JPS63302301A - Distance measuring apparatus - Google Patents

Distance measuring apparatus

Info

Publication number
JPS63302301A
JPS63302301A JP62138224A JP13822487A JPS63302301A JP S63302301 A JPS63302301 A JP S63302301A JP 62138224 A JP62138224 A JP 62138224A JP 13822487 A JP13822487 A JP 13822487A JP S63302301 A JPS63302301 A JP S63302301A
Authority
JP
Japan
Prior art keywords
magnetic flux
superconducting
magnetic field
distance measuring
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62138224A
Other languages
Japanese (ja)
Other versions
JP2623090B2 (en
Inventor
Takeshi Sawada
武 沢田
Akira Kuroda
亮 黒田
Tetsushi Nose
哲志 野瀬
Yukichi Niwa
丹羽 雄吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62138224A priority Critical patent/JP2623090B2/en
Priority to GB8812545A priority patent/GB2205955B/en
Priority to US07/199,706 priority patent/US4912408A/en
Priority to FR8807361A priority patent/FR2616219B1/en
Priority to DE3818887A priority patent/DE3818887A1/en
Publication of JPS63302301A publication Critical patent/JPS63302301A/en
Application granted granted Critical
Publication of JP2623090B2 publication Critical patent/JP2623090B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/18Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying effective impedance of discharge tubes or semiconductor devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/842Measuring and testing
    • Y10S505/843Electrical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/825Apparatus per se, device per se, or process of making or operating same
    • Y10S505/872Magnetic field shield

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To enable measurement of a distance with a large length measuring range and a level of 0.1nm, by arranging a superconducting quantum interference device (SQUID) with a magnetic field generated within a superconducting shield to detect a magnetic flux. CONSTITUTION:The amount of magnetic flux passing through a SQUID in superconduction within a magnetic field is detected and outputted with a magnetic flux detector 7 as voltage signal varying cyclically with changes in the amount of magnetic flux as one cycle in terms of a proper magnetic flux quantum with the action of the SQUID. When the SQUID 7 is moved, the amount of magnetic flux changed during the movement thereof is counted with an arithmetic unit 9 in terms of magnetic flux quantum from a voltage signal outputted from the magnetic flux detector 7. Here, the amount of magnetic flux passing through the SQUID 7 relates to the position of the SQUID 7 if the magnetic field is normal. Thus, computation 9 is performed based on a relationship between the amount of magnetic flux previously measured and the position of the SQUID 7 and the number of counts thereby enabling measurement of distance at a level of 0.1nm.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はアライナやステッパなどの半導体焼付装置に用
いられる距離測定装置に関し、詳しくは、超伝導量子干
渉デバイス(スーパーコンダクティング・クオンタム・
インターフェアレンス・デバイス、以下SQU I D
素子という)を用いることによりnm(ナノメートル)
レベルの測距を可能にした距離測定装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a distance measuring device used in semiconductor printing equipment such as aligners and steppers.
Interference device, hereinafter referred to as SQU ID
nm (nanometer)
This invention relates to a distance measuring device that enables level distance measurement.

[従来技術] 従来、半導体用アライナなどに使用されている測距方式
は、きわめて多種にわたる。そして、1μm〜lnm0
測距方式としてレーザ光の干渉を利用した方法、精密差
動トランス法、インダクタンス変化を用いた方法、静電
容量の変化を用いた方法などが挙げられる。このうち、
レーザ光の干渉を利用する方法は、lnm程度の分解能
をもち、測距長さも1100n以上と十分であり、アラ
イナの計測装置用としては広く用いられている。
[Prior Art] Conventionally, there are a wide variety of distance measurement methods used in semiconductor aligners and the like. And 1μm~lnm0
Examples of distance measurement methods include a method using laser beam interference, a precision differential transformer method, a method using inductance change, and a method using capacitance change. this house,
The method using laser light interference has a resolution of about 1 nm and a sufficient distance measurement length of 1100 nm or more, and is widely used for aligner measurement devices.

[発明が解決しようとする問題点コ しかしながら、インダクタンスや容量変化を利用する方
法は、測距範囲が狭く、広くは用いられていない。また
、精密差動トランス方式は、構造が簡単であり広く用い
られているが、最高検出感度が30nm程度であるため
1100n程度の分解能の測長に用いられているにとど
まる。さらに、測距長さは10〜20mmで、半導体ア
ライナで必要な100mm以上の測定には不十分である
[Problems to be Solved by the Invention] However, methods that utilize inductance or capacitance changes have a narrow range of distance measurement, and are not widely used. Further, the precision differential transformer method has a simple structure and is widely used, but since the maximum detection sensitivity is about 30 nm, it is only used for length measurement with a resolution of about 1100 nm. Furthermore, the distance measurement length is 10 to 20 mm, which is insufficient for measurements of 100 mm or more required for semiconductor aligners.

また、レーザ光の干渉を用いる方法においても、Inm
の精度で測□距するためには、レーザ光源の安定性やレ
ーザ光が照射された部分の熱変゛形の問題、あるいは装
置そのものが大ぎく高価になるという欠点がある。
Also, in a method using laser light interference, Inm
In order to measure the distance with an accuracy of □, there are problems with the stability of the laser light source, thermal deformation of the part irradiated with the laser light, and the drawback that the device itself is extremely expensive.

以上のように、従来方式においては、レーザ光干渉方式
以外については可動レンジの点で問題があり、また、レ
ーザ光干渉方式についてはレーザ光源そのものの問題と
装置が高価になるという問題点を有していた。
As mentioned above, conventional methods other than the laser beam interference method have problems in terms of movable range, and the laser beam interference method has problems with the laser light source itself and the problem of expensive equipment. Was.

本発明の目的は、以上の問題点に鑑み、大きな測長レン
ジおよび従来にない0.1nmレベルの測定分解能を有
する距離測定装置の提供にある。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a distance measuring device having a large length measurement range and a measurement resolution of 0.1 nm level, which is unprecedented.

[問題点を解決するための手段] 上記目的を達成するため本発明は、磁界発生手段、SQ
U I D素子を用いた磁束検出手段、信号処理手段お
よび超伝導シールド手段を備えており、超伝導シールド
手段で外部の磁界からシールドされた内側において、磁
界発生手段がつくる磁界中で磁束検出手段によって磁束
密度を検知し、該磁束検出手段からの出力信号に基づき
信号処理手段によって、5QUID素子に連結した物体
の位置あるいは移動距離を求めるようにしている。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides magnetic field generating means, SQ
It is equipped with a magnetic flux detection means using a UID element, a signal processing means, and a superconducting shield means, and inside the superconducting shield means shielded from an external magnetic field, the magnetic flux detection means is detected in the magnetic field created by the magnetic field generating means. The magnetic flux density is detected by the magnetic flux detection means, and the position or moving distance of the object connected to the 5QUID element is determined by the signal processing means based on the output signal from the magnetic flux detection means.

[作用] この構成において、磁界中の超伝導状態の5QUID素
子を通る磁束量は、SQU I D素子の働きにより、
固有の磁束量子なる磁束量変化を一周期として周期的に
変化する電圧信号としてti1束検出手段により検出さ
れ出力される。そして、5QUID素子を移動させた場
合、その間にti1束検出手段が出力する電圧信号から
、その間に変化した磁束量が磁束量子を単位として信号
処理手段によりカウントされる。このとき、SQU I
 D素子を通る磁束量は磁界が定常的であれば5QUI
D素子の位置に関係し、したがって、予じめ計測してお
いた磁束量とSQU I D素子の位置との関係および
上記カウント数から信号処理手段において磁束量子単位
での移動距離が求められる。ざらに、上記−周期におけ
る位相はうn束量子の10−3倍程度の分解能で容易に
検出され、この結果を上記カウント数による結果に加え
て非常に高精度な例えば1人程度の精度で移動距離ある
いは位置が測定される。
[Function] In this configuration, the amount of magnetic flux passing through the 5QUID element in the superconducting state in the magnetic field is due to the action of the SQUID element.
The ti1 flux detection means detects and outputs a voltage signal that changes periodically with a change in the amount of magnetic flux, which is a unique magnetic flux quantum, as one cycle. Then, when the 5QUID elements are moved, the amount of magnetic flux that has changed during that time is counted by the signal processing means in units of magnetic flux quanta from the voltage signal output by the ti1 flux detection means during that time. At this time, SQU I
The amount of magnetic flux passing through the D element is 5QUI if the magnetic field is steady.
It is related to the position of the D element, and therefore, the moving distance in units of magnetic flux quantum is determined by the signal processing means from the relationship between the amount of magnetic flux measured in advance and the position of the SQUID element and the above-mentioned count number. Roughly speaking, the phase in the above-mentioned period can be easily detected with a resolution of about 10-3 times that of the flux quantum, and this result can be added to the result from the above count number with very high precision, for example, one person's precision. Distance traveled or position is measured.

[実施例] 以下、図面を用いて本発明の詳細な説明する。[Example] Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明の一実施例に係る距離測定装置の構成を
示す概略図である。同図において、7は磁束を検出し磁
束密度に対応した信号を出力するda−3QUID素子
で、可動部8に固定されている。da−3QUID素子
7からの導線はコンピユータにより上記信号を処理する
演算装置9に接続されている。また、このdc−SQU
ID素子7に対向して、素子7の可動方向(矢印)に磁
化されたS m Co 671石10が可動の中心線と
磁石10の中心線とが一致するように配置されている。
FIG. 1 is a schematic diagram showing the configuration of a distance measuring device according to an embodiment of the present invention. In the figure, 7 is a da-3 QUID element that detects magnetic flux and outputs a signal corresponding to the magnetic flux density, and is fixed to the movable part 8. The conductor from the da-3 QUID element 7 is connected to an arithmetic unit 9 which processes the signal by means of a computer. Also, this dc-SQU
Opposing the ID element 7, an S m Co 671 stone 10 magnetized in the movable direction (arrow) of the element 7 is arranged so that the movable center line and the center line of the magnet 10 coincide.

dc−3QUID素子7、可動部8および磁石10は、
超伝導物質でできたシールドケース14に収納してあり
、これはさらに、液体窒素あるいは液体ヘリウムで冷却
するための不図示のジュワーに収められている。
The dc-3QUID element 7, the movable part 8 and the magnet 10 are
It is housed in a shield case 14 made of a superconducting material, which is further housed in a dewar (not shown) for cooling with liquid nitrogen or liquid helium.

第2図はdc−SQUID素子7の構成を拡大して示し
た模式図である。5QUID(超伝導量子干渉デバイス
)とは、超伝導状態で観測されるジョセフソン効果を利
用して磁束を検知する磁束検出素子であり、同図に示す
ように素子基板1の上に薄膜形成手段によって、超伝導
薄膜2.2′を絶縁層3.3′を介して閉回路あるいは
リング状に形成することによフて構成される。
FIG. 2 is a schematic diagram showing an enlarged configuration of the dc-SQUID element 7. As shown in FIG. 5QUID (superconducting quantum interference device) is a magnetic flux detection element that detects magnetic flux using the Josephson effect observed in a superconducting state.As shown in the figure, a thin film forming means is formed on the element substrate 1. Accordingly, it is constructed by forming a superconducting thin film 2.2' in a closed circuit or ring shape with an insulating layer 3.3' interposed therebetween.

本実施例では、薄膜2.2′は弱結合を2ケ所もつda
−5QUID素子の超伝導体部として、まずY−Ba−
Cu−0やBa−La−Cu−0等のセラミックで3μ
m厚の薄膜を形成し次にこれをフォトリソグラフィでス
トライブ幅50μmかつ磁束検出部面積0.5m+n2
の窓形状にすることにより、作成される。また、絶縁層
部3.3′としては、1μm厚の5in2を用いる。
In this embodiment, the thin film 2.2' has two weak bonds.
-5 As the superconductor part of the QUID element, first Y-Ba-
3μ with ceramics such as Cu-0 and Ba-La-Cu-0
A thin film with a thickness of m is formed and then photolithography is performed to strip the film with a stripe width of 50 μm and a magnetic flux detection area of 0.5 m + n2.
It is created by making the window shape. Further, as the insulating layer portion 3.3', 5in2 with a thickness of 1 μm is used.

こうして作られた超伝導状態のSQU I D素子に同
図に示すように磁束4が通ると、その量に応じて薄膜2
.2′に接続された電圧測定手段5により電圧変化が検
出される。5QUID素子7は、このように弱結合部分
(絶縁層3.3′に相当する)を2ケ所もち、電圧検出
手段が直流検出方式であることから、dc−SQUID
素子と呼ばれる。
When a magnetic flux 4 passes through the superconducting SQU ID element created in this way as shown in the figure, the thin film 2
.. Voltage changes are detected by voltage measuring means 5 connected to 2'. The 5QUID element 7 has two weak coupling parts (corresponding to the insulating layers 3 and 3') as described above, and the voltage detection means is a DC detection method, so it is a dc-SQUID element.
called an element.

この素子の電圧と磁束4との関係は、第3図に示すよう
に磁束(横軸)の量に応じた凹凸の繰り返しとなる。た
だし、このような電圧を発生させるためには、dc−3
QUID素子7の臨界電流値付近のバイアス電流を必要
とするが、これはバイアス電流発生手段6によって供給
する。第3図において、電圧■の変化はφ。の周期を示
しているが、φ0は2.07x 1O−I5W bとい
う固有の磁束Δで、6i1束量子と呼ばれている。
The relationship between the voltage of this element and the magnetic flux 4 is a repetition of unevenness depending on the amount of magnetic flux (horizontal axis), as shown in FIG. However, in order to generate such a voltage, dc-3
A bias current near the critical current value of the QUID element 7 is required, and this is supplied by the bias current generating means 6. In Figure 3, the change in voltage ■ is φ. φ0 is a unique magnetic flux Δ of 2.07× 1O−I5W b, which is called a 6i1 flux quantum.

したがって、第1図において、dc−5QUID素子7
を磁束発生源である磁石lOに対して移動させると、第
3図のような電圧特性が得られ、その電圧のピークを演
算装置9によって計測することにより、移動距離が測定
される。
Therefore, in FIG. 1, the dc-5QUID element 7
When it is moved relative to the magnet lO which is a magnetic flux generation source, a voltage characteristic as shown in FIG. 3 is obtained, and by measuring the peak of the voltage by the arithmetic unit 9, the moving distance is measured.

すなわち、永久磁石10がその表面に0,5テスラ程度
の磁束密度を出すものであり、磁石10から100 m
 m illれた点で0.005テスラの磁束密度が観
測されたとすると、はぼ1 mm当りI X 10−’
テスラの磁束密度変化がみられるはずである。この場合
、dc−5QUID素子の磁束検出部の面積を1 mm
2とすれば、素子7の1 mmの移動に対して105個
のφ。がカウントされる。つまり、1φ0でlonmが
検知できる。また、さらに、電圧検出部5の高性能化に
よりφ。の位相検出が可能で、しかも10−3φ。の分
解能すなわち0.1nm(1人)の測距精度が容易に得
られる。したかって、φ。のカウントと位相検出(分解
能1o−3φ。)とをうまく組み合わせて0.1nmの
分解能の計測を能率良く短時間に行なうことができる。
That is, the permanent magnet 10 emits a magnetic flux density of about 0.5 Tesla on its surface, and the distance from the magnet 10 to 100 m
If a magnetic flux density of 0.005 Tesla is observed at the point where the mill is milled, approximately I x 10-' per mm.
You should see a Tesla magnetic flux density change. In this case, the area of the magnetic flux detection part of the dc-5QUID element is 1 mm.
2, 105 φ for 1 mm movement of element 7. is counted. In other words, lonm can be detected at 1φ0. Furthermore, due to the improved performance of the voltage detection section 5, φ. It is possible to detect the phase of 10-3φ. It is easy to obtain a resolution of 0.1 nm (one person). I wanted to, φ. By skillfully combining counting and phase detection (resolution: 1o-3φ), measurement with a resolution of 0.1 nm can be carried out efficiently and in a short time.

ただし、上述のrn束量と距離との関係は前もって計測
しておく必要がある。
However, the above-mentioned relationship between the amount of rn flux and the distance needs to be measured in advance.

ここでは、磁束発生源として永久磁石1oを用いて説明
したが、永久磁石は磁化のフラクチュエーションや経時
変化を生ずるおそれがあるので、永久磁石の代わりに超
伝導導線による永久電流を磁束発生源としても良い。こ
の場合には、場所による磁束密度は正確にあらかじめ計
算することができ、磁束と移動量は絶対値計測が可能と
なる。
Here, we have explained using a permanent magnet 1o as a magnetic flux generation source, but since permanent magnets may cause magnetization fractuation or change over time, we use a persistent current generated by a superconducting wire instead of a permanent magnet as a magnetic flux generation source. Also good. In this case, the magnetic flux density depending on the location can be calculated accurately in advance, and the absolute values of the magnetic flux and the amount of movement can be measured.

また、SQU I Dによる計測の場合、外来ノイズが
問題となるが、本実施例では計測装置全体を超伝導体(
シールドケース14)でシールドしであるため、完全反
磁性の効果により、外部からストレー磁界は入り込まず
、高精度測定が可能である。
In addition, in the case of measurement using SQUID, external noise is a problem, but in this example, the entire measurement device is made of a superconductor (
Since it is shielded with a shield case 14), a stray magnetic field does not enter from the outside due to the perfect diamagnetic effect, and high precision measurement is possible.

ところで、近年、液体窒素温度(77°K)以上で超伝
導を示す物質が続々発見されている。したがって、これ
によればSQU I D素子、超伝導導線およびシール
ド材のいずれも77°に以上で超伝導状態となることが
可能で、安価にかつ容易に高精度測距装置が実現できる
Incidentally, in recent years, substances that exhibit superconductivity at temperatures above liquid nitrogen temperature (77°K) have been discovered one after another. Therefore, according to this, it is possible for the SQU ID element, the superconducting wire, and the shielding material to all become superconducting at an angle of 77 degrees or more, and a high-precision distance measuring device can be realized easily and at low cost.

本実施例では、磁石lOの磁化方向とSQU I D素
子7の移動方向とを一致させたが、あらかじめ磁束密度
と位置との関係を計測しておくことを考えれば、このこ
とは必ずしも必要なことではない。ただし、上下左右の
素子のずれに対する誤差発生確率は、本実施例の場合が
最も低い。
In this example, the magnetization direction of the magnet IO and the moving direction of the SQU ID element 7 are made to match, but this is not necessarily necessary considering that the relationship between the magnetic flux density and the position is measured in advance. That's not the point. However, the probability of error occurrence with respect to vertical and horizontal element deviations is the lowest in this embodiment.

第4図は本発明の第2の実施例に係る距離測定装置の構
成を示す概略図である。同図のdc−3Qυ!D素子7
は第1の実施例で用いたものと同一であり、同様の原理
で移動距離が測定される。
FIG. 4 is a schematic diagram showing the configuration of a distance measuring device according to a second embodiment of the present invention. dc-3Qυ in the same figure! D element 7
is the same as that used in the first embodiment, and the moving distance is measured using the same principle.

また、同図の装置においては、磁束勾配を与えるため図
示のように4本の超伝導導線11a 、 llb 。
In addition, in the apparatus shown in the figure, four superconducting conductive wires 11a and llb are used as shown in the figure to provide a magnetic flux gradient.

11c、 lidを左右上下対称に配置し、上下対称面
の中心線上をdc−SQUID素子を移動させる構造と
なっている。そしてこの構成全体は、第1図の場合と同
様に超伝導シールドケース14に収納されている。また
、4本の超伝導導線11a〜lidは、同一方向の電流
が流れるように、シールドケース外でやはり超伝導導線
で接続されている。
11c and lid are arranged symmetrically in the horizontal and vertical directions, and the dc-SQUID element is moved on the center line of the vertically symmetrical plane. This entire configuration is housed in a superconducting shield case 14 as in the case of FIG. Further, the four superconducting conductive wires 11a to lid are also connected by superconducting conductive wires outside the shield case so that currents flow in the same direction.

このような構成の場合、磁界は、超伝導導線11a〜t
tdを流れる永久電流により発生するため、きわめて安
定している。また、各導線がy軸に平行であるため、発
生する磁界は、X方向のずれに対しては磁束の変化を与
えず、上下方向(Z方向)のずれに対しては上下に2本
の導線があるため大きな磁束変化を与えない、安定な構
造となっている。
In such a configuration, the magnetic field is applied to the superconducting conductors 11a-t.
It is extremely stable because it is generated by a persistent current flowing through td. In addition, since each conducting wire is parallel to the y-axis, the generated magnetic field does not change the magnetic flux for deviations in the X direction, but for deviations in the vertical direction (Z direction), two Due to the presence of conductive wires, it has a stable structure that does not cause large changes in magnetic flux.

この構成において、X方向にdc−3QUID素子7を
穆勤した場合、磁束密度の変化は第5図に示したような
きわめて直線的なものとなるため、移動距離の測定ある
いは制御が容易である。
In this configuration, when the dc-3 QUID element 7 is moved in the X direction, the change in magnetic flux density becomes extremely linear as shown in Figure 5, making it easy to measure or control the moving distance. .

また、この磁束変化の直線性をさらにあげるために補助
超伝導導線を導線11a=11dと平行に配置すること
も考えられる。さらに、超伝導導線の永久電流をコント
ロールするために、別の5QUTD素子を上述のシール
ドケース以外の場所に配置して導線との位置関係を固定
し、電流モニタとして用いれば、電流値をφ0のlロー
3のレベルで設定することができる。
Furthermore, in order to further improve the linearity of this magnetic flux change, it is also possible to arrange an auxiliary superconducting conductor in parallel to the conductive wires 11a=11d. Furthermore, in order to control the persistent current of the superconducting wire, if another 5QUTD element is placed in a place other than the above-mentioned shield case and its positional relationship with the conductor is fixed and used as a current monitor, the current value of φ0 can be adjusted. It can be set at a level of llow 3.

本実施例によれば、場所毎の磁束密度を予めきわめて高
い精度で数値計算により求めておくことができるため、
絶対値計測も可能となる。
According to this embodiment, since the magnetic flux density for each location can be determined in advance by numerical calculation with extremely high accuracy,
Absolute value measurement is also possible.

第6図は本発明の第3の実施例に係る距離測定装置の構
成を示す概略図である。同図に示すように、この装置の
磁界発生手段は3本の超伝導導線12a 、 12b 
、 12cをそれぞれがxy平面内の三角形の頂点に位
置するようにZ方向と平行に配置し、上述と同じように
同一方向に電流を流す構成になっており、上述と同様に
全体に超伝導シールドが施される。3本の超伝導線12
ax12cの中心には固定台13が配置してあり、その
xz平面とy2平面にそれぞれSQU I D素子7と
7′が配置しである。したがって、素子7と7′は互い
に直交成分を検出することになる。また、固定台13は
測長部分に接続しである。
FIG. 6 is a schematic diagram showing the configuration of a distance measuring device according to a third embodiment of the present invention. As shown in the figure, the magnetic field generating means of this device consists of three superconducting conductive wires 12a and 12b.
, 12c are arranged parallel to the Z direction so that they are each located at the apex of a triangle in the xy plane, and the current is passed in the same direction as described above. A shield will be applied. Three superconducting wires 12
A fixed base 13 is arranged at the center of the ax 12c, and SQU ID elements 7 and 7' are arranged on the xz plane and the y2 plane, respectively. Therefore, elements 7 and 7' detect mutually orthogonal components. Further, the fixed stand 13 is connected to the length measuring section.

この構成によれば5QLJ I D素子7.7″からの
信号を処理することによって2次元の移動を測定するこ
とができる。また、これによれば、安価で高精度な測長
器が実現できる。
According to this configuration, two-dimensional movement can be measured by processing the signal from the 5QLJ ID element 7.7". Also, according to this, an inexpensive and highly accurate length measuring device can be realized. .

本実施例では超伝導導線を3木用いたが、可動範囲の大
きさにより1本以上の任意の本数を設定してもよく、そ
の場合でも磁束密度の計算ができ、したがって、2次元
の絶対値計測ができる。
In this example, three superconducting conductors were used, but depending on the size of the movable range, one or more superconducting wires may be used. Even in that case, the magnetic flux density can be calculated, and therefore the two-dimensional absolute Value measurement is possible.

[実施例の変形例コ なお、本発明は上述の各実施例に限定されることなく適
宜変形して実施することができる。
[Modifications of Embodiments] The present invention is not limited to the above-mentioned embodiments, but can be implemented with appropriate modifications.

例えば、上述においては、磁束検出のためにda−3Q
UID素子を用いたが、この代わりにノイズ除去の点で
すぐれたac−3QUID素子を用いても同様の計測が
できる。
For example, in the above, da-3Q is used for magnetic flux detection.
Although a UID element was used, similar measurements can be made by using an ac-3 QUID element, which is excellent in noise removal, instead.

また、上述においては、液体窒素あるいは液体ヘリウム
で冷却することを前提として説明したが、常温超伝導体
ができれば、いうまでもなく、冷却装置なしに本発明は
実施可能である。また、低温下での相変態時の長さ測定
や変位測定のように、被測定試料と測定手段の両方とも
一定温度の低温にコントロールされているような状況で
は、冷却装置は必ずしも必要手段とはならない。
Further, although the above description has been made on the assumption that cooling is performed using liquid nitrogen or liquid helium, it goes without saying that the present invention can be implemented without a cooling device if a room temperature superconductor can be made. Furthermore, in situations where both the sample to be measured and the measurement means are controlled to a constant low temperature, such as when measuring length or displacement during phase transformation at low temperatures, a cooling device is not always necessary. Must not be.

[発明の効果] 以上説明したように本発明によれば、超伝導シールド内
で磁界をつくり、その中に5QUID素子を配置して磁
束を検出することによりその位置あるいは穆動距瞭を測
定するようにしたため、以下の効果が得られる。
[Effects of the Invention] As explained above, according to the present invention, a magnetic field is created within a superconducting shield, a 5QUID element is placed in the magnetic field, and the magnetic flux is detected to measure the position or transverse distance. By doing so, the following effects can be obtained.

■ 広い測長レンジが可能である。また、最小分解能は
0.1nmが期待できる。
■ A wide measurement range is possible. Further, the minimum resolution can be expected to be 0.1 nm.

■ 素子の構成や回路系の構成がきわめて簡単で低コス
トである。
■ The element configuration and circuit system configuration are extremely simple and low cost.

■ 磁界発生手段として超伝導導線を4本以上配置して
、絶対値計測が可能である。
■ Absolute value measurement is possible by arranging four or more superconducting wires as magnetic field generating means.

■ 磁束検出手段のSQU I D素子を2個とし、磁
束検出面が相互に直角になるようにそれらを配置するこ
とにより、超伝導導線を1本以上用いた磁界発生手段が
つくる1If1界中で2次元計測が可能である。
■ By using two SQU ID elements as the magnetic flux detection means and arranging them so that the magnetic flux detection surfaces are perpendicular to each other, the 1If1 field created by the magnetic field generation means using one or more superconducting conductors can be Two-dimensional measurement is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第1実施例に係る距離測定装置の構
成を示す概略図、 第2図は、第1図の装置に用いられるdc−SQUID
素子の構成を示す模式図、 第3図は、dc−SQUID素子の磁束に対する電圧の
関係を示すグラフ、 第4図は、本発明の第2の実施例に係る距離測定装置の
構成を示す概略図、 第5図は、第4図の装置における磁束密度分布を表わし
たグラフ、そして 第6図は、本発明の第3の実施例に係る距mlt イI
j’定装置の構成を示す概略図である。 1:素子基板、  2.2’  :超伝導筒l摸、3.
3’  :絶縁層、  4:6fi束φ、  5 電圧
測定手段、  6:バイアス電流発生手段、7.7’ 
 :dc−3QUID素子、 8 可動部、 9:演算
装置、 10:SmCo111石、11a 〜lid 
、 12a 〜12c 二超伝導導線、 13・固定台
、 14:シールトケース。 特許出願人   キャノン株式会社 代理人 弁理士   伊 東 哲 也 代理人 弁理士   伊 東 辰 雄 第5図 第6図
FIG. 1 is a schematic diagram showing the configuration of a distance measuring device according to a first embodiment of the present invention, and FIG. 2 is a dc-SQUID used in the device shown in FIG.
FIG. 3 is a graph showing the relationship between voltage and magnetic flux of the dc-SQUID element; FIG. 4 is a schematic diagram showing the configuration of a distance measuring device according to a second embodiment of the present invention. 5 is a graph showing the magnetic flux density distribution in the device shown in FIG. 4, and FIG. 6 is a graph showing the magnetic flux density distribution in the device shown in FIG.
FIG. 2 is a schematic diagram showing the configuration of a j'-determining device. 1: Element substrate, 2.2': Superconducting cylinder sample, 3.
3': Insulating layer, 4: 6fi bundle φ, 5 Voltage measuring means, 6: Bias current generating means, 7.7'
: dc-3QUID element, 8 moving part, 9: arithmetic unit, 10: SmCo111 stone, 11a ~ lid
, 12a to 12c two superconducting conductive wires, 13. fixing stand, 14: seal case. Patent Applicant Canon Co., Ltd. Agent Patent Attorney Tetsuya Ito Agent Patent Attorney Tatsuo Ito Figure 5 Figure 6

Claims (7)

【特許請求の範囲】[Claims] (1)磁界発生手段と、超伝導量子干渉デバイスを有し
該磁界発生手段がつくる磁界中で該超伝導量子干渉デバ
イスを通る磁束に対応する信号を出力する磁束検出手段
と、該磁束検出手段の出力信号に基づき該超伝導量子干
渉デバイスに連結した物体の位置あるいは移動距離を求
める信号処理手段と、外部の磁界から装置を超伝導体で
シールドする超伝導シールド手段とを具備することを特
徴とする距離測定装置。
(1) A magnetic field generating means, a magnetic flux detecting means having a superconducting quantum interference device and outputting a signal corresponding to the magnetic flux passing through the superconducting quantum interference device in the magnetic field created by the magnetic field generating means, and the magnetic flux detecting means It is characterized by comprising a signal processing means for determining the position or movement distance of an object connected to the superconducting quantum interference device based on the output signal of the superconducting quantum interference device, and a superconducting shielding means for shielding the device from an external magnetic field with a superconductor. distance measuring device.
(2)前記磁束検出手段および超伝導シールド手段がそ
の超伝導体を超伝導状態に保つ冷却手段を有する特許請
求の範囲第1項記載の距離測定装置。
(2) The distance measuring device according to claim 1, wherein the magnetic flux detection means and the superconducting shielding means include cooling means for keeping the superconductor in a superconducting state.
(3)前記磁界発生手段が、永久磁石である特許請求の
範囲第1または2項記載の距離測定装置。
(3) The distance measuring device according to claim 1 or 2, wherein the magnetic field generating means is a permanent magnet.
(4)前記磁界発生手段が、4本の超伝導導線を有し、
その永久電流により磁界をつくるものであり、該各超伝
導導線は前記超伝導量子干渉デバイスの移動方向に対し
て直角かつ上下対称に、かつ互いに平行になるように配
置されている特許請求の範囲第1または2項記載の距離
測定装置。
(4) the magnetic field generating means has four superconducting conductors,
A magnetic field is created by the persistent current, and each of the superconducting conductive wires is arranged perpendicular to the moving direction of the superconducting quantum interference device, vertically symmetrical, and parallel to each other. Distance measuring device according to item 1 or 2.
(5)前記磁界発生手段が、さらに補助用超伝導導線を
有する特許請求の範囲第4項記載の距離測定装置。
(5) The distance measuring device according to claim 4, wherein the magnetic field generating means further includes an auxiliary superconducting conductor.
(6)前記信号処理手段は磁束量子単位で磁束変化をカ
ウントしかつ1磁束量子間での位相計測も合せて行なう
ものである特許請求の範囲第1項記載の距離測定装置。
(6) The distance measuring device according to claim 1, wherein the signal processing means counts magnetic flux changes in units of magnetic flux quanta and also performs phase measurement between one magnetic flux quantum.
(7)前記磁束検出手段が互いに直交するように配置し
た2個の超伝導量子干渉デバイスを有するものであり、
かつ前記磁界発生手段が1本以上の超伝導導線を有しこ
れを流れる電流により磁界を発生するものであり、二次
元的な位置計測を行なう特許請求の範囲第1項記載の距
離測定装置。
(7) The magnetic flux detection means has two superconducting quantum interference devices arranged so as to be orthogonal to each other,
2. The distance measuring device according to claim 1, wherein said magnetic field generating means includes one or more superconducting conductive wires and generates a magnetic field by a current flowing therethrough, and performs two-dimensional position measurement.
JP62138224A 1987-06-03 1987-06-03 Distance measuring device Expired - Fee Related JP2623090B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62138224A JP2623090B2 (en) 1987-06-03 1987-06-03 Distance measuring device
GB8812545A GB2205955B (en) 1987-06-03 1988-05-26 A distance measuring system using superconducting quantum interference device
US07/199,706 US4912408A (en) 1987-06-03 1988-05-27 Distance measuring system using superconducting quantum interference device
FR8807361A FR2616219B1 (en) 1987-06-03 1988-06-02 DISTANCE MEASUREMENT SYSTEM USING A QUANTIC INTERFERENCE DEVICE
DE3818887A DE3818887A1 (en) 1987-06-03 1988-06-03 DISTANCE MEASURING SYSTEM WITH A VERY SENSITIVE MAGNETIC FIELD MEASURING DEVICE ON THE BASIS OF SUPRA CABLE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62138224A JP2623090B2 (en) 1987-06-03 1987-06-03 Distance measuring device

Publications (2)

Publication Number Publication Date
JPS63302301A true JPS63302301A (en) 1988-12-09
JP2623090B2 JP2623090B2 (en) 1997-06-25

Family

ID=15216990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62138224A Expired - Fee Related JP2623090B2 (en) 1987-06-03 1987-06-03 Distance measuring device

Country Status (5)

Country Link
US (1) US4912408A (en)
JP (1) JP2623090B2 (en)
DE (1) DE3818887A1 (en)
FR (1) FR2616219B1 (en)
GB (1) GB2205955B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076082A (en) * 2006-09-19 2008-04-03 Nippon Telegr & Teleph Corp <Ntt> Element and method for detection

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0824225A3 (en) * 1989-09-26 1998-03-04 Canon Kabushiki Kaisha Alignment method
US5103682A (en) * 1990-11-05 1992-04-14 The United States Of America As Represented By The Secretary Of Commerce Ultra-sensitive force detector employing servo-stabilized tunneling junction
US5166612A (en) * 1990-11-13 1992-11-24 Tektronix, Inc. Micromechanical sensor employing a squid to detect movement
JP3074579B2 (en) * 1992-01-31 2000-08-07 キヤノン株式会社 Position shift correction method
DE4229558C2 (en) * 1992-09-04 1995-10-19 Tzn Forschung & Entwicklung Accelerometer
GB2273170B (en) * 1992-12-04 1996-09-25 Samsung Aerospace Ind Camera display system and method
AU3772200A (en) * 1999-03-24 2000-10-09 Case Western Reserve University Apparatus and method for determining magnetic susceptibility
JP4194516B2 (en) * 2003-06-24 2008-12-10 キヤノン株式会社 Exposure method, exposure mask and device manufacturing method
DE102019203719B4 (en) * 2019-03-19 2022-08-04 Festo Se & Co. Kg Structure for determining a physical variable and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139048A (en) * 1982-02-15 1983-08-18 Shimadzu Corp Measuring method for displacement in testing of very low temperature material

