuzzy membership function
JP2535070B2 (en) Quality diagnosis knowledge learning method
JPH0575968B2 (en)
JPH02112063A (en) Quality diagnostic method
JPH0298419A (en) Controlling device of injection molding machine
JPH07244524A (en) State predicting device
JPH0310117A (en) Process diagnostic method
CN116742618A (en) Electric energy prediction method and system based on mixed expert system and time sequence
Moraga et al. Fuzzy knowledge-based genetic algorithms
JP3085365B2 (en) Process procedure automatic adjustment method, process procedure automatic adjustment system, and recording medium recording process procedure automatic adjustment program
Bahl et al. Maintenance Decision Making Using Neuro Fuzzy Logic
WO2021121539A1 (en) System and method for improving engineer-to-order configuration
JPH042921A (en) Process diagnostic method
Nissen Management applications of fuzzy control
JP2020071510A (en) Production system, production system control method, and production control device
JPH117314A (en) Plant simulator
JPH02140802A (en) Self correction type fuzzy control method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees