JPS6330187A - Manufacture of corrosion resistant bimetal plate - Google Patents

Manufacture of corrosion resistant bimetal plate

Info

Publication number
JPS6330187A
JPS6330187A JP61171155A JP17115586A JPS6330187A JP S6330187 A JPS6330187 A JP S6330187A JP 61171155 A JP61171155 A JP 61171155A JP 17115586 A JP17115586 A JP 17115586A JP S6330187 A JPS6330187 A JP S6330187A
Authority
JP
Japan
Prior art keywords
plate
stainless steel
steel plate
expansion side
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61171155A
Other languages
Japanese (ja)
Other versions
JPH0645072B2 (en
Inventor
Kenji Miyamoto
宮本 憲治
Masaaki Ishio
雅昭 石尾
Makoto Kawakami
誠 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP61171155A priority Critical patent/JPH0645072B2/en
Publication of JPS6330187A publication Critical patent/JPS6330187A/en
Publication of JPH0645072B2 publication Critical patent/JPH0645072B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laser Beam Processing (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To form the corrosion resistant bimetal of high quality having high adhesion strength by projecting a laser beam on each plate composing the bimetal and performing a cold pressure-welding by opposing the surface of the irradiation layer each other. CONSTITUTION:An irradiation layer 7 is formed by projecting a laser beam with a laser beam projecting device 2 on the both main faces of a high expansion side alloy plate 1 and low expansion side alloy plate 11, and on one main face of an austenitic stainless steel plate 10 and ferritic stainless steel plate 12. These plates are overlapped in the prescribed order, the irradiation layer 7 is opposed and after a bimetal plate 13 is formed by pressure-welding it with a rolling roll 8, a diffusing annealing, intermediate cold rolling, process annealing and finishing rolling are performed. The adhesion is thus improved by the cleaning of the adhesion face and the solidification with melting on the polar surface, the interatomic bonding is easily obtd. and the corrosion resistant bimetal of high quality having high adhesion strength can be formed.

Description

【発明の詳細な説明】 利用産業分野 この発明は、4層構造及び5層構造のバイメタル板の製
造方法に係り、各積層板に施したレーザービームの照射
面同志を対向、冷間圧接することによリ、表面品質並び
に密着強度のすぐれたバイメタル板を得る製造方法に関
する。
[Detailed Description of the Invention] Field of Application The present invention relates to a method for manufacturing bimetal plates with a four-layer structure and a five-layer structure, in which the surfaces irradiated with a laser beam applied to each laminate are faced to each other and cold pressure welded. The present invention relates to a manufacturing method for obtaining a bimetal plate with excellent surface quality and adhesion strength.

背景技術 一般に、高膨脹側合金板と低膨脹側合金とからなる2枚
重ねのバイメタルは、熱制御機器用部品等に用いられ、
また、高膨脹側合金と低膨脹側合金との間に中間層合金
を介在圧着した3枚重ねのバイメタルは、電流ブレーカ
−用等に用いられるが、さらに、耐食性を向上させるた
め、高膨脹側合金板外面に熱膨張係数が近似する18−
8系オーステナイトステンレス鋼板を被着し、低膨脹側
合金の外面に熱膨JIB係数が近似する13Cr系フエ
ライトステンレス鋼板を被着した4層構造あるいは5層
構造の耐食性バイメタル板が用いられ、いずれも同様の
工程で製造される。
BACKGROUND TECHNOLOGY In general, a two-layer bimetal consisting of a high-expansion alloy plate and a low-expansion alloy plate is used for parts for thermal control equipment, etc.
In addition, a three-layer bimetal in which an intermediate layer alloy is interposed between a high expansion side alloy and a low expansion side alloy is used for current breakers, etc., but in order to improve corrosion resistance, the high expansion side alloy 18- whose coefficient of thermal expansion approximates that of the outer surface of the alloy plate
A corrosion-resistant bimetallic plate with a four-layer structure or a five-layer structure is used, in which an 8-series austenitic stainless steel plate is adhered, and a 13Cr-based ferrite stainless steel plate with a thermal expansion coefficient similar to that of the low-expansion alloy is adhered to the outer surface of the low-expansion alloy. Manufactured using a similar process.

一例として、4層構造のバイメタルの製造方法について
説明すると、まず、オーステナイトステンレス鋼板コイ
ル、高膨脹側合金コイル、低膨脹側合金コイル並びにフ
ェライト系ステンレス鋸板コイルを巻き戻しながら、圧
接被着予定面をワイヤバフ等の機械的研摩法にて清浄化
したのち、かかる被圧接材料を4枚重ねて同時に冷間圧
接し、さらに拡散焼鈍、中間冷延及び中間焼鈍、仕上冷
延する。
As an example, to explain a method for manufacturing a bimetal with a four-layer structure, first, while unwinding an austenitic stainless steel sheet coil, a high expansion side alloy coil, a low expansion side alloy coil, and a ferritic stainless saw blade coil, After cleaning by a mechanical polishing method such as a wire buff, four sheets of the press-welded materials are piled up and simultaneously cold-welded, followed by diffusion annealing, intermediate cold rolling, intermediate annealing, and final cold rolling.

しかし、ワイヤバフ研摩等の機械的研摩では、所要の圧
接予定研摩表面に、研摩による微小亀裂の発生や鱗片状
金属粉の発生付着及び異物が残存する恐れがあり、前記
円台金コイルの圧接の際に圧接面に金属粉、該異物の巻
き込みが起り、圧接強度の低下に伴ない、バイメタル板
が剥離する問題がある。
However, in mechanical polishing such as wire buffing, there is a risk that micro-cracks, scaly metal powder, and foreign matter may remain on the surface to be polished, which is to be pressure-welded. At this time, metal powder and other foreign matter are entrapped in the press-contact surfaces, resulting in a problem in which the bimetallic plate peels off as the press-contact strength decreases.

発明の目的 この発明は、従来の耐食性バイメタル板の製造方法にお
ける高膨脹側及び低膨脹側合金板表面並びにオーステナ
イト系ステンレス鋼板とフェライト系ステンレス鋼板の
各被圧接材料板表面に施す機械研摩による清浄化に基因
する問題点を解消し、と伴に圧接強度の向上を図り、す
ぐれた品質を有する4層構造及び5層構造の耐食性バイ
メタル板が得られる製造方法を目的としている。
Purpose of the Invention The present invention provides a method for cleaning by mechanical polishing the surfaces of high-expansion side and low-expansion side alloy plates and the surfaces of each press-welded material plate of an austenitic stainless steel plate and a ferritic stainless steel plate in a conventional manufacturing method of a corrosion-resistant bimetal plate. The purpose of the present invention is to provide a manufacturing method that solves the problems caused by the above problems, improves the pressure welding strength, and produces corrosion-resistant bimetallic plates with four-layer and five-layer structures of excellent quality.

発明の構成と効果 この発明は、耐食性バイメタル板の製造方法における最
外表面のオーステナイト系及びフエ・ライト系ステンレ
ス鋼板、高膨脹側及び低膨脹側合金板並びに中間層金属
板表面の清浄化、各材料間の圧着強度の向上、バイメタ
ル板の品質向上を目的に種々検討した結果、走行中の前
記被圧接材料板表面の圧接予定表面に、少なくとも1条
のレーザービームを、ジグザグ状、蛇行あるいは縞状に
照射を行ない、接合不良の原因となる異物、油脂、水分
に吸収され易い波長のレーザービームを照射することに
より、表面に付着している異物、油脂、水分がレーザー
光を吸収してガス化し、除去されるため、清浄な表面が
得られ、さらに、前記被圧接材料板同志を圧接すると、
表面が清浄なために容易に原子間結合が起り、実用上、
差支えない範囲の充分な圧接強度が得られることを知見
した。
Structure and Effects of the Invention The present invention provides a method for manufacturing a corrosion-resistant bimetallic plate, in which the outermost surface of the austenitic and ferritic stainless steel plate, the high-expansion side and low-expansion side alloy plates, and the surface of the intermediate layer metal plate are cleaned. As a result of various studies aimed at improving the crimp strength between materials and improving the quality of bimetal plates, we have found that at least one laser beam is applied to the surface of the material plate to be pressed in a zigzag, meandering or striped manner on the surface of the material plate to be pressed while traveling. By irradiating a laser beam with a wavelength that is easily absorbed by foreign matter, oil, fat, and moisture that cause bonding defects, the foreign matter, oil, and moisture adhering to the surface absorb the laser beam and release gas. oxidized and removed, a clean surface is obtained, and furthermore, when the pressure-welded material plates are pressed together,
Because the surface is clean, interatomic bonds easily occur, and for practical purposes,
It has been found that sufficient pressure contact strength can be obtained without causing any problems.

さらに、異物等だけでなく、オーステナイト系及びフェ
ライト系ステンレス鋼板、高膨脹側及び低膨脹側合金板
並びに中間層金属板にも吸収され易い波長、すなわち、
波長5μm以下のレーザービームを用いれば、10pm
以下、望ましくはサブミクロンオーダーの極表面層を、
溶融凝固させて硬化層を形成し、各圧接材の冷間圧接時
に、基板表面の硬化層に内部のすべり変形によって表面
に微細な亀裂を生じさせることにより、内部の新生面を
露出させて両会金板あるいはさらに各被圧接材料板間の
密着強度を著しく向上させることができ、従来のワイヤ
バフ等の機械的研摩にともなう表面の割れ、金属粉、残
留異物の発生、付着を防止でき、圧接強度が高く品質の
すぐれた耐食性バイメタル板が得られることを知見し、
この発明を完成したものであ、る。
Furthermore, wavelengths that are easily absorbed not only by foreign substances, but also by austenitic and ferritic stainless steel plates, high-expansion side and low-expansion side alloy plates, and intermediate layer metal plates, that is,
If a laser beam with a wavelength of 5 μm or less is used, 10 pm
Below, the very surface layer, preferably on the submicron order, is
A hardened layer is formed by melting and solidifying, and during cold welding of each pressure welding material, fine cracks are generated on the surface of the hardened layer on the surface of the substrate due to internal sliding deformation, exposing the new internal surface and bonding the two together. It is possible to significantly improve the adhesion strength between the metal plates or each press-welded material plate, and to prevent surface cracks, generation and adhesion of metal powder and residual foreign matter caused by conventional mechanical polishing such as wire buffing, and to improve the pressure-welding strength. It was discovered that a corrosion-resistant bimetallic plate with high corrosion resistance and excellent quality could be obtained.
This invention has been completed.

すなわち、この発明は、4層構造耐食性バイメタル板の
場合、 オーステナイト系ステンレス鋼板、高膨脹側合金板、低
膨脹側合金板、フェライト系ステンレス鋼板を績層圧接
したバイメタル板の製造方法において、オーステナイト
系ステンレス鋼板とフェライト系ステンレス鋼板の一主
面の全面、並びに高膨機側合金板と低膨脹側合金板の両
主面の全面に、少なくとも1条のレーザービームを照射
し、オーステナイト系ステンレス鋼板、高膨脹側合金板
、低膨脹側合金板、フェライト系ステンレス鋼板の順に
各板の前記照射により形成された照射層表面を相互に対
向させて、冷間圧接することを特徴とする耐食性バイメ
タル板の製造方法である。
That is, in the case of a four-layer corrosion-resistant bimetallic plate, the present invention provides a method for manufacturing a bimetallic plate in which an austenitic stainless steel plate, a high expansion alloy plate, a low expansion alloy plate, and a ferritic stainless steel plate are pressure welded. At least one laser beam is irradiated on the entire main surface of the stainless steel plate and the ferritic stainless steel plate, and on the entire main surfaces of the high expansion machine side alloy plate and the low expansion side alloy plate, and the austenitic stainless steel plate, A corrosion-resistant bimetallic plate characterized in that a high-expansion side alloy plate, a low-expansion side alloy plate, and a ferritic stainless steel plate are cold-welded with the surfaces of the irradiated layers formed by the irradiation of each plate facing each other in this order. This is the manufacturing method.

また、5磨構造耐食性バイメタル板の場合、中間層金属
板を介在させて高膨脹側合金板と低膨脹側合金板並びに
その外面にオーステナイト系ステンレス鋼板とフェライ
ト系ステレス鋼板を各々積層圧接したバイメタル板の製
造方法において、高膨脹側合金板及び低膨脹側合金板の
両主面の全面並びに中間層金属板の両主面の全面、オー
ステナイト系ステンレス鋼板とフェライト系ステンレス
鋼板の一主面の全面に、少なくとも1条のレーザービー
ムを照射し、両主面に前記照射により形成された照射層
を有する中間層金属板を挟み、両会金板の該照射層表面
を対向させて、さらに高膨脹側合金板の他照射層面にオ
ーステナイト系ステンレス鋼板の該照射層面、低膨脹側
合金板の他照射層面にフェライト系ステンレス鋼板の該
照射層面をそれぞれ対向させて冷間圧接することを特徴
とする耐食性バイメタル板の製造方法である。
In addition, in the case of a 5-polish structure corrosion-resistant bimetal plate, a high expansion side alloy plate and a low expansion side alloy plate, and an austenitic stainless steel plate and a ferritic stainless steel plate are laminated and pressure-welded on the outer surface of the high expansion side alloy plate and the low expansion side alloy plate, respectively, with an intermediate metal plate interposed. In the manufacturing method, the entire main surface of the high expansion alloy plate and the low expansion alloy plate, the entire main surface of the intermediate layer metal plate, and the entire main surface of the austenitic stainless steel plate and the ferritic stainless steel plate are , irradiating with at least one laser beam, sandwiching an intermediate layer metal plate having an irradiation layer formed by the irradiation on both main surfaces, and placing the irradiation layer surfaces of both metal plates facing each other, and further increasing the high expansion side. A corrosion-resistant bimetal characterized by cold-pressure welding the irradiated layer surface of an austenitic stainless steel plate to the other irradiated layer surface of the alloy plate, and the irradiated layer surface of a ferritic stainless steel plate to the other irradiated layer surface of the low expansion side alloy plate, respectively. This is a method of manufacturing a board.

発明の好ましい実施態様 この発明において、高膨脹側合金は、 Ni17wt%〜26wt%に Cr 2.5wt%〜12wL%、Mn5wt%〜7w
t%。
Preferred Embodiment of the Invention In this invention, the high expansion alloy contains 17wt% to 26wt% Ni, 2.5wt% to 12wL% Cr, and 5wt% to 7wMn.
t%.

M、 3wt%〜7wt%の1種を含有するFe合金あ
るいはMn70wt%〜80wt%、Ni5wt%〜:
15wt%含有、残部CuのMn合金、 低膨脹側合金には、 Ni35wt%−50wt%またはCr13wt%〜1
8wt%含有のFe合金が利用し得る。
Fe alloy containing one type of M, 3 wt% to 7 wt%, or Mn 70 wt% to 80 wt%, Ni 5 wt% to:
Mn alloy with 15 wt% content and balance Cu, low expansion alloy contains Ni35 wt%-50 wt% or Cr13 wt%-1
An Fe alloy containing 8 wt% can be used.

