JPS63301909A - Optical fiber - Google Patents
Optical fiberInfo
- Publication number
- JPS63301909A JPS63301909A JP62138812A JP13881287A JPS63301909A JP S63301909 A JPS63301909 A JP S63301909A JP 62138812 A JP62138812 A JP 62138812A JP 13881287 A JP13881287 A JP 13881287A JP S63301909 A JPS63301909 A JP S63301909A
- Authority
- JP
- Japan
- Prior art keywords
- buffer layer
- optical fiber
- light
- light scattering
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 32
- 238000000149 argon plasma sintering Methods 0.000 claims abstract description 25
- 239000000843 powder Substances 0.000 claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 8
- 230000002238 attenuated effect Effects 0.000 abstract description 3
- 230000000644 propagated effect Effects 0.000 abstract description 2
- 238000005253 cladding Methods 0.000 description 20
- 230000001902 propagating effect Effects 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 8
- 229920002379 silicone rubber Polymers 0.000 description 8
- 239000004945 silicone rubber Substances 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 239000004677 Nylon Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 229920001778 nylon Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
光伝送に用いる光ファイバ心線であって、第1緩衝層と
第2緩衝層との間に光散乱材の微粉末でなる光散乱層を
設けたことにより、クラッドモードの光が第1緩衝層に
出射し、第2緩衝層で反射するのを散乱減衰させ、伝送
並びに再帰しないようにしたものである。[Detailed Description of the Invention] [Summary] An optical fiber core used for optical transmission, in which a light scattering layer made of fine powder of a light scattering material is provided between a first buffer layer and a second buffer layer. Accordingly, the cladding mode light is emitted to the first buffer layer and reflected by the second buffer layer, which is attenuated by scattering, and is prevented from being transmitted and returned.
本発明は光伝送に用いる光ファイバ心線に係り、さらに
詳しくは、光ファイバの被覆構造に関する。The present invention relates to a coated optical fiber used for optical transmission, and more particularly to a coating structure for an optical fiber.
光伝送に用いる光ファイバのクラッド中の光伝搬モード
(クラッドモード)およびその外周に設けられた緩衝層
内を伝搬する光は、長い距離を伝搬する間に減衰して消
滅し問題にならないが、例えば数メートルしか離れてい
ない光学測定装置などを接続する短尺の光ファイバケー
ブルでは上記クラッドモードおよび緩衝層内伝搬光の減
衰が小さくて消滅しない。The light propagation mode (cladding mode) in the cladding of the optical fiber used for optical transmission and the light propagating in the buffer layer provided on the outer periphery attenuate and disappear while propagating over a long distance and do not pose a problem. For example, in the case of a short optical fiber cable that connects an optical measuring device or the like that is only a few meters away, the attenuation of the cladding mode and the light propagating in the buffer layer is small and does not disappear.
このため、短尺の光ファイバにおいてもコア以外の伝搬
光が無視できるような高品質の光ファイバ心線が要望さ
れている。For this reason, there is a demand for high-quality optical fiber cores in which light propagating outside the core can be ignored even in short optical fibers.
従来は第3図の断面図に示すように、光ファイバ心線は
コアllaとクラッドllbで構成される光ファイバ1
1の表面の損傷防止および光伝送特性の安定のために、
光ファイバ11の表面に第1緩衝層12、第2緩衝層1
3を施し、さらに外套被覆14を施している。Conventionally, as shown in the cross-sectional view of FIG.
In order to prevent damage to the surface of 1 and stabilize the optical transmission characteristics,
A first buffer layer 12 and a second buffer layer 1 are provided on the surface of the optical fiber 11.
3 is applied, and a mantle coating 14 is further applied.
第1緩衝層12としては屈折率が光ファイバ11のクラ
ッドより高い屈折率1.5のシリコンゴムを、第2緩衝
層13として屈折率1.4のシリコンゴムを、外套被覆
14としてはナイロンが用いられている。The first buffer layer 12 is made of silicone rubber with a refractive index of 1.5, which is higher than the cladding of the optical fiber 11, the second buffer layer 13 is made of silicone rubber with a refractive index of 1.4, and the outer covering 14 is made of nylon. It is used.
ここで、第1緩衝層はクラッド伝搬光を誘出して該第1
緩衝層内に閉じ込めるように作用し、第2緩衝層は物理
的に安定であって第1緩衝層を保護するとともに、上記
伝搬光を第1緩衝層内に閉じ込めるように作用する。こ
れは相互の屈折率差に基づくことである。Here, the first buffer layer induces the cladding propagating light to
The second buffer layer is physically stable and protects the first buffer layer, and acts to confine the propagating light within the first buffer layer. This is based on the mutual refractive index difference.
しかしながら、このような上記構造によれば、光学測定
装置などで用いる例えば、数メートル程度の短尺光ファ
イバ心線では、クラッドモードがより高屈折率の第1緩
衝層に誘出されてクラッドモード伝搬光が減少されるよ
うになるが、この第1緩衝層内に誘出されて伝搬する光
はそれよりも屈折率の低い第2緩衝層との境界面で反射
され、第1緩衝層内を伝搬する光と、さらに一部はクラ
ッド内に再帰する光とになる。However, according to the above-mentioned structure, for example, in a short optical fiber core of several meters used in an optical measurement device, the cladding mode is induced to the first buffer layer having a higher refractive index, and the cladding mode propagates. However, the light that is induced into the first buffer layer and propagates is reflected at the interface with the second buffer layer, which has a lower refractive index, and the light propagates inside the first buffer layer. Some of the light propagates and some of the light returns to the cladding.
以上のようであるから、光ファイバの出力端ではこの光
ファイバの弯曲などによりクラッドモードの光量変化を
伴い、コア伝送光を含む全光量即ち、光伝送パワーにバ
ラツキを生じ、正確な特性評価ができないといった問題
があった。As described above, at the output end of the optical fiber, the amount of light in the cladding mode changes due to the curvature of the optical fiber, which causes variations in the total amount of light including the core transmitted light, that is, the optical transmission power, making accurate characteristic evaluation difficult. The problem was that it couldn't be done.
本発明は上記問題点を解決するための光ファイバ心線を
提供するものである。The present invention provides a coated optical fiber for solving the above problems.
従来構造における上記問題点は、光ファイバの表面に被
覆された第1緩衝層と第2緩衝層との間に光散乱材の微
粉末でなる光散乱層を設けることによって解決される。The above problems in the conventional structure can be solved by providing a light scattering layer made of fine powder of a light scattering material between the first buffer layer and the second buffer layer coated on the surface of the optical fiber.
第1緩衝層の表面に設けた光散乱材の微粉末は、凹凸を
有した層を形成し、第1緩衝層内を伝搬する光を短い距
離で散乱減衰させることができる。The fine powder of the light scattering material provided on the surface of the first buffer layer forms a layer with unevenness, and can scatter and attenuate light propagating within the first buffer layer over a short distance.
以下図面に示す一実施例により本発明の要旨を具体的に
説明する。The gist of the present invention will be specifically explained below with reference to an embodiment shown in the drawings.
第1図の断面図に示すように、光ファイバ心線はコア1
aの径50μm2クラッドlbの径125μmの光ファ
イバ1の表面に直接、外径約200μmに被覆した第1
緩衝層2即ち、高屈折率1.5のシリコンゴム表面上に
光散乱性を有する微粉末、例えば粒径0.25μm程度
の無機材からなる硝子あるいは金属酸化物(T+Oz、
S+O□など)、または有機材であってもよいが、この
光散乱層5上にさらに第2緩衝層3即ち、低屈折率1.
4のシリコンゴムを被覆して外径約360μmとし、最
後に外套被覆4即ち、ナイロンを被覆したものである。As shown in the cross-sectional view of Figure 1, the optical fiber core 1
A first coated fiber with an outer diameter of about 200 μm was directly coated on the surface of an optical fiber 1 with a diameter of 50 μm and a cladding lb with a diameter of 125 μm.
A buffer layer 2, that is, a silicon rubber surface with a high refractive index of 1.5, is coated with a fine powder having light scattering properties, such as glass or metal oxide (T+Oz,
On this light scattering layer 5, a second buffer layer 3, that is, a low refractive index 1.
4 is coated with silicone rubber to give an outer diameter of approximately 360 μm, and finally, a mantle coat 4, that is, nylon is coated.
上記構成になる光ファイバ心線は、クラッドモードが第
1緩衝層2に誘出されることは従来と同様であるがJ第
2緩衝層3に反射伝搬されるべき部分に光散乱層5が形
成されたために、この伝搬光は微粉末によって無差別方
向に散乱され伝搬方向が一定しなくなる結果、減衰乃至
消滅する。さらには第2緩衝層中に逸出する光もある。In the optical fiber having the above structure, the cladding mode is induced into the first buffer layer 2 as in the conventional case, but the light scattering layer 5 is formed in the portion where the cladding mode should be reflected and propagated to the J second buffer layer 3. As a result, this propagating light is scattered in indiscriminate directions by the fine powder and the propagation direction is no longer constant, resulting in attenuation or extinction. Furthermore, some light escapes into the second buffer layer.
このようにして急激に減衰することでクラッド中の伝搬
光が短い距離で減少することになる。Due to this rapid attenuation, the propagating light in the cladding is reduced over a short distance.
この光ファイバ心線のクラッドモードを測定した結果、
クラッドモードは約1mの短い距離で散乱減衰すること
が確認され、クラッドモードの減衰効果があり、しかも
引張強度は光散乱層が極めて薄い層のため十分な効果を
示し、従来の光ファイバ心線に比べて殆んど遜色ないこ
とが認められた。As a result of measuring the cladding mode of this optical fiber,
It has been confirmed that the cladding mode is attenuated by scattering over a short distance of about 1 m, and there is an effect of attenuating the cladding mode.Moreover, the tensile strength shows a sufficient effect due to the extremely thin light scattering layer, which is comparable to that of conventional optical fiber cores. It was found that there was almost no inferiority compared to the .
また、第1緩衝層中に光散乱性の微粉末を添加混練した
ものも提案されているが、このようにすると微粉末が直
接、クラッド層に接してクラッド表面を損傷する可能性
や、微粉末の混入量が一様にし難いといった問題点があ
る。そして直接、第1緩衝層中で散乱させるのでなく一
旦、第1緩衝層に伝搬光を誘出して光散乱層でもって確
実に光を散乱消滅させる本発明は信頼度が高い。In addition, it has been proposed that light-scattering fine powder is added and kneaded into the first buffer layer, but in this case, there is a possibility that the fine powder will come into direct contact with the cladding layer and damage the cladding surface. There is a problem that it is difficult to make the amount of powder mixed in uniform. The present invention is highly reliable in that the light is not directly scattered in the first buffer layer, but instead is guided to the first buffer layer to ensure that the light is scattered and annihilated by the light scattering layer.
つぎに光散乱層の形成方法について述べる。Next, a method for forming the light scattering layer will be described.
第2図の工程図に示すように、プリフォーム(光ファイ
バ母材)10を紡糸炉6で加熱しながら光ファイバ1を
紡糸し、この光ファイバ1の表面に高屈折率シリコンゴ
ム20を被覆し、表面が乾燥する直前に窒素ガス51と
ともに光散乱性微粉末50を吹き込み排気52する光散
乱層被覆装置7の雰囲気中を通した後、乾燥炉8を通し
て乾燥させ第1緩衝層と光散乱層とを形成し、さらに低
屈折率シリコンゴム30を被覆し、乾燥炉9を通して第
2緩衝層を形成し、最後にナイロン(図示路)を被覆し
て外套被覆を形成して光ファイバ心線を完成する。As shown in the process diagram of FIG. 2, an optical fiber 1 is spun while heating a preform (optical fiber base material) 10 in a spinning furnace 6, and a high refractive index silicone rubber 20 is coated on the surface of the optical fiber 1. Immediately before the surface dries, the light-scattering fine powder 50 and nitrogen gas 51 are blown into the atmosphere of a light-scattering layer coating device 7 that is evacuated 52, and then dried through a drying oven 8 to form the first buffer layer and the light-scattering layer. The optical fiber is coated with a low refractive index silicone rubber 30, passed through a drying oven 9 to form a second buffer layer, and finally coated with nylon (the path shown in the figure) to form a jacket coating. complete.
以上、説明したように本発明によれば、数メートルの短
尺でもタララドモードを無視でき得るように減衰が可能
となった高品質の光ファイバ心線が得られ、光伝送試験
測定等の精度を格段に高め得るといった極めて有用な効
果を発揮する。As explained above, according to the present invention, it is possible to obtain a high-quality optical fiber that can attenuate the Talarado mode so that it can be ignored even with a short length of several meters, and the accuracy of optical transmission tests and measurements can be greatly improved. It exhibits extremely useful effects such as increasing the
第1図は本発明による一実施例の断面図、第2図は第1
Mの光散乱層の形成方法を示す工程図、
第3図は従来技術による断面図、
である。
図において、
1は光ファイバ、
1aはコア、
■bはクラッド、
2は第1緩衝層、
3は第2緩衝層、
4は外套被覆、
5は光散乱層、
6は紡糸炉、
7は光散乱層被覆装置、
8.9は乾燥炉、
10は光ファイバ母材、
20は高屈折率シリコンゴム、
30は低屈折率シリコンゴム、
50は光散乱性微粉末、
51は窒素ガス、
52は排気、
を示す。FIG. 1 is a cross-sectional view of one embodiment of the present invention, and FIG.
FIG. 3 is a process diagram showing a method for forming a light scattering layer of M. FIG. 3 is a cross-sectional view according to a conventional technique. In the figure, 1 is an optical fiber, 1a is a core, 1b is a cladding, 2 is a first buffer layer, 3 is a second buffer layer, 4 is a jacket coating, 5 is a light scattering layer, 6 is a spinning furnace, 7 is a light A scattering layer coating device, 8.9 is a drying oven, 10 is an optical fiber base material, 20 is a high refractive index silicone rubber, 30 is a low refractive index silicone rubber, 50 is a light scattering fine powder, 51 is a nitrogen gas, 52 is a Exhaust, shown.
Claims (1)
と第2緩衝層(3)との間に光散乱材の微粉末でなる光
散乱層(5)を設けたことを特徴とする光ファイバ心線
。First buffer layer (2) coated on the surface of the optical fiber (1)
An optical fiber core wire characterized in that a light scattering layer (5) made of fine powder of a light scattering material is provided between the second buffer layer (3) and the second buffer layer (3).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62138812A JPS63301909A (en) | 1987-06-01 | 1987-06-01 | Optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62138812A JPS63301909A (en) | 1987-06-01 | 1987-06-01 | Optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63301909A true JPS63301909A (en) | 1988-12-08 |
Family
ID=15230818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62138812A Pending JPS63301909A (en) | 1987-06-01 | 1987-06-01 | Optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63301909A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013530412A (en) * | 2010-04-16 | 2013-07-25 | フレックス ライティング 2,エルエルシー | Front-illuminated device with film-based light guide |
US9523807B2 (en) | 2009-01-26 | 2016-12-20 | Flex Lighting Ii, Llc | Device comprising a film-based lightguide and component with angled teeth |
US9557473B2 (en) | 2010-04-16 | 2017-01-31 | Flex Lighting Ii, Llc | Reflective spatial light modulator display with stacked light guides and method |
US9566751B1 (en) | 2013-03-12 | 2017-02-14 | Flex Lighting Ii, Llc | Methods of forming film-based lightguides |
US9645304B2 (en) | 2011-03-09 | 2017-05-09 | Flex Lighting Ii Llc | Directional front illuminating device comprising a film based lightguide with high optical clarity in the light emitting region |
US9651729B2 (en) | 2010-04-16 | 2017-05-16 | Flex Lighting Ii, Llc | Reflective display comprising a frontlight with extraction features and a light redirecting optical element |
US9690032B1 (en) | 2013-03-12 | 2017-06-27 | Flex Lighting Ii Llc | Lightguide including a film with one or more bends |
US11442213B2 (en) | 2013-03-12 | 2022-09-13 | Azumo, Inc. | Film-based lightguide with extended coupling lightguide region |
US11513274B2 (en) | 2019-08-01 | 2022-11-29 | Azumo, Inc. | Lightguide with a light input edge between lateral edges of a folded strip |
US11966116B2 (en) | 2019-01-03 | 2024-04-23 | Azumo, Inc. | Reflective display comprising a lightguide and light turning film creating multiple illumination peaks |
US11994698B2 (en) | 2018-08-30 | 2024-05-28 | Azumo, Inc. | Film-based frontlight with angularly varying diffusion film |
-
1987
- 1987-06-01 JP JP62138812A patent/JPS63301909A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9523807B2 (en) | 2009-01-26 | 2016-12-20 | Flex Lighting Ii, Llc | Device comprising a film-based lightguide and component with angled teeth |
JP2013530412A (en) * | 2010-04-16 | 2013-07-25 | フレックス ライティング 2,エルエルシー | Front-illuminated device with film-based light guide |
US9557473B2 (en) | 2010-04-16 | 2017-01-31 | Flex Lighting Ii, Llc | Reflective spatial light modulator display with stacked light guides and method |
US9651729B2 (en) | 2010-04-16 | 2017-05-16 | Flex Lighting Ii, Llc | Reflective display comprising a frontlight with extraction features and a light redirecting optical element |
US9645304B2 (en) | 2011-03-09 | 2017-05-09 | Flex Lighting Ii Llc | Directional front illuminating device comprising a film based lightguide with high optical clarity in the light emitting region |
US9566751B1 (en) | 2013-03-12 | 2017-02-14 | Flex Lighting Ii, Llc | Methods of forming film-based lightguides |
US9690032B1 (en) | 2013-03-12 | 2017-06-27 | Flex Lighting Ii Llc | Lightguide including a film with one or more bends |
US11442213B2 (en) | 2013-03-12 | 2022-09-13 | Azumo, Inc. | Film-based lightguide with extended coupling lightguide region |
US11994698B2 (en) | 2018-08-30 | 2024-05-28 | Azumo, Inc. | Film-based frontlight with angularly varying diffusion film |
US11966116B2 (en) | 2019-01-03 | 2024-04-23 | Azumo, Inc. | Reflective display comprising a lightguide and light turning film creating multiple illumination peaks |
US11513274B2 (en) | 2019-08-01 | 2022-11-29 | Azumo, Inc. | Lightguide with a light input edge between lateral edges of a folded strip |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63301909A (en) | Optical fiber | |
Cohen et al. | Effect of temperature on transmission in lightguides | |
GB2138165A (en) | Optical fibre comprising buffer layer containing particulate material | |
JPH01114808A (en) | Cladding of light waveguide fiber | |
CN1892268A (en) | Polarization-maintaining optical fiber and optical fiber gyro | |
JP3184426B2 (en) | Optical waveguide circuit | |
US5303318A (en) | High power acceptable optical fiber and fabrication method thereof | |
Abe et al. | A strain sensor using twisted optical fibers | |
US4662743A (en) | Method of measuring the geometry of optical fibers | |
JPS6330739A (en) | Method for measuring back scattering of optical fiber | |
JPH0756070A (en) | Optical fiber connector | |
JPH02228609A (en) | Optical fixed attenuator | |
JP3158389B2 (en) | Leakage type optical fiber evacuation guidance device | |
JPS5915905A (en) | Optical fiber which maintains plane of plarization | |
JP7545504B1 (en) | Multicore Fiber | |
JPH09211238A (en) | Optical terminal structure of optical fiber | |
JP3140114B2 (en) | Optical fixed attenuator | |
JPH0329013B2 (en) | ||
JP2511999B2 (en) | Liquid detection optical fiber and liquid detection system using the same | |
JP3117456B2 (en) | Small diameter optical fiber | |
JPS6256832A (en) | Measuring method for irregular curvature of optical fiber | |
JPH09229816A (en) | Method for measuring cut-off wavelength | |
JPS62156605A (en) | Optical fiber strand | |
JPS63223610A (en) | Structure for coating optical fiber core | |
JPH05264817A (en) | Optical attenuator |