JPS63301630A - Transmitting power control system - Google Patents

Transmitting power control system

Info

Publication number
JPS63301630A
JPS63301630A JP13714887A JP13714887A JPS63301630A JP S63301630 A JPS63301630 A JP S63301630A JP 13714887 A JP13714887 A JP 13714887A JP 13714887 A JP13714887 A JP 13714887A JP S63301630 A JPS63301630 A JP S63301630A
Authority
JP
Japan
Prior art keywords
transmission power
level
transmitting
transmitting power
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13714887A
Other languages
Japanese (ja)
Other versions
JPH0650831B2 (en
Inventor
Masao Hayashi
正雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62137148A priority Critical patent/JPH0650831B2/en
Publication of JPS63301630A publication Critical patent/JPS63301630A/en
Publication of JPH0650831B2 publication Critical patent/JPH0650831B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

PURPOSE:To execute communication under low transmitting power as much as possible by increasing the transmitting power of a transmitting station in response that a relative value between spectrum components within a receiving band in a receiving station increases more than a prescribed value at a line loss increasing time. CONSTITUTION:When abnormality is generated in the line loss distribution of a communicating line, the increasing of a relative value between spectrum components within a receiving signal band received by a receiving station 16 is generated and when the components are over a prescribed value, control information are generated from a transmitting power control information output means 13 and inputted from an antenna 12 through an antenna 10 of a transmitting station 5 to a transmitting level control means 7. The transmitting level control means 7 responds to the control information and generates the change of the setting level of a transmitting power change means 6 so that the transmitting power level can be raised. With the recovering of the line loss distribution, by the transmitting level control means 7, the setting level of the transmitting power change means 6 is changed to a low transmitting power level. Thus, the transmitting power can be reduced.

Description

【発明の詳細な説明】 〔概 要〕 送信局の送信電力を平常時に充分な回線品質を保ち得る
に充分な値と為し、その回線の回線損失増大時に受信局
における受信帯域内のスペクトラム成分間の相対値が所
定値以上に増大したことに応答して送信局の送信電力を
、上記回線損失があってもなお、受信局における正常な
受信を接続せしめ得るに充分な値に高める。
[Detailed Description of the Invention] [Summary] The transmission power of the transmitting station is set to a value sufficient to maintain sufficient line quality in normal times, and when the line loss of the line increases, the spectral components within the receiving band at the receiving station are In response to the relative value between the two increasing to a predetermined value or more, the transmission power of the transmitting station is increased to a value sufficient to enable normal reception at the receiving station even in the presence of the line loss.

〔産業上の利用分野〕[Industrial application field]

本発明は送信電力制御方式に関し、更に詳しく言えば、
低電力化等のための送信電力制御に受信帯域内のスペク
トラム成分間の相関関係を用いた送信電力制御方式に関
する。
The present invention relates to a transmission power control method, and more specifically,
This invention relates to a transmission power control method that uses the correlation between spectral components within a reception band to control transmission power for power reduction, etc.

ディジタル多重無線通信等の無線通信網においては、送
信側から受信側へ所望の情報を伝送しようとする場合、
その情報を電波に乗せて送ることになる。その電波を受
信側で首尾よく受信させるためには、それに必要なだけ
の送信電力で前記電波を送信側から受信側へ輻射させな
ければならない、そして、その送信には送受信系の伝送
能力だけでなく、伝送媒体の状態をも考慮に入れて送信
電力を決めなければならない。又、送受信系が構築され
ている地域における既設、未設を問わずその他の送受信
系の様子をも考慮に入れることが、その地域における各
種無線通信系を有るべき姿に整備する上で重要な事項で
ある。
In wireless communication networks such as digital multiplex wireless communication, when attempting to transmit desired information from the transmitter to the receiver,
This information will be transmitted over radio waves. In order for the receiving side to successfully receive the radio waves, the radio waves must be radiated from the transmitting side to the receiving side with the necessary transmission power, and the transmission requires only the transmission capacity of the transmitting and receiving system. Transmission power must also be determined taking into consideration the state of the transmission medium. In addition, it is important to take into account the status of other transmitting and receiving systems, whether existing or uninstalled, in the area where the transmitting and receiving system is being constructed, in order to maintain the various wireless communication systems in the area as they should be. It is a matter.

〔従来の技術〕[Conventional technology]

従来のディジタル多重無線通信システムは第6図に示す
ように構成されていた。その送信側において変調器2に
おいて変調された送信信号は送信器4でIF帯からRF
帯へ周波数変換される。送信器4の出力信号が電力増幅
器14で電力増幅されて送信アンテナ16から受信アン
テナ30へ向けて輻射される。受信アンテナ30で受信
された信号は受信器32でRF帯からIF帯へ周波数変
換された後、AGC増幅器34でAGC増幅されて復調
器36での送信信号の再生に供される。
A conventional digital multiplex wireless communication system was configured as shown in FIG. On the transmitting side, the transmitting signal modulated by the modulator 2 is transmitted from the IF band to the RF by the transmitter 4.
The frequency is converted to a band. The output signal of the transmitter 4 is power amplified by the power amplifier 14 and radiated from the transmitting antenna 16 to the receiving antenna 30. The signal received by the receiving antenna 30 is frequency-converted from the RF band to the IF band by the receiver 32, and then subjected to AGC amplification by the AGC amplifier 34, and then provided to the demodulator 36 to reproduce the transmitted signal.