この発明において、高膨脹側Fe合金は、Niが1?w
t%未満では熱膨張係数が小さくなりすぎ、また、26
wt%を越えると同様に熱膨張係数が小さくなりすぎて
好ましくない。また、Mnが5wt%未満、Crが2.
5wt%未満、Mo3wt%未1岡では、高膨張特性の
安定性の点で好ましくなく、Mnが7w七%を越えると
耐食性が悪くなり、また、Crが12wt%を越えたり
、Moが7wt%を越えると加工性が悪くなるため好ま
しくない。
In this invention, the high expansion side Fe alloy has Ni of 1? lol
If it is less than t%, the coefficient of thermal expansion becomes too small;
If it exceeds wt%, the coefficient of thermal expansion becomes too small, which is not preferable. In addition, Mn is less than 5 wt% and Cr is 2.
If the content is less than 5wt% and Mo3wt% is less than 1%, it is unfavorable in terms of the stability of high expansion properties.If Mn exceeds 7w7%, corrosion resistance will deteriorate, and if Cr exceeds 12wt% or Mo is 7wt%. Exceeding this is not preferable because workability deteriorates.

従って、高膨脹側Fe合金は、 Ni17wt%〜26wt%にMn 5wt%〜7wt
%またはCr 2.5wt%−12wt%あるいはMo
3wt%〜7wt%の1種を含有するFe合金とし、特
に、 Ni19〜2l−Cr 5.0−7.0−Fe合金(w
t%)、Ni 19.0〜23  Cr 2.5〜5.
0−Fe合金(wt%)、Ni 17.0〜20.0−
Cr 10.0−12.0−Fe合金(wt%)、Ni
23−27−Mo 3.0〜7.0−Fe合金(wt%
)、Ni 19.0〜24.0−Mn 5.0−7.0
−Fe合金(wt%)が好ましい。
Therefore, the high expansion Fe alloy contains 17 wt% to 26 wt% Ni and 5 wt% to 7 wt% Mn.
% or Cr 2.5wt%-12wt% or Mo
Fe alloy containing one type of 3wt% to 7wt%, especially Ni19-2l-Cr5.0-7.0-Fe alloy (w
t%), Ni 19.0-23 Cr 2.5-5.
0-Fe alloy (wt%), Ni 17.0-20.0-
Cr 10.0-12.0-Fe alloy (wt%), Ni
23-27-Mo 3.0-7.0-Fe alloy (wt%
), Ni 19.0-24.0-Mn 5.0-7.0
-Fe alloy (wt%) is preferred.

また高い膨張係数が得られるMn合金として、Mn70
wt%〜80wL%、N15wt%−15wt%、残部
CuのMn合金が好ましい。
In addition, Mn70 is a Mn alloy that can obtain a high coefficient of expansion.
A Mn alloy with wt% to 80wL%, N15wt% to 15wt%, and the balance Cu is preferable.

また、低膨脹側Fe合金は、Niが35wt%未満、C
rが13wt;%未満では熱膨張係数が大きくなりすぎ
、また、N1が50wt%を越え、Crが18wt、%
を越えると同様に熱膨張係数が大きくなりすぎて好まし
くないため、Ni35wt%〜50wt%、またはCr
13wt%〜18wt%含有のFe合金とし、アンバー
合金、Ni38wt%−Fe合金、Ni42wt%−F
e合金、Cr1318wt%−Fe合金が好ましい。
In addition, the low expansion side Fe alloy contains less than 35 wt% Ni and C
When r is less than 13 wt%, the thermal expansion coefficient becomes too large, and when N1 exceeds 50 wt% and Cr is 18 wt%,
If it exceeds 35wt% to 50wt% of Ni, or Cr.
Fe alloy containing 13wt% to 18wt%, amber alloy, Ni38wt%-Fe alloy, Ni42wt%-F
e alloy and Cr1318wt%-Fe alloy are preferred.

中間層金属板は、バイメタル板の電気抵抗を調整するた
め、その用途等に応じて、Ni合金あるいはCu合金か
ら適宜選定すればよい。
In order to adjust the electrical resistance of the bimetallic plate, the intermediate metal plate may be appropriately selected from Ni alloy or Cu alloy depending on its use.

高膨脹側合金板に圧接する最外側のオーステナイト系ス
テンレス板としては、18−8系の5US301、SU
S 302、SUS 304、SUS 316の材質が
好ましい。
The outermost austenitic stainless steel plate that is pressed against the high expansion side alloy plate is 18-8 series 5US301, SU
Materials such as S302, SUS304, and SUS316 are preferable.

また、低膨脹側合金板に圧接する最外側のフェライト系
ステンレス板としては、13%Cr系の5US430、
SUS 410の材質が好ましい。
In addition, as the outermost ferritic stainless steel plate that is pressed against the low expansion side alloy plate, 13% Cr-based 5US430,
The material is preferably SUS 410.

この発明において、レーザービームの照射方法は、各被
圧接材料板の圧接予定表面に、スポット状のビームをミ
ラーを用いて2次元的に走行、あるいはレンズ、ミラー
を用いて、ビームを拡げて板幅方向に一括照射を行ない
、被着予定表面の全面に均一に照射するが、あるいは被
着予定表面上にビームをジグザグ走行、蛇行させたり、
縞状に部分照射するものである。
In this invention, the laser beam irradiation method is such that a spot-shaped beam is directed two-dimensionally onto the surface of each material plate to be pressure-welded using a mirror, or a lens or mirror is used to spread the beam and The beam is irradiated all at once in the width direction, uniformly irradiating the entire surface of the surface to be adhered, or the beam is irradiated in a zigzag or meandering manner over the surface to be adhered.
Partial irradiation is performed in a striped manner.

また、この発明において、レーザービームを部分的に照
射した各合金板及び中間層金属板並びに各ステンレス鋼
板の表面状態は、前記の如く、照射表面の清浄化と極表
面層の溶融凝固による硬化層を形成し、・非照射部分も
周囲の照射部分の熱影響により、表面が清浄化されてい
る。このため、レーザービームの照射層面同志を対向さ
せて被圧接材料板を冷間圧接すると、前述の如く、照射
部分において前記各被圧接材料板か強固に接着し、また
非照射部分も表面が清浄化されるため、各材料間の密着
性が向上して充分な圧接強度が得られる。
In addition, in this invention, the surface condition of each alloy plate, intermediate layer metal plate, and each stainless steel plate partially irradiated with a laser beam is as described above, with a hardened layer formed by cleaning the irradiated surface and melting and solidifying the extreme surface layer.・The surface of the non-irradiated area is also cleaned due to the thermal influence of the surrounding irradiated area. Therefore, when the material plates to be pressure-welded are cold-welded with the laser beam irradiation layer surfaces facing each other, as described above, the material plates to be pressure-welded are firmly bonded in the irradiated area, and the surfaces of the non-irradiated areas are also clean. As a result, the adhesion between each material is improved and sufficient pressure bonding strength can be obtained.