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3286161A (en) * 1963-12-04 1966-11-15 Ronald H Jones Magneto-resistive potentiometer
US3777255A (en) * 1972-10-26 1973-12-04 Westinghouse Electric Corp Position sensor utilizing a primary and secondary shielded from one another by a ferromagnetic shield and a magnet whose position relative to the shield changes the shielding
JPS5531929A (en) * 1978-08-30 1980-03-06 Agency Of Ind Science & Technol Displacement oscillation sensor
JPS5774612A (en) * 1980-10-28 1982-05-10 Nec Home Electronics Ltd Linear displacement detection
US4489274A (en) * 1980-12-10 1984-12-18 The United States Of America As Represented By The Secretary Of The Navy Rotating SQUID magnetometers and gradiometers
DE3201873C2 (en) * 1982-01-22 1984-02-02 Angewandte Digital Elektronik Gmbh, 2051 Brunstorf Deflection sensor
JPS58158502A (en) * 1982-03-16 1983-09-20 Toshiba Eng Co Ltd Position detecting device
US4491795A (en) * 1982-05-17 1985-01-01 Honeywell Inc. Josephson junction interferometer device for detection of curl-free magnetic vector potential fields
DE3234733A1 (en) * 1982-09-20 1983-05-05 Peter Prof.Dr. 8000 München Russer Method for measuring absolute accelerations and absolute rotations, and an arrangement for carrying out the method
DE3425612A1 (en) * 1984-07-12 1986-01-16 Paul Walter Prof. Dr.-Ing. 6750 Kaiserslautern Baier Device for distance and position measurement
DE3515237A1 (en) * 1985-04-26 1986-10-30 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR MEASURING WEAK MAGNETIC FIELDS WITH AT LEAST ONE DC SQUID
DE3529815A1 (en) * 1985-08-20 1987-02-26 Siemens Ag MEASURING DEVICE WITH A SQUID MAGNETOMETER

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58139048A (en) * 1982-02-15 1983-08-18 Shimadzu Corp Measuring method for displacement in testing of very low temperature material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076082A (en) * 2006-09-19 2008-04-03 Nippon Telegr & Teleph Corp <Ntt> Element and method for detection

Also Published As

Publication number Publication date
JP2623090B2 (en) 1997-06-25
FR2616219A1 (en) 1988-12-09
US4912408A (en) 1990-03-27
FR2616219B1 (en) 1992-10-09
GB2205955B (en) 1991-07-24
DE3818887C2 (en) 1992-06-25
GB2205955A (en) 1988-12-21
GB8812545D0 (en) 1988-06-29
DE3818887A1 (en) 1988-12-22

Similar Documents

Publication Publication Date Title
EP3255446B1 (en) A single-chip high-magnetic-field x-axis linear magnetoresistive sensor with calibration and initialization coil
Flatté et al. Local spectrum of a superconductor as a probe of interactions between magnetic impurities
US6665552B2 (en) Gradiometer integrating pickup coils and magnetic field measurement system
JP2662664B2 (en) Thin film triaxial magnetometer
JP2000111588A (en) Superconduction current-measuring circuit and current measuring device thereof
JPS63302301A (en) Distance measuring apparatus
Sanfilippo Hall probes: physics and application to magnetometry
Cushing Induction flowmeter
JPS632350B2 (en)
Bai et al. Magneto-optical current sensing for applications in integrated power electronics modules
Schott et al. Planar Hall effect in the vertical Hall sensor
US3528005A (en) Ultra-sensitive magnetic gradiometer using weakly coupled superconductors connected in the manner of a figure eight
Elmquist et al. Using a high-value resistor in triangle comparisons of electrical standards
Mishonov Theory of Cooper-pair mass spectroscopy by the current-induced contact-potential difference
Gallop The impact of superconducting devices on precision metrology and fundamental constants
US5202630A (en) Thin film SQUID detector including a loop responsive to a magnetic flux component lying in the plane of the thin film
Norton Four-point magnetoresistivity measurements
Watson et al. Techniques of magnetic-field measurement
Tosin et al. Long rotating coil system based on stretched tungsten wires for insertion device characterization
Zou et al. A Non-contact Apparatus for Measuring Longitudinal Critical Current of REBCO Tapes Using the Magnetic Circuit Method
JP2554923B2 (en) Superconducting length measuring device
Xu et al. Novel simple topology coreless TMR array current sensor
Matisoo Novel Superconducting Laboratory Devices
Walker Magnetic measurements
Kadlecova Galvanomagnetic size effects in iron whiskers

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees