JPS63302311A - Scale for measuring length - Google Patents

Scale for measuring length

Info

Publication number
JPS63302311A
JPS63302311A JP13927187A JP13927187A JPS63302311A JP S63302311 A JPS63302311 A JP S63302311A JP 13927187 A JP13927187 A JP 13927187A JP 13927187 A JP13927187 A JP 13927187A JP S63302311 A JPS63302311 A JP S63302311A
Authority
JP
Japan
Prior art keywords
scale
temperature
base material
scale base
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13927187A
Other languages
Japanese (ja)
Inventor
Yoshihiko Kabaya
蒲谷 芳比古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP13927187A priority Critical patent/JPS63302311A/en
Publication of JPS63302311A publication Critical patent/JPS63302311A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To enable highly accurate measurement, by directly detecting the temperature of a scale itself for measuring length with a scale for detecting displacement formed thereon to compensate measuring errors for temperature changes. CONSTITUTION:Temperature sensors 131-133 are so shaped to have a thermosensitive section which zigzags at the right angle to the length of a scale base material 11 with a fine width and at each fixed pitch and terminal sections formed in a rectangle respectively at both ends thereof. The thermosensitive section is so formed in such dimensions that a resistance value thereof reaches a preset value. Thus, for example, when calibration, actual measurement or the like is performed, resistance values of the temperature sensors 131-133 are measured, for example, with bridge circuits 311-313 or the like and actual temperature at portions of the scale base material 11 is measured. If so, measured values can be corrected by performing a computation 35 based on the resulting detection temperature and a linear expansion coefficient of the scale base material 11. Thus, measuring errors are compensated for temperature changes thereby enabling highly accurate measurement.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、測長用スケール関する。詳しくは、相対移動
する2つの部材のいずれか一方の部材に変位検出用の目
盛を有するスケールを設けるとともに、いずれか他方の
部材に前記スケールの目盛を読み増るための変位検出器
を設け、この両者によって2つの部材の相対移動変位量
を検出する変位検出装置に利用される。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a length measuring scale. Specifically, one of the two members that moves relatively is provided with a scale having graduations for detecting displacement, and one of the other members is provided with a displacement detector for reading the graduations of the scale, Both are used in a displacement detection device that detects the amount of relative movement of two members.

〔従来の技術〕[Conventional technology]

工作機械や精密測定機などの分野では、高精度加工や高
精度測定を達成する目的から、相対移動する2つの部材
の相対移動変位量を高精度に測定するための変位検出装
置が使用されている。
In fields such as machine tools and precision measuring instruments, displacement detection devices are used to accurately measure the amount of relative displacement between two relatively moving parts in order to achieve high-precision machining and high-precision measurement. There is.

従来、かかる変位検出装置の一つとして、例えば第4図
に示す如く、相対移動する2つの部材、ここでは静止体
100とこれに対して紙面と直交する方向へ摺動する可
動体200とのうち、静止体100に取り付けられた細
長箱状の本体ケースl内に前記相対移動方向に沿って一
定ピッチ間隔で光学格子を形成する目盛3を有するメイ
ンスケール4を設ける一方、可動体200に取り付けら
れた摺動体2にアーム2Aを介して前記目盛3に対向す
る目盛5を有するインデックススケール6および発受光
器7.8を含む変位検出器9を取り付けた構造の変位検
出装置が知られている。
Conventionally, as one such displacement detection device, as shown in FIG. 4, for example, two members that move relative to each other, here a stationary body 100 and a movable body 200 that slides in a direction perpendicular to the plane of the drawing, are used. Among them, a main scale 4 having a scale 3 forming an optical grating at constant pitch intervals along the direction of relative movement is provided in an elongated box-shaped main body case l attached to a stationary body 100, while a main scale 4 is attached to a movable body 200. A displacement detection device is known in which a displacement detector 9 including an index scale 6 having a scale 5 facing the scale 3 and a light emitting/receiving device 7.8 is attached to a sliding body 2 via an arm 2A. .

このものは、可動体200の移動に伴うメインスケール
4の目盛3とインデックススケール6の目盛5との位相
変化を変位検出器9によって電気信号に変換し、この電
気信号を所定処理して静止体100と可動体200との
相対移動変位量を検出するものであるから、メインスケ
ール4の目盛3とインデックススケール6の目盛5とは
温度変化にかかわらず常に高精度に維持しておく必要が
ある。
This device converts the phase change between the scale 3 of the main scale 4 and the scale 5 of the index scale 6 due to the movement of the movable body 200 into an electric signal by a displacement detector 9, and processes this electric signal in a predetermined manner to 100 and the movable body 200, the scale 3 of the main scale 4 and the scale 5 of the index scale 6 must always be maintained with high accuracy regardless of temperature changes. .

そのため、従来のものでは、メインスケール4およびイ
ンデックススケール6を線膨張係数の小さいガラスなど
の材料で形成し、設置環境の温度変化に対して対応して
いた。
Therefore, in the conventional system, the main scale 4 and the index scale 6 are made of a material such as glass having a small coefficient of linear expansion to cope with temperature changes in the installation environment.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述したような温度変化に対する対応は
、設置環境の温度変化が成る範囲内とみなしてその範囲
内の温度変化に伴う誤差を無視しようとするものである
から、より高精度測定が望まれる現状では必ずしも満足
できるものではない。
However, since the above-mentioned response to temperature changes assumes that the temperature changes in the installation environment are within the range and ignores errors associated with temperature changes within that range, higher precision measurement is desired. The current situation is not necessarily satisfactory.

特に、この種の変位測定装置は、使用環境がまちまちで
あり、その選定はユーザの任意であるから、特に工作機
械が設置される環境では温度変化が大きいことから、各
スケールの材料選定だけでは温度変化に対応できない場
合が多い。
In particular, this type of displacement measuring device is used in a variety of environments, and its selection is at the discretion of the user.In particular, in environments where machine tools are installed, temperature changes are large, so it is not enough to just select materials for each scale. It is often unable to respond to temperature changes.

また、メインスケール4およびインデックススケール6
は摺動移動する本体ケース1と摺動体2とに直接取り付
けられる構造である。それ故、本体ケース1と摺動体2
との摺動移動、あるいは静止体100と可動体200と
の相対移動によって摺動抵抗熱が発生すると、それが各
スケールに伝達される結果、設置環境以上の温度変化が
各スケールにもたらされることから、測定誤差を生じさ
せていた。
Also, main scale 4 and index scale 6
is a structure that is directly attached to the main body case 1 and the sliding body 2 that slide. Therefore, the main body case 1 and the sliding body 2
When sliding resistance heat is generated due to sliding movement between the stationary body 100 and the movable body 200, it is transmitted to each scale, resulting in a temperature change in each scale that is greater than the installation environment. This caused measurement errors.

ここに、本発明の目的は、このような従来の問題を解消
すべくなされたもので、温度変化に対する測定誤差を補
償し、高精度測定を可能とする測長用スケールを提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a length measuring scale that compensates for measurement errors due to temperature changes and enables highly accurate measurements. .

〔問題点を解決するだめの手段〕[Failure to solve the problem]

そのため、本発明では、変位検出用の目盛を形成した測
長用スケール自体の温度を直接検出し、この温度を基に
測定値を補正できるようにしたものである。
Therefore, in the present invention, the temperature of the length measuring scale itself on which the scale for displacement detection is formed is directly detected, and the measured value can be corrected based on this temperature.

具体的には、直線状のスケール基材の長手方向に沿って
変位検出用の目盛を形成した測長用スケールにおいてζ
前記スケール基材の目盛が形成された面に、その目盛に
近接してスケール基材の伸縮に起因するスケール基材の
温度を検出する温度センサを一体的に設けたことを特徴
とする。
Specifically, in a length measurement scale in which a scale for displacement detection is formed along the longitudinal direction of a linear scale base material, ζ
The present invention is characterized in that a temperature sensor for detecting the temperature of the scale base material due to expansion and contraction of the scale base material is integrally provided on the surface of the scale base material in the vicinity of the scale.

〔作用) 従って、温度センサによりスケール基材自体の温度を直
接検出できるから、この温度を基に測定値を補正すれば
、例えば検出温度とスケール基材の線膨張係数とを基に
測定値を補正、或いは検出温度に対応して補正係数を予
め調べておき、検出温度に対応する補正係数を測定値に
乗じて測定値を補正すれば、温度変化に伴う測定誤差を
補償することができる。
[Function] Therefore, since the temperature of the scale base material itself can be directly detected by the temperature sensor, if the measured value is corrected based on this temperature, for example, the measured value can be corrected based on the detected temperature and the linear expansion coefficient of the scale base material. Measurement errors due to temperature changes can be compensated for by checking the correction coefficient in advance in accordance with the correction or the detected temperature, and multiplying the measured value by the correction coefficient corresponding to the detected temperature to correct the measured value.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第3図に基づいて説
明する。なお、これらの図の説明に当たって、前述した
第4図の装置と同一または類似部分については、同一符
号を付し、その説明を省略する。
Hereinafter, one embodiment of the present invention will be described based on FIGS. 1 to 3. In explaining these figures, the same or similar parts as those of the apparatus shown in FIG. 4 described above are given the same reference numerals, and the explanation thereof will be omitted.

第1図は本発明の測長用スケールを前記メインスケール
4に適用した例を示している。本実施例のメインスケー
ル10は、断面が矩形の薄板直線状のガラスからなるス
ケール基材11の表面に、その長手方向に沿ってスリッ
ト状の変位検出用の目盛12を一定ピッチ(例えば、1
0μmピ、7チ)間隔で形成するとともに、その目盛1
2が形成された同一面の長手方向所定間隔位置にその目
盛12に近接してスケール基材11の温度を検出する温
度センサ13..13□、13.をそれぞれ一体的に設
けたものである。なお、14は目盛12を挟んで温度セ
ンサ13□と対応する位置に設けられた絶対値マークで
ある。
FIG. 1 shows an example in which the length measuring scale of the present invention is applied to the main scale 4. As shown in FIG. The main scale 10 of this embodiment has slit-shaped displacement detection graduations 12 arranged at a constant pitch (for example, 1.0
0μm pitch, 7 inch) interval, and the scale 1
A temperature sensor 13.2 that detects the temperature of the scale base material 11 is located close to the scale 12 at a predetermined interval in the longitudinal direction on the same surface where the scale base material 13.2 is formed. .. 13□, 13. are provided integrally with each other. Note that 14 is an absolute value mark provided at a position corresponding to the temperature sensor 13□ across the scale 12.

スリット状の目盛12は、スケール基材11の表面長手
方向に沿ってクロム被膜を帯状に蒸着し、これをエツチ
ング手法によってスリット状に形成したものである。ま
た、各温度センサ13□132゜133は、前記スケー
ル基材11の表面の所定位置に温度変化により抵抗値が
変化する白金抵抗体を矩形状に蒸着し、これを前記目盛
12の形成と同時に第2図の形状に刻線したものである
The slit-shaped scale 12 is formed by depositing a chromium film in a band shape along the longitudinal direction of the surface of the scale base material 11 and forming it into a slit shape by an etching method. In addition, each temperature sensor 13□132°133 is formed by vapor-depositing a rectangular platinum resistor whose resistance value changes with temperature changes at a predetermined position on the surface of the scale base material 11, and depositing this at the same time as the scale 12 is formed. The shape shown in FIG. 2 is marked with lines.

各温度センサ13.,13□、13.は、第2図に示す
如く、細幅でかつ一定ピッチ毎にスケール基材11の長
手方向に対して直角方向へ蛇行する感温部21と、この
感温部21の両端にそれぞれ矩形状に形成された端子部
22A、22Bとを有する形状に形成されている。感温
部21は、抵抗値が予め設定された値となるような寸法
に形成されている。ここでは、厚みもが約1μm、幅W
が約50μm、全長f(1本に伸ばしたときの長さ)が
約4.7cmで、抵抗値が約100Ωである。
Each temperature sensor 13. ,13□,13. As shown in FIG. 2, there is a temperature-sensing section 21 that has a narrow width and meanders at a constant pitch in a direction perpendicular to the longitudinal direction of the scale base material 11, and a rectangular shape at each end of the temperature-sensing section 21. It is formed in a shape having formed terminal portions 22A and 22B. The temperature sensing portion 21 is formed in such a size that the resistance value becomes a preset value. Here, the thickness is approximately 1 μm and the width W
is approximately 50 μm, the total length f (length when stretched into one length) is approximately 4.7 cm, and the resistance value is approximately 100 Ω.

従って、例えば較正時や実測時などに、各温度センサ1
3.、13!+ 13.の抵抗値を例えばブリッジ回路
などで測定してスケール基材11の各部の実際の温度を
測定すれば、その検出温度とスケール基材11の線膨張
係数とを基に演算によって測定値を補正することができ
る。
Therefore, for example, during calibration or actual measurement, each temperature sensor 1
3. , 13! +13. If the actual temperature of each part of the scale base material 11 is measured by measuring the resistance value of the scale base material 11 using a bridge circuit, for example, the measured value is corrected by calculation based on the detected temperature and the linear expansion coefficient of the scale base material 11. be able to.

あるいは、予め、スケール基材11の温度を変化させた
ときの測定値(変位検出器9がら得られる値)と真の変
位量との誤差を求め、この誤差を打ち消す補正係数を求
め、この補正係数を各温度毎に求めておけば、各温度セ
ンサ13..13□、133で得られた検出温度に対応
する補正係数を測定値に乗じるだけで、測定値の補正を
行うことができる。
Alternatively, the error between the measured value (value obtained from the displacement detector 9) and the true amount of displacement when the temperature of the scale base material 11 is changed is determined in advance, and a correction coefficient to cancel this error is determined, and the correction If the coefficient is calculated for each temperature, each temperature sensor 13. .. The measured value can be corrected simply by multiplying the measured value by the correction coefficient corresponding to the detected temperature obtained in steps 13□ and 133.

なお、これらの補正に当たって、3つの温度センサ13
1.13g、 133でそれぞれ得られた温度の平均値
をもって検出温度としてもよいが、相対移動する2つの
部材の相対位置、つまり本体ケース1に対する摺動体2
の位置に応じて摺動体2に最も近いいずれかの温度セン
サ131.13□、133からの温度データを検出温度
として測定値を補正すれば、より高精度な測定が可能で
ある。
In addition, for these corrections, three temperature sensors 13
The average value of the temperatures obtained at 1.13g and 133 may be used as the detected temperature, but the relative position of the two relatively moving members, that is, the sliding body 2 with respect to the main body case 1.
If the measured value is corrected using temperature data from one of the temperature sensors 131, 13□, 133 closest to the sliding body 2 as the detected temperature according to the position of the slider 2, more accurate measurement is possible.

第3図は温度変化による測定誤差を自動的に補正するだ
めのシステムを示している。同システムは、前記各温度
センサ131,13□、13.の抵抗値をそれぞれ検出
する3つのブリッジ回路311゜31゜、31.と、こ
れらのブリッジ回路31..31□、313に接続され
たマルチプレクサ32と、このマルチプレクサ32から
の信号をデジタル信号に変換するA/D変換器33と、
このA/D変換器33にシステムバス34を介して接続
されたCPU35とを含む。
FIG. 3 shows a system for automatically correcting measurement errors due to temperature changes. The system includes each of the temperature sensors 131, 13□, 13. Three bridge circuits 311°, 31°, and 31. and these bridge circuits 31. .. 31□, a multiplexer 32 connected to 313, an A/D converter 33 that converts the signal from this multiplexer 32 into a digital signal,
It includes a CPU 35 connected to this A/D converter 33 via a system bus 34.

CPU35は、A/D変換器33からのデータつまり各
温度センサ131+ 132.13*で検出されたスケ
ール基材11の各部の温度に関するデータをシステムバ
ス34を通じて取り込み、このデータの平均値を求める
。そして、各温度に対応して前述の補正係数を記憶した
補正テーブル(図示省略)の中から検出温度に対応する
補正係数を読み出し、この補正係数をカウンタ37の値
つまり前記変位検出器9で検出された信号を所定処理し
て得られた相対移動変位量(絶対値マーク14からの変
位量)に乗じて測定値を補正し、その結果をシステムバ
ス34を通じて表示器36に表示させる。
The CPU 35 takes in data from the A/D converter 33, that is, data regarding the temperature of each part of the scale base material 11 detected by each temperature sensor 131+132.13* via the system bus 34, and calculates the average value of this data. Then, a correction coefficient corresponding to the detected temperature is read out from a correction table (not shown) storing the above-mentioned correction coefficients corresponding to each temperature, and this correction coefficient is detected by the value of the counter 37, that is, the displacement detector 9. The measured value is corrected by multiplying the obtained signal by the amount of relative movement displacement (the amount of displacement from the absolute value mark 14), and the result is displayed on the display 36 via the system bus 34.

このようなシステムでは、カウンタ37で更新される値
、つまり相対移動によって逐次変化する相対移動変位量
は、その各時点におけるスケール基材11の実際の温度
を基に補正されているから、測定者自らが演算を行うこ
となく、常に高精度でかつ信鎖性の高い測定値が得られ
る。
In such a system, the value updated by the counter 37, that is, the amount of relative displacement that changes sequentially due to relative movement, is corrected based on the actual temperature of the scale base material 11 at each point in time, so You can always obtain highly accurate and highly reliable measurement values without performing any calculations yourself.

なお、このシステムでも、測定値の補正方法に関しては
、検出温度とスケール基材11の線膨張係数とを基に演
算によって測定値を補正することも可能である。また、
摺動体2に最も近いいずれかの温度センサ13+、 1
3t、 13sからの温度データを検出温度として測定
値を補正することも可能である。
Note that in this system as well, as for the method of correcting the measured value, it is also possible to correct the measured value by calculation based on the detected temperature and the linear expansion coefficient of the scale base material 11. Also,
Any temperature sensor 13+, 1 closest to the sliding body 2
It is also possible to correct the measured value using the temperature data from 3t and 13s as the detected temperature.

従って、本実施例によれば、スケール基材11自体の温
度を直接検出できるから、この温度を基に測定値を補正
すれば、温度変化に伴う、測定誤差を補償することがで
きる。よって、温度変化が大きな設置環境であっても、
また、2つの部材の相対移動に伴う摺動抵抗熱によって
スケール基材11が大きく温度変化する場合であっても
、常に高精度な測定を達成することができる。
Therefore, according to this embodiment, since the temperature of the scale base material 11 itself can be directly detected, by correcting the measured value based on this temperature, it is possible to compensate for measurement errors caused by temperature changes. Therefore, even in installation environments with large temperature changes,
Further, even if the scale base material 11 undergoes a large temperature change due to sliding resistance heat due to relative movement of the two members, highly accurate measurement can always be achieved.

また、スケール基材11の長手方向の所定間隔位置に温
度センサ131.13g、 13sをそれぞれ設けたの
で、スケール基材11が長寸で、かつ本体ケース1に対
して摺動体2が摺動可能範囲の一部だけで常時往復摺動
することによって長手方向の温度が異なる場合でも、摺
動体2の移動位置に応じて温度センサ131.13□、
13.を選択すれば、常に高精度な測定を行える。
In addition, since the temperature sensors 131.13g and 13s are provided at predetermined intervals in the longitudinal direction of the scale base material 11, the scale base material 11 is long and the sliding body 2 can slide against the main body case 1. Even if the temperature in the longitudinal direction differs due to constant reciprocating sliding only in a part of the range, the temperature sensor 131.13□,
13. By selecting , you can always perform highly accurate measurements.

また、このことは、上記効果だけでなく、本体ケース1
と摺動体2との摺動案内面や静止体100と可動体20
0との摺動案内面の仕上げが良好でなく、一部に摺動抵
抗が大きい箇所が生じている場合にも、それに最も近い
温度センサのみが他の温度センサより温度が高くなるの
で、これらの温度センサ13..13□、13.の温度
分布から摺動案内面の良否を判定できる利点がある。
In addition to the above effects, this also applies to the main body case 1.
and the sliding guide surface between the sliding body 2 and the stationary body 100 and the movable body 20
Even if the finish of the sliding guide surface with 0 is not good and there is a part with high sliding resistance, only the temperature sensor closest to it will have a higher temperature than the other temperature sensors. Temperature sensor 13. .. 13□, 13. It has the advantage of being able to determine the quality of the sliding guideway from the temperature distribution.