この発明において、レーザービームの照射は、表面の付
着物、油脂、水分の除去ができればよく、好ましくは1
0μm以下の極表面層の溶融凝固が可能であれば、いか
なる方法でもよく、例えば、スポット状にビームを集光
させて合金板表面の直交方向に照射したり、合金板とレ
ーザービームとを合金板の長手方向に同方向あるいは逆
方向に移動させたり、さらには、レーザービームを板幅
方向に振幅させながら板長平方向に移動させるなどの方
法が採用できる。
In this invention, the laser beam irradiation is sufficient as long as it can remove deposits, oil, and moisture from the surface, and preferably 1
Any method may be used as long as it is possible to melt and solidify the extreme surface layer of 0 μm or less. For example, the beam may be focused into a spot and irradiated in a direction perpendicular to the surface of the alloy plate, or the alloy plate may be fused with a laser beam. It is possible to adopt methods such as moving the laser beam in the same or opposite direction along the length of the plate, or moving the laser beam in the longitudinal direction of the plate while vibrating the laser beam in the width direction of the plate.

また、レーザービームは、レーザー発振器から発振され
て、コリメータ、レンズにより集光し、光ファイバーに
て所要位置に導いて照射する方法も採用できる。
Alternatively, a method may be adopted in which the laser beam is oscillated from a laser oscillator, focused by a collimator and a lens, and guided to a desired position by an optical fiber for irradiation.

この発明において、レーザービームの照射条件として、
ビームのパワー密度は、100kW/mm2〜1500
kW/mm2の範囲が好ましく、さらに好ましくは、3
00kW/mm2〜900kW/mm2である。
In this invention, the laser beam irradiation conditions are as follows:
Beam power density is 100kW/mm2 to 1500
A range of kW/mm2 is preferred, more preferably 3
00kW/mm2 to 900kW/mm2.

レーザービームのパワー密度が100kW/mm2未満
では、被圧接材料板に対する表面清浄化効果がなく、ま
た、1500kW/mm2を越えると、表面の凹凸が激
しくなり、パワー密度の上昇に伴ない板に孔が生成し好
ましくない。
If the power density of the laser beam is less than 100kW/mm2, there will be no surface cleaning effect on the material plate to be welded, and if it exceeds 1500kW/mm2, the surface will become extremely uneven, and as the power density increases, holes will occur in the plate. is generated, which is not desirable.

また、レーザー波長は、511m以下であれば有効であ
るが、2pmを越えると合金板への吸収効果が低下する
ため、2pm以下の波長を用いることが望ましい。
Further, it is effective if the laser wavelength is 511 m or less, but if it exceeds 2 pm, the absorption effect on the alloy plate decreases, so it is desirable to use a wavelength of 2 pm or less.

さらに、レーザービームの照射能率を向上させるために
、前記高膨脹側合金板Cr面あるいは中間層金属板両主
面、オーステナイト系及びフェライト系ステンレス鋼板
の一主面にレーザービームを照射する前に、無酸化雰囲
気中にて、200℃〜500℃に予熱することが好まし
い。
Furthermore, in order to improve the irradiation efficiency of the laser beam, before irradiating the Cr surface of the high expansion side alloy plate, both main surfaces of the intermediate layer metal plate, and one main surface of the austenitic and ferritic stainless steel plates with the laser beam, It is preferable to preheat to 200°C to 500°C in a non-oxidizing atmosphere.

発明の図面に基づく開示 第1図はこの発明による合金板へのレーザービームの照
射を示す斜視説明図である。第2図と第3図はこの発明
による冷間圧接を示す被圧接材料板の説明図である。
DISCLOSURE OF THE INVENTION BASED ON DRAWINGS FIG. 1 is a perspective explanatory view showing irradiation of a laser beam onto an alloy plate according to the present invention. FIGS. 2 and 3 are explanatory diagrams of material plates to be welded by pressure, showing cold welding according to the present invention.

高膨脹側合金板(1)コイルは、巻き戻されされてレー
ザービーム照射装置(2)方向へ進行する。レーザービ
ーム照射装置(2)は、通過する合金t112(1)の
−,11mにレーザービームを照射するための照射ボッ
クス(3)と発振装置(4)からなり、照射ボックス(
3)は合金板(1)全体を包囲し、内部にArガスを通
気してあり、Arガス雰囲気中でレーザービームを照射
できる構成である。
The high expansion side alloy plate (1) coil is unwound and advances toward the laser beam irradiation device (2). The laser beam irradiation device (2) consists of an irradiation box (3) and an oscillation device (4) for irradiating a laser beam onto -, 11m of the passing alloy t112 (1).
3) has a configuration in which the entire alloy plate (1) is surrounded and Ar gas is vented inside, and a laser beam can be irradiated in an Ar gas atmosphere.

レーザービームは、例えば、発振装置(4)において、
YAGレーザーのレーザー発振器から発振されてコリメ
ーターを通して、ガルバニックミラー(5)にて所要角
度に反射され、田レンズ(6)により集光し焦点を結ん
だのち、焦点より所要距離、離間した位置で、合金板(
1)の所要幅部分を照射できるよう、mレンズ(6)位
置が調整されており、かかる照射装置が4台、合金&(
1)幅方向に並列配置され、板幅全面にレーザービーム
を照射できる構成である。
For example, in the oscillator (4), the laser beam
The YAG laser oscillates from a laser oscillator, passes through a collimator, is reflected at a required angle by a galvanic mirror (5), is focused by a lens (6), and is then focused at a position a required distance away from the focal point. , alloy plate (
The position of the m lens (6) is adjusted so that the required width of 1) can be irradiated, and there are 4 such irradiation devices,
1) The laser beams are arranged in parallel in the width direction and can irradiate the entire width of the board with a laser beam.

なお、この発明に使用されるレーザービーム発生装置は
、ガルバニックミラー(5)に代えて、多面体ミラーも
しくはセグメントミラーを用いることにより、レーザー
走査速度を速くすることができ、また、シリンドリカル
レンズを用いて、板幅方向を一括して照射することによ
り、照射速度の向上を図ることができる。
Note that the laser beam generator used in this invention can increase the laser scanning speed by using a polyhedral mirror or a segment mirror instead of the galvanic mirror (5), and can increase the laser scanning speed by using a cylindrical lens. By irradiating the sheet width direction all at once, it is possible to improve the irradiation speed.

合金板(1)は、幅方向全面を、全面照射あるいはジグ
ザグ状、縞状に、レーザービーム照射されて、極表面層
を溶融;疑固し、表面の付着物、油層、水分が除去され
た新生面であるレーザービーム照射層(7)が形成され
る。
The alloy plate (1) was irradiated with a laser beam over the entire width direction or in a zigzag or striped pattern to melt the extreme surface layer; it was solidified, and deposits, oil layers, and moisture on the surface were removed. A laser beam irradiation layer (7), which is a new surface, is formed.

続いて、−主面側の全面にレーザービーム照射を施した
前記高膨脹側合金板(1)コイルを巻き戻し、他面に同
様方法にてレーザービーム照射を行ない、両主面にレー
ザービーム照射層を設ける。
Subsequently, the coil of the high expansion side alloy plate (1), which has been irradiated with a laser beam on the entire surface of the main surface side, is wound back, and the other surface is irradiated with a laser beam in the same manner, and both main surfaces are irradiated with a laser beam. Provide layers.

上述の方法にて、低膨脹側合金板の両主面、並びにオー
ステナイト系ステンレス鋼板及びフェライト系ステンレ
ス鋼板の一主面に、レーザービーム照射面を設け、所要
コイルとなす。
By the method described above, laser beam irradiation surfaces are provided on both main surfaces of the low-expansion side alloy plate and on one main surface of the austenitic stainless steel plate and the ferritic stainless steel plate to form the required coil.

次に、第2図に示す如く、レーザービーム照射を行なっ
たオーステナイト系ステンレス鋼板(10)コイルを巻
き戻し、圧接ロール(8)方向へ進行させ、同様に高膨
脹側合金板(1)コイル、低膨脹側合金板(11)コイ
ル、フェライト系ステンレス鋼板(12)を巻き戻し、
彼圧接材料板間で前記レーザービーム照射層を対向させ
て前記順に積層し、圧接ロール(8)にて同時に圧接す
ることにより、4層も1¥造のバイメタル板(13)と
なし、さらに拡散焼鈍、中間冷延及び中間焼鈍、仕−ヒ
冷延を施し、この発明による耐食性バイメタル板を得る
Next, as shown in FIG. 2, the austenitic stainless steel plate (10) coil that has been irradiated with the laser beam is unwound and moved toward the pressure roll (8), and similarly the high expansion side alloy plate (1) coil, Rewind the low expansion side alloy plate (11) coil and ferritic stainless steel plate (12),
The laser beam irradiation layers are stacked in the above order between the press-welded material plates, facing each other, and simultaneously press-bonded with a press-welding roll (8) to form a bimetal plate (13) of 1 yen each with four layers, and further diffused. Annealing, intermediate cold rolling, and intermediate annealing and finish cold rolling are performed to obtain a corrosion-resistant bimetallic plate according to the present invention.

かかる圧接により、各被圧接材料板 (IOXI)(11X12)の各照射面の溶融凝固層が
内部のすベリ変形の影響により表面に微細な亀裂を生じ
、内部の新生面が露出して、オーステナイト系ステンレ
ス鋼板、高膨脹側合金板、低膨張合金側板、フェライト
系ステンレス鋼板が相互に圧接されるため、従来の機械
的研摩表面に比較して、清浄度がすぐれ、かつ圧着強度
が向上した品質のすぐれた耐食性バイメタル板を得るこ
とができる。
Due to this pressure welding, the molten solidified layer on each irradiated surface of each press welding material plate (IOXI) (11 x 12) produces fine cracks on the surface due to the influence of internal sublimation deformation, exposing the new internal surface, and forming an austenitic layer. Because the stainless steel plate, high expansion alloy side plate, low expansion alloy side plate, and ferritic stainless steel plate are pressure-welded to each other, the product has superior cleanliness and improved crimp strength compared to conventional mechanically polished surfaces. A bimetallic plate with excellent corrosion resistance can be obtained.

また、前記圧接方法において、高膨脹側合金板(1)と
低膨脹側合金板(11)間に、両面にレーザービーム照
射層を設けた所要の中間層金属板を介在させることによ
り、5層構造の耐食性バイメタル板を得ることができる
In addition, in the pressure welding method, by interposing a required intermediate layer metal plate having a laser beam irradiation layer on both surfaces between the high expansion side alloy plate (1) and the low expansion side alloy plate (11), a five-layer metal plate can be formed. A corrosion-resistant bimetallic plate of the structure can be obtained.

従って、耐食性バイメタル板の構成材料の材質や寸法等
により、レーザービームの発振方法や照射出力、fθレ
ンズによる焦点と照射表面までの距離、被照射板の移動
速度などを適宜選定する必要がある。
Therefore, it is necessary to appropriately select the oscillation method of the laser beam, the irradiation output, the distance between the focal point of the fθ lens and the irradiation surface, the moving speed of the irradiated plate, etc., depending on the material and dimensions of the constituent materials of the corrosion-resistant bimetal plate.

実施例 実施例1 オーステナイト系ステンレス鋼板として、板厚1mm、
板幅300mmの18%Cr−8%Ni−Feステンレ
ス板(wt%)を使用し、 高膨脹側合金板には、 板jプ2.5mm、板幅300mmの20%Ni−6%
Cr−Fe合金板(wt%)を使用し、 低膨脹側合金板には、 板厚2.5mm、板幅300mrn、36%Ni−Fe
合金板(wt%)を使用した。
Examples Example 1 As an austenitic stainless steel plate, the plate thickness was 1 mm,
A 18% Cr-8% Ni-Fe stainless steel plate (wt%) with a plate width of 300 mm is used, and for the high expansion side alloy plate, a plate of 2.5 mm and a 20% Ni-6% plate with a plate width of 300 mm is used.
A Cr-Fe alloy plate (wt%) is used, and the low expansion side alloy plate has a plate thickness of 2.5 mm, a plate width of 300 mrn, and a 36% Ni-Fe alloy plate.
An alloy plate (wt%) was used.

フェライト系ステンレス鋼板として、 板厚1mm、板幅300mmの13%Cr−Feステン
レス板(wt%)を使用し、 また、照射ボックス内雰囲気ガスはArガス、1)り記
合金板移動速度は1m/minであった。
A 13% Cr-Fe stainless steel plate (wt%) with a plate thickness of 1 mm and a plate width of 300 mm was used as the ferritic stainless steel plate, and the atmospheric gas in the irradiation box was Ar gas. 1) The alloy plate moving speed was 1 m. /min.

レーザー照射装置には、出力100W、10 kHzQ
スイッチレーザーを3台用い、上述した第1図のこの発
明と同様の方法で、 レンズ焦点間距離100mm、 波長; 1.06 pm 。
The laser irradiation device has an output of 100 W and a frequency of 10 kHz.
Using three switch lasers, the lens focal length was 100 mm, and the wavelength was 1.06 pm, using the same method as the invention shown in FIG. 1 described above.

レーザーパワー密度; 500kW/mm2の条部で、
各被圧接材料板幅方向に100mmの3条のビームを前
記材料板長手方向に連続して、レーザービームによる照
射面を所要面にそれぞれt成した。
Laser power density: 500kW/mm2 stripes,
Three beams each having a length of 100 mm were applied in the width direction of each press-welded material plate in succession in the longitudinal direction of the material plate, so that each desired surface was irradiated with the laser beam.

前記の各被圧接材料板の照射面同志を対向させて、オー
ステナイト系ステンレス鋼板、高膨脹側合金板、低膨張
合金側板、フェライト系ステンレス鋼板の順に積層し圧
接ロールにて、圧延率55%で冷間圧接した。
The austenitic stainless steel plate, high expansion alloy side plate, low expansion alloy side plate, and ferritic stainless steel plate were stacked in this order with the irradiated surfaces of each of the pressure welded material plates facing each other, and rolled at a rolling rate of 55% using a pressure roll. Cold pressure welded.

さらに、拡散焼鈍、11叩11圧延、仕上圧延を施した
のち、スリッターにて板厚み0.8mmX 4層1M幅
65mmの4層構造の耐食性バイメタル板を得た。
Furthermore, after diffusion annealing, 11 beatings, 11 rolling, and finish rolling, a corrosion-resistant bimetal plate with a 4-layer structure of 0.8 mm thick x 4 layers 1M and 65 mm wide was obtained using a slitter.

また、比較のため、同種のオーステナイト系ステンレス
鋼板とフェライト系ステンレス銅板、高膨脹側合金板及
び低膨脹側合金板を用い、ステンレス銅板の一主面の全
面及び各合金板の両主面の全面に、0.5mmΦワイヤ
ー回転ブラシ、移動速度15m/sのワイヤーパフ研摩
条件で、従来の機械釣餌1%を施したのち、前記と同一
の条件にて、冷間圧接、拡散焼鈍、中間圧延、仕上圧延
を施したのち、スリッターにて板厚み0.8mmX板幅
65mmの耐食性バイメタル板を得た。
For comparison, the same type of austenitic stainless steel sheet, ferritic stainless steel copper sheet, high expansion side alloy sheet, and low expansion side alloy sheet were used. 1% of the conventional mechanical fishing bait was applied to the wire puff polishing using a 0.5 mmΦ wire rotating brush and a moving speed of 15 m/s, followed by cold welding, diffusion annealing, intermediate rolling, and the like under the same conditions as above. After finishing rolling, a corrosion-resistant bimetal plate with a thickness of 0.8 mm and a width of 65 mm was obtained using a slitter.

得られた2種の耐食性バイメタル板の圧着強度及び外観
性状を調べ、その結果を第1表に示す。
The crimp strength and appearance properties of the two types of corrosion-resistant bimetal plates obtained were examined, and the results are shown in Table 1.

圧着強度は、バイメタル板を長さ方向に、40mm長さ
ν月祈し、圧着部長さ10mmにて圧着し、張り合わせ
たものを開くように断面T字形状(第4図参照)となし
た試験片、すなわち被測定面となる各積層面毎に開いた
t1■成の積層数と同種類の試験片を各々30個作製し
、圧着部に直角方向に引張り、圧着部がはがれる時の荷
重にて圧着強度を11干佃iした。
The crimping strength was determined by a test in which a bimetal plate was crimped to a length of 40 mm in the longitudinal direction, crimped with a crimped part length of 10 mm, and the cross section was made into a T-shape (see Figure 4) so that the bonded material was opened. In other words, 30 test pieces of the same type as the number of laminated layers with t1-formation opened for each laminated surface that will be the surface to be measured were prepared, and they were pulled in a direction perpendicular to the crimped part, and the load was applied when the crimped part peeled off. The crimp strength was set to 11.

第1表から明らかなように、本発明方法によると、従来
法より圧着強度が高くかつそのばらつきも少なく、外観
性状もすぐれ、すこぶる品質のよい面1食性バイメタル
板が得られることが分る。
As is clear from Table 1, according to the method of the present invention, it is possible to obtain a single-sided bimetallic plate with higher crimp strength and less variation than the conventional method, excellent appearance, and very good quality.

実施例2 オーステナイト系ステンレス鋼板として、板JV 1m
m、板幅240mmの18%Cr−8%Ni−Feステ
ンレス板(wt%)を使用し、 高膨脹側合金板には、 板厚2mm、板幅240mmの5%Mn−23%Ni−
Fe合金板(wt%)を1史用し、 中間層金J萬オ反には、 板厚0.5mm、板幅240mm 、 0.5%Fe−
Ni合金板(wt%)を使用した。
Example 2 As an austenitic stainless steel plate, plate JV 1m
A 18% Cr-8% Ni-Fe stainless steel plate (wt%) with a plate thickness of 2 mm and a plate width of 240 mm is used, and the high expansion side alloy plate is a 5% Mn-23% Ni- plate with a plate thickness of 2 mm and a plate width of 240 mm.
A Fe alloy plate (wt%) was used, and the middle layer was made of 0.5 mm thick, 240 mm wide, and 0.5% Fe-
A Ni alloy plate (wt%) was used.

低膨脹側合金には、 板厚2mm、板幅240mm、38%Ni−Fe合金板
(帆%)を使用し フェライト系ステンレス鋼板として、 板厚1mm、板幅240mmの13%Cr−Feステン
レス板(wt%)を使用し、 また、照射ボックス内雰囲気ガス、はArガス、前記被
照射材料板移動速度は1.2 m/minであった。
For the low expansion side alloy, we used a 38% Ni-Fe alloy plate (sail%) with a thickness of 2 mm and a width of 240 mm, and as a ferritic stainless steel plate, we used a 13% Cr-Fe stainless steel plate with a thickness of 1 mm and a width of 240 mm. (wt%), the atmospheric gas in the irradiation box was Ar gas, and the moving speed of the irradiated material plate was 1.2 m/min.

レーザー照射装置には、出力100W、10 kHzQ
スイッチレーザーを3台用い、上述した第1図のこの発
明と同様の方法で、 レンズ焦点間距離100mm、 波長;1.06pm、 レーザーパワー密度; 500kW/mm2の条件で、
被照射Fオ、■仮幅方向に80mmの3条のビームを、
高膨張、低膨張合金側及び中間層金属板の艮手力向に連
続して、両主面にレーザービームによる照射面をそれぞ
れ形成した。同様に各ステンレス1isI板の片面に照
射面を形成した。
The laser irradiation device has an output of 100 W and a frequency of 10 kHz.
Using three switch lasers, using the same method as in the invention shown in Fig. 1 above, the lens focal length was 100 mm, the wavelength was 1.06 pm, and the laser power density was 500 kW/mm2.
Irradiated field F, ■Three beams of 80mm in the temporary width direction,
A laser beam irradiation surface was formed on both main surfaces of the high expansion alloy side, the low expansion alloy side, and the intermediate layer metal plate, respectively. Similarly, an irradiation surface was formed on one side of each stainless steel 1isI plate.

前記の各被圧接材料板の照射面同志を対向させて、オー
ステナイト系ステンレス鋼板、高11y/脹側合金板、
中間層金属板、低膨張合金側板、フェライト系ステンレ
ス鋼板の順に積沿し圧接ロールにて、圧延率53%で冷
間圧接した。
The irradiated surfaces of each of the press-welded material plates were made to face each other, an austenitic stainless steel plate, a high 11y/bulk side alloy plate,
The intermediate layer metal plate, the low-expansion alloy side plate, and the ferritic stainless steel plate were laminated in this order and cold-welded using a pressure welding roll at a rolling rate of 53%.

さらに、拡散焼鈍、中間圧延、仕上圧延を施したのち、
スリッターにて板厚み0.6mmX板幅40mmの5層
構造耐食性バイメタル板を得た。
Furthermore, after undergoing diffusion annealing, intermediate rolling, and finish rolling,
A five-layer corrosion-resistant bimetal plate having a thickness of 0.6 mm and a width of 40 mm was obtained using a slitter.

また、比較のため、同種のオーステナイト系ステンレス
鋼板とフェライト系ステンレス鋼板、高膨脹側合金板、
低膨脹側合金板及び中間層金属板を用い、各ステンレス
鋼板の一主面の全面並びに各合金板及び中間層金属板の
両主面の全面に、0.5mmΦワイヤー回転ブラシ、[
多Jlj速度15m1m1nのワイヤーパフ研摩条件で
、従来の磯賊的研摩を施したのち、前記の条件にて、冷
間圧接、拡散焼鈍、中間圧延、仕上圧延を施したのち、
スリッターにて板厚み0.6mmX板幅40mmの耐食
性バイメタル板を得た。
For comparison, the same type of austenitic stainless steel plate, ferritic stainless steel plate, high expansion side alloy plate,
Using a low expansion side alloy plate and an intermediate layer metal plate, a 0.5 mmΦ wire rotating brush, [
After performing conventional sand polishing under the wire puff polishing conditions of multi-Jlj speed 15 ml 1 ml, after performing cold welding, diffusion annealing, intermediate rolling, and finish rolling under the above conditions,
A corrosion-resistant bimetal plate with a thickness of 0.6 mm and a width of 40 mm was obtained using a slitter.

得られた2種の耐食性バイメタル板の圧着強度及び外観
性状を調べ、その結果を第2表に示す。
The crimp strength and appearance properties of the two types of corrosion-resistant bimetal plates obtained were examined, and the results are shown in Table 2.

第2表から明らかなように、本発明方法によると、従来
法より圧着強度が高くかつそのばらつきも少なく、外観
性状もすぐれ、すこぶる品質のよい耐食性バイメタル板
が得られることが分る。
As is clear from Table 2, according to the method of the present invention, it is possible to obtain corrosion-resistant bimetallic plates of extremely high quality, which have higher crimp strength and less variation than the conventional method, and have excellent appearance properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による合金板へのレーザービームの照
射を示す斜視説明図である。 第2図はこの発明による冷間圧接を示す被圧接材料板の
説明図である。第3図は被圧接材料板の圧11強度試験
方法を示す被圧接材料板の説明図である。 1・・・高膨脹側合金板、2・・・レーザービーム照射
装置、3・・・照射ボックス、4・・発振装置、5・・
ガルバニックミラー、6・・feレンズ、7・・・照射
層、8・・圧接ロール、10・・オーステナイト系ステ
ンレス銅板、11・・・低膨脹側合金板、12・・・フ
ェライト系ステンレス板、13・・・バイメタル板。 出願人  住友特殊金属株式会社 第2図 第1図 昭和62年10月15日 昭和61年 特許願 第171155号2、発明の名称 耐食性バイメタル板の製造方法 3、補正をする者 事件との関係    出願人 住所 大阪市東区北浜5丁目22番地 スミトモトク/ユキ//り 名称 住友特殊金属株式会社 4、代理人 5、補正の対象 明細書の発明の詳細な説明、図面の簡単な説明の欄、図
面 図面第2図、第3図        1通1、明細書第
3頁17行〜18行の[オーステナイトステンレス鋼板
コイル]を[オーステナイト系ステンレス鋼板コイル]
と補正する。 2、明細書第4頁18行の[と伴に圧接強度の向上を図
り」を「圧接強度の向上を図り]と補正する。 3、明細書第18頁15行の[中間圧延、仕上圧延]を
[中間圧延、中間焼鈍、仕上圧延Jと補正する。 4、明細書第19頁5行の「中間圧延、仕上圧延1を「
中間圧延、中間焼鈍、仕上圧延]と補正する。 5、明細書第19頁10行〜17行の[圧着強度は、バ
イメタル板を長さ方向に、・・・・・川・・圧着部がは
がれる時の荷重にて圧着強度を評価した。1を次のとお
り補正する。 [圧着強度は、第3図a図に示す如く、バイメタル板を
長さ方向に40mm長さに切断した後、圧着部長さ10
mm部分を圧着して張合わせ、例えば、オーステナイト
系ステンレス鋼板(1o)と高膨脹側合金板(1)との
間で開き、断面T字型状となした試験片、すなわち、被
測定面となる各積層面毎に開いた構成の3種類の試験片
を各々30個作製し、圧着部に直角方向に引張り、圧着
部が剥れる時の荷重にて圧着強度を評価した。」 6、明細書第22頁8行の[中間圧延、仕上圧延」を[
中間圧延、中間焼鈍、仕上圧延]と補正する。 76  明細書第22頁19行の[中間圧延、仕上圧延
」を「中間圧延、中間焼鈍、仕上圧延]と補正する。 8、明細書第23頁4行と5行の間に、[圧着強度は、
第3図す図に示す如く、バイメタル板を長さ方向に40
mm長さに切断した後、圧着部長さ10画部分を圧着し
て張合わせ、例えば、高膨脹側合金板(1)と中間層金
属板(14)との間で開き、断面T字型状となした試験
片、すなわち、被測定面となる各積層面毎に開いたt1
4成の4種類の試験片を各々30個作製し、圧着部に直
角方向に引張り、圧着部が剥れる時の荷重にて圧着強度
を評価した。]を追加する。 9、明細書第24頁2行〜4行の[第3図は彼圧接材料
仮の・・・・・・・・・である。]を[第3図a、b図
は被圧接材料板の圧着強度試験方法を示す試験片の説明
図である。1と補正する。 10Q脳′tII書第24頁10行の[13・・・バイ
メタル板。]を「13・・・バイメタル板、14・・中
間層金属板。]と1市正する。 11、図面の第2図を別紙のとおり補正する。 12、図面の第3図を別紙のとおり補正する。 以上 第2図 第3図
FIG. 1 is a perspective explanatory view showing irradiation of a laser beam onto an alloy plate according to the present invention. FIG. 2 is an explanatory diagram of a press-welded material plate showing cold pressure welding according to the present invention. FIG. 3 is an explanatory diagram of a press-welded material plate showing a pressure 11 strength test method for the press-welded material plate. DESCRIPTION OF SYMBOLS 1... High expansion side alloy plate, 2... Laser beam irradiation device, 3... Irradiation box, 4... Oscillator, 5...
Galvanic mirror, 6... FE lens, 7... Irradiation layer, 8... Press roll, 10... Austenitic stainless steel copper plate, 11... Low expansion side alloy plate, 12... Ferritic stainless steel plate, 13 ...Bimetal plate. Applicant: Sumitomo Special Metals Co., Ltd. Figure 2 Figure 1 October 15, 1988, 1986 Patent Application No. 171155 2, Name of Invention Method for Manufacturing Corrosion-Resistant Bimetal Plate 3, Relationship with the Amendment Person Case Application Address: 5-22 Kitahama, Higashi-ku, Osaka Sumitomoto/Yuki Name: Sumitomo Special Metals Co., Ltd. 4, Agent 5, Detailed description of the invention in the specification subject to amendment, Column for brief description of drawings, Drawings Figures 2 and 3 [Austenitic stainless steel sheet coil] in 1 copy 1, page 3 of the specification, lines 17 to 18 [Austenitic stainless steel sheet coil]
and correct it. 2. In the specification, page 4, line 18, [to improve the pressure welding strength] should be corrected to ``increase the pressure bonding strength.'' 3. In the specification, page 18, line 15, [intermediate rolling, finish rolling] ] is corrected as [intermediate rolling, intermediate annealing, finish rolling J. 4. "Intermediate rolling, finish rolling 1" on page 19, line 5 of the specification is corrected as "
Intermediate rolling, intermediate annealing, finish rolling]. 5. Specification page 19, lines 10 to 17 [The crimp strength was evaluated based on the load applied when the crimped portion was peeled off in the longitudinal direction of the bimetal plate. 1 will be corrected as follows. [The crimp strength is determined by cutting the bimetal plate into a length of 40 mm in the longitudinal direction, and measuring the crimp length of 10 mm as shown in Figure 3a.
A test piece with a T-shaped cross section made by crimping and bonding the mm portions together, for example, an austenitic stainless steel plate (1o) and a high expansion side alloy plate (1), that is, a test piece with a surface to be measured. Thirty test specimens of three types each having an open configuration for each laminated surface were prepared, and the test pieces were pulled in a direction perpendicular to the crimped part, and the crimped strength was evaluated based on the load at which the crimped part peeled off. 6. Change [intermediate rolling, finish rolling] on page 22, line 8 of the specification to [
Intermediate rolling, intermediate annealing, finish rolling]. 76 "Intermediate rolling, finish rolling" on page 22, line 19 of the specification is corrected to "intermediate rolling, intermediate annealing, finish rolling". 8. Between lines 4 and 5 of page 23 of the specification, "crimping strength teeth,
As shown in Figure 3, the bimetal plate is 40 mm long in the longitudinal direction.
After cutting to a length of mm, the 10 stroke length of the crimped part is crimped and laminated together, for example, opened between the high expansion side alloy plate (1) and the middle layer metal plate (14) to form a T-shaped cross section. A test piece with t1 opened for each laminated surface to be measured
Thirty test pieces of each of the four types were prepared, pulled in a direction perpendicular to the crimped part, and the crimped strength was evaluated based on the load at which the crimped part peeled off. ] Add. 9. On page 24 of the specification, lines 2 to 4, [Figure 3 shows the temporary pressure welding materials. [Figures 3a and 3b are explanatory diagrams of test pieces showing a method for testing the crimp strength of press-welded material plates. Correct it to 1. 10Q Brain't II, page 24, line 10 [13...Bimetal plate. ] is corrected as "13...bimetal plate, 14...intermediate metal plate." 11. Figure 2 of the drawing is corrected as shown in the attached sheet. 12. Figure 3 of the drawing is corrected as shown in the attached sheet. Correct. Figure 2 and Figure 3 above.

Claims (1)

【特許請求の範囲】 1 オーステナイト系ステンレス鋼板、高膨脹側合金板、低
膨脹側合金板、フェライト系ステンレス鋼板を積層圧接
したバイメタル板の製造方法において、オーステナイト
系ステンレス鋼板とフェライト系ステンレス鋼板の一主
面の全面、並びに高膨脹側合金板と低膨脹側合金板の両
主面の全面に、少なくとも1条のレーザービームを照射
し、オーステナイト系ステンレス鋼板、高膨脹側合金板
、低膨脹側合金板、フェライト系ステンレス鋼板の順に
各板の前記照射により形成された照射層表面を相互に対
向させて、冷間圧接することを特徴とする耐食性バイメ
タル板の製造方法。 2 中間層金属板を介在させて高膨脹側合金板と低膨脹側合
金板並びにその外面にオーステナイト系ステンレス鋼板
とフェライト系ステンレス鋼板を各々積層圧接したバイ
メタル板の製造方法において、高膨脹側合金板及び低膨
脹側合金板の両主面の全面並びに中間層金属板の両主面
の全面、オーステナイト系ステンレス鋼板とフェライト
系ステンレス鋼板の一主面の全面に、少なくとも1条の
レーザービームを照射し、両主面に前記照射により形成
された照射層を有する中間層金属板を挟み、両合金板の
該照射層表面を対向させて、さらに高膨脹側合金板の他
照射層面にオーステナイト系ステンレス鋼板の該照射層
面、低膨脹側合金板の他照射層面にフェライト系ステン
レス鋼板の該照射層面をそれぞれ対向させて冷間圧接す
ることを特徴とする耐食性バイメタル板の製造方法。
[Claims] 1. In a method for manufacturing a bimetallic plate in which an austenitic stainless steel plate, a high expansion alloy plate, a low expansion alloy plate, and a ferritic stainless steel plate are laminated and pressure-welded, one of the austenitic stainless steel plate and the ferritic stainless steel plate is At least one laser beam is irradiated on the entire main surface and on both the main surfaces of the high expansion side alloy plate and the low expansion side alloy plate, and the austenitic stainless steel plate, the high expansion side alloy plate, and the low expansion side alloy plate are A method for manufacturing a corrosion-resistant bimetallic plate, which comprises cold-pressing a plate and a ferritic stainless steel plate, with the surfaces of the irradiated layers formed by the irradiation of each plate facing each other in this order. 2. In a method for manufacturing a bimetallic plate in which a high expansion side alloy plate, a low expansion side alloy plate, and an austenitic stainless steel plate and a ferritic stainless steel plate are laminated and pressure-welded on the outer surface thereof with an interlayer metal plate interposed therebetween, the high expansion side alloy plate At least one laser beam is irradiated onto the entire surface of both main surfaces of the low expansion side alloy plate, the entire surface of both main surfaces of the intermediate layer metal plate, and the entire surface of one main surface of the austenitic stainless steel plate and the ferritic stainless steel plate. , an intermediate layer metal plate having an irradiation layer formed by the irradiation on both main surfaces is sandwiched, the irradiation layer surfaces of both alloy plates are faced to each other, and an austenitic stainless steel plate is placed on the irradiation layer surface of the high expansion side alloy plate. A method for producing a corrosion-resistant bimetallic plate, characterized in that the irradiated layer surface of the ferritic stainless steel plate is opposed to the irradiated layer surface of the low expansion side alloy plate, and the irradiated layer surface of the ferritic stainless steel plate is cold press-welded.
JP61171155A 1986-07-21 1986-07-21 Method for manufacturing corrosion-resistant bimetal plate Expired - Lifetime JPH0645072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61171155A JPH0645072B2 (en) 1986-07-21 1986-07-21 Method for manufacturing corrosion-resistant bimetal plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61171155A JPH0645072B2 (en) 1986-07-21 1986-07-21 Method for manufacturing corrosion-resistant bimetal plate

Publications (2)

Publication Number Publication Date
JPS6330187A true JPS6330187A (en) 1988-02-08
JPH0645072B2 JPH0645072B2 (en) 1994-06-15

Family

ID=15918010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61171155A Expired - Lifetime JPH0645072B2 (en) 1986-07-21 1986-07-21 Method for manufacturing corrosion-resistant bimetal plate

Country Status (1)

Country Link
JP (1) JPH0645072B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08504849A (en) * 1992-10-29 1996-05-28 ケミッシェ・ファブリク・ストックハウゼン・ゲーエムベーハー Leather and fur softening / oiling and greasing methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08504849A (en) * 1992-10-29 1996-05-28 ケミッシェ・ファブリク・ストックハウゼン・ゲーエムベーハー Leather and fur softening / oiling and greasing methods

Also Published As

Publication number Publication date
JPH0645072B2 (en) 1994-06-15

Similar Documents

Publication Publication Date Title
US4753850A (en) Fiber-reinforced laminates and method for making them
DE69415280T2 (en) METHOD FOR SOLDERING A HEAT-RESISTANT ALLOY COATED WITH AN INSULATING OXIDIC FILM, PRE-HEATED METAL CARRIER FOR PURIFYING EXHAUST GASES, AND METHOD FOR PRODUCING THE SAME
JPS6330187A (en) Manufacture of corrosion resistant bimetal plate
JPS6330188A (en) Manufacture of corrosion resistant bimetal plate
JPS6330190A (en) Manufacture of corrosion resistant bimetal plate
JPS6326288A (en) Manufacture of bimetallic plate
JPS6363586A (en) Manufacture of clad strip
JPH028835B2 (en)
JPS62263879A (en) Manufacture of clad plate
JPH0645070B2 (en) Cladding board manufacturing method
JPH0256193B2 (en)
JP3145244B2 (en) Manufacturing method of honeycomb panel
JP2003001302A (en) Production method for aluminum-dispersed reinforced copper strip
JPH0531589A (en) Honeycomb panel and manufacture thereof
JPS62263878A (en) Manufacture of clad plate
JPS60244490A (en) Production of clad steel plate
JP3229110B2 (en) Aluminum alloy joining method
JPS63141733A (en) Clad board
JPS62267092A (en) Clad plate
JPS63203290A (en) Manufacture of clad plate
JP2674383B2 (en) Aluminum resistance welding method
JPS6182996A (en) Production of composite brazing filler metal
JPH0325275B2 (en)
JPS63192261A (en) Striped clad plate
JPS60244491A (en) Production of copper or copper alloy clad steel plate