また、第3図のように、各温度センサ131,13!、
133で検出されたスケール基材11の各部の温度に関
するデータの平均値を求め、各温度に対応して補正係数
を記憶した補正テーブルの中から検出温度に対応する補
正係数を読み出し、この補正係数を測定値に乗じて測定
値を補正するようにすれば、相対移動によって逐次変化
する相対移動変位量はその各時点におけるスケール基材
11の実際の温度を基に補正されているから、測定青白
らが演算を行うことなく、常に高精度でかつ信頼性の高
い測定値が得られる。
Moreover, as shown in FIG. 3, each temperature sensor 131, 13! ,
133, calculate the average value of the data regarding the temperature of each part of the scale base material 11, read out the correction coefficient corresponding to the detected temperature from the correction table that stores correction coefficients corresponding to each temperature, and calculate this correction coefficient. If the measured value is corrected by multiplying the measured value by Highly accurate and reliable measurement values can always be obtained without the need for calculations.

なお、上記実施例では、スケール基材11の長手方向に
3つの温度センサ131,13□、13.を設けたが、
温度センサの数は少なくとも1以上であればよい。さら
に、温度センサの構造についても、上記実施例で述べた
白金抵抗体に限らず、温度変化を検出できるものであれ
ばいずれでもよい。
In the above embodiment, three temperature sensors 131, 13□, 13. However,
The number of temperature sensors may be at least one. Further, the structure of the temperature sensor is not limited to the platinum resistor described in the above embodiments, but may be any structure as long as it can detect temperature changes.

例えば、サーミスタなどでもよい。For example, a thermistor or the like may be used.

また、検出温度を基に測定値を補正する方法に関しては
、上記実施例で述べた方法に限られるものではない。
Further, the method of correcting the measured value based on the detected temperature is not limited to the method described in the above embodiment.

また、上記実施例のスケール10は、第4図に示した従
来の光透過式変位検出装置に利用した場合であるが、変
位検出装置の構造についてはいずれでもよい。例えば、
反射型1個のメインスケールに2個のインデンクススケ
ールを用いた型などでもよい。同様に、目盛12は、光
学格子を構成するスリy I・としているが、静電容量
式、電磁式のスリットの場合にも本発明は適用できる。
Further, although the scale 10 of the above embodiment is used in the conventional light transmission type displacement detection device shown in FIG. 4, any structure of the displacement detection device may be used. for example,
A reflective type using one main scale and two index scales may also be used. Similarly, although the scale 12 is a slit constituting an optical grating, the present invention is also applicable to capacitive or electromagnetic slits.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、温度変化に伴う測定誤差
を補償し、高精度測定を可能とする測長用スケールを提
供することができる。
As described above, according to the present invention, it is possible to provide a length measurement scale that compensates for measurement errors caused by temperature changes and enables highly accurate measurement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の測長用スケールの一実施例を示す斜視
図、第2図はその測長用スケールに設けられた温度セン
サを示す拡大正面図、第3図は前記測長用スケールを用
いた測長システムを示すブロック図、第4図は従来の変
位検出装置を示す断面図である。 11・・・スケール基材、12・・・目盛、13..1
3g、13− ・・・温度センサ。
Fig. 1 is a perspective view showing an embodiment of the length measuring scale of the present invention, Fig. 2 is an enlarged front view showing a temperature sensor provided on the length measuring scale, and Fig. 3 is the aforementioned length measuring scale. FIG. 4 is a block diagram showing a length measuring system using a conventional displacement detecting device. 11...Scale base material, 12...Graduation, 13. .. 1
3g, 13-...Temperature sensor.

Claims (3)

【特許請求の範囲】[Claims] (1)直線状のスケール基材の長手方向に沿って変位検
出用の目盛を形成した測長用スケールにおいて、前記ス
ケール基材の目盛が形成された面に、その目盛に近接し
てスケール基材の伸縮に起因するスケール基材の温度を
検出する温度センサを一体的に設けたことを特徴とする
測長用スケール。
(1) In a length measuring scale in which a scale for displacement detection is formed along the longitudinal direction of a linear scale base material, a scale base is placed close to the scale on the surface of the scale base material on which the scale is formed. A length measuring scale characterized by being integrally provided with a temperature sensor that detects the temperature of a scale base material due to expansion and contraction of the material.
(2)特許請求の範囲第1項において、前記温度センサ
は、前記スケール基材の長手方向所定間隔位置に複数設
けられていることを特徴とする測長用スケール。
(2) The length measuring scale according to claim 1, wherein a plurality of the temperature sensors are provided at predetermined intervals in the longitudinal direction of the scale base.
(3)特許請求の範囲第1項または第2項において、前
記温度センサは、温度変化によって抵抗値が変化する白
金抵抗体によって構成されていることを特徴とする測長
用スケール。
(3) The length measuring scale according to claim 1 or 2, wherein the temperature sensor is constituted by a platinum resistor whose resistance value changes with temperature changes.
JP13927187A 1987-06-02 1987-06-02 Scale for measuring length Pending JPS63302311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13927187A JPS63302311A (en) 1987-06-02 1987-06-02 Scale for measuring length

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13927187A JPS63302311A (en) 1987-06-02 1987-06-02 Scale for measuring length

Publications (1)

Publication Number Publication Date
JPS63302311A true JPS63302311A (en) 1988-12-09

Family

ID=15241395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13927187A Pending JPS63302311A (en) 1987-06-02 1987-06-02 Scale for measuring length

Country Status (1)

Country Link
JP (1) JPS63302311A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03235015A (en) * 1990-02-09 1991-10-21 Sony Magnescale Inc Digital scale instrument
DE10007540A1 (en) * 2000-02-18 2001-09-13 Brown & Sharpe Gmbh Thermal correction of measuring scale used in coordinate measuring system, involves calculating temperature gradient, based on temperature measured at different points on scale
WO2013051594A1 (en) * 2011-10-04 2013-04-11 株式会社ニコン X-ray device, x-ray irradiation method, and manufacturing method for structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03235015A (en) * 1990-02-09 1991-10-21 Sony Magnescale Inc Digital scale instrument
DE10007540A1 (en) * 2000-02-18 2001-09-13 Brown & Sharpe Gmbh Thermal correction of measuring scale used in coordinate measuring system, involves calculating temperature gradient, based on temperature measured at different points on scale
DE10007540C2 (en) * 2000-02-18 2002-06-13 Brown & Sharpe Gmbh Method for the thermal correction of a scale in a coordinate measuring system
WO2013051594A1 (en) * 2011-10-04 2013-04-11 株式会社ニコン X-ray device, x-ray irradiation method, and manufacturing method for structure
JPWO2013051594A1 (en) * 2011-10-04 2015-03-30 株式会社ニコン X-ray apparatus, X-ray irradiation method, and structure manufacturing method
US10705030B2 (en) 2011-10-04 2020-07-07 Nikon Corporation X-ray device, X-ray irradiation method, and manufacturing method for structure

Similar Documents

Publication Publication Date Title
JP6324588B2 (en) Contour shape surface roughness measuring apparatus and contour shape surface roughness measuring method
JP2903258B2 (en) Method for calibrating thickness measuring device and device for measuring or monitoring thickness of layers, tapes, foils, etc.
US5187475A (en) Apparatus for determining the position of an object
US6967726B2 (en) Means for in-place automated calibration of optically-based thickness sensor
JP6503282B2 (en) Shape measurement and calibration device
CN101140155A (en) Caliper
EP0498780B1 (en) A method and arrangement for determining the linear (heat) expansion of elongated bodies
JPH01502528A (en) Combined scale and interferometer
US3332153A (en) Temperature compensating system
CN103913479B (en) A kind of device for detecting grating scale thermal coefficient of expansion
JPS63302311A (en) Scale for measuring length
Castro et al. Evaluation of the measurement uncertainty of a positional error calibrator based on a laser interferometer
Castro Uncertainty analysis of a laser calibration system for evaluating the positioning accuracy of a numerically controlled axis of coordinate measuring machines and machine tools
JPS63302312A (en) Length measuring system
US2364923A (en) Measuring apparatus
Jakubkovič et al. Displacement Measurement in the Vertical Axis of the Measuring Microscope using Laser Triangulation Sensor
JP3202183B2 (en) Scale and length measurement method using laser light
JP4241369B2 (en) Linear scale
GB2275772A (en) Calibration of dimension measuring equipment
RU2049313C1 (en) Method of calibration of distributed temperature transducer with variable linear sensitivity coefficient
JP2715173B2 (en) Digital scale device
US20220065668A1 (en) Position-measuring device
JPH11281348A (en) Method for correcting precision of device for measuring flatness
JPH0339620B2 (en)
JPH0854261A (en) Autonomous calibration of linear error measuring apparatus, sensor or actuator by itself