このような送受信系における送信電力は、受信側のAG
C増幅器34の利得調整機能がその上限近傍に至ったと
きにも、なお、回線品質を維持し得るに足りるだけ充分
な強さの電波を送信アンテナ16から輻射し得る成る定
められた値に、従来は設定されていた。
The transmission power in such a transmission/reception system is determined by the AG on the receiving side.
Even when the gain adjustment function of the C amplifier 34 reaches its upper limit, the transmitting antenna 16 can still radiate radio waves of sufficient strength to maintain line quality. Previously, it was set.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述のような送信電力の設定は、回線品
質の維持という観点からすればその限りでは肯定し得る
ものではあるが、電力の節減という見地に立てば長期間
に亘って不必要に大きな送信電力で情報の送信を行なっ
ていることになる。というのは、上述の如く設定される
送信電力は、年間において僅か5〜lO時間程度しかな
い大きな回線損失(主として、フェージングによる損失
)のために、その他の時間帯においてはそのような大き
な送信電力を必要としないのにも拘らず、上述のような
大きな回線損失が生ずる時間帯において所望の回線品質
を維持させんとして定められているからである。
However, although the above-mentioned transmission power setting is acceptable from the perspective of maintaining line quality, from the perspective of saving power, it may result in unnecessary large transmissions over a long period of time. This means that information is transmitted using electricity. This is because the transmission power set as described above is due to the large line loss (mainly loss due to fading) that is only about 5 to 10 hours a year, and such a large transmission power is not available at other times of the year. This is because, although this is not necessary, it is intended to maintain the desired line quality during the time period when large line losses as described above occur.

又、上述のような大きな送信電力では、送受信系の設置
地域に他の送受信系がない場合には問題ないが、そうで
ない場合にはその影響が生ずるので不都合を来す。
Further, the above-mentioned large transmission power does not pose a problem if there are no other transmitting/receiving systems in the area where the transmitting/receiving system is installed, but if this is not the case, it causes an inconvenience.

本発明は、斯かる問題点に鑑みて創作されたもので、通
信を可能な限り低送信電力の下で行なうための送信電力
制御方式を提供することをその目的とする。
The present invention was created in view of such problems, and an object of the present invention is to provide a transmission power control method for performing communication at the lowest possible transmission power.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明の原理構成図を示す。この図において、
2は送信局4の送信機であり、6はその送信電力レベル
を変えるための送信電力変更手段で、7は送信レベル制
御手段である。10.12は送受信アンテナである。1
3は受信局16の受信機18に接続され、受信帯域内の
スペクトラム成分間の相対値が所定値に対し呈する関係
に基づいて送信電力制御情報を出力するための送信電力
制御情報出力手段である。そして、送信電力変更手段6
は送信電力制御情報出力手段13から送受信局間に形成
された系を介して伝送されて来た送信電力制御情報に応
答する送信レベル制御手段7により送信電力の調節を施
されるようにして本発明は構成されている。
FIG. 1 shows a basic configuration diagram of the present invention. In this diagram,
2 is a transmitter of the transmitting station 4, 6 is a transmission power changing means for changing the transmission power level, and 7 is a transmission level control means. 10.12 is a transmitting/receiving antenna. 1
3 is a transmission power control information output means that is connected to the receiver 18 of the receiving station 16 and outputs transmission power control information based on the relationship that the relative values between spectrum components within the reception band have with respect to a predetermined value. . And transmission power changing means 6
The transmission power is adjusted by the transmission level control means 7 which responds to the transmission power control information transmitted from the transmission power control information output means 13 through the system formed between the transmitting and receiving stations. The invention consists of:

〔作 用〕[For production]

送信帯域内の回線損失分布が予め決められた分布にある
通信時には、送信電力変更手段6は予め決められた比較
的に低いレベルの送信電力での送信を行なうように、送
信電力制御情報出力手段13からフィードバックされる
制御情報を受ける送信レベル制御手段7によりそのレベ
ルへの設定が行なわれて送信局4の送信アンテナ10か
らの受信局16の受信アンテナ12に向けて電波が輻射
され、所要の通信が行なわれる。
During communication when the line loss distribution within the transmission band is in a predetermined distribution, the transmission power changing means 6 transmits the transmission power control information output means so that transmission is performed at a predetermined relatively low level of transmission power. Setting to that level is performed by the transmission level control means 7 which receives control information fed back from the transmitting station 13, and radio waves are radiated from the transmitting antenna 10 of the transmitting station 4 toward the receiving antenna 12 of the receiving station 16, thereby achieving the required level. Communication takes place.

その通信回線の回線損失分布に異常が生ずると、受信局
16で受信する受信信号帯域内のスペクトラム成分間の
相対値の増大が生じ、その成分が所定植を超えると、送
信電力を高めるための制御情報が送信電力制御情報出力
手段13から発生され、受信アンテナ12から送信アン
テナlOを介して送信レベル制御手段7へ入力される。
When an abnormality occurs in the line loss distribution of the communication line, the relative value of the spectrum components within the received signal band received by the receiving station 16 increases, and when that component exceeds a predetermined value, Control information is generated from the transmission power control information output means 13 and inputted from the reception antenna 12 to the transmission level control means 7 via the transmission antenna IO.

送信レベル制御手段7はその制御情報に応答して送信電
力レベルを上げるように送信電力変更手段6の設定レベ
ルの変更を生せしめる。そして、回線損失分布の回復に
伴って、送信レベル制御手段7により送信電力変更手段
6の設定レベルは低い送信電力レベルへ変えられる。
In response to the control information, the transmission level control means 7 causes the transmission power changing means 6 to change the setting level so as to increase the transmission power level. Then, as the line loss distribution recovers, the transmission level control means 7 changes the setting level of the transmission power changing means 6 to a lower transmission power level.

〔実施例] 第2図は本発明の一実施例を示す。この図において、4
1,16.は送受信局、2.18は夫々、各送受信局の
送信機、受信機である。8は送信レベル制御回路(送信
レベル制御手段7の例)で、14は受信帯域内のスペク
トラム成分間の大小関係を検出する傾斜検出回路(送信
電力制御情報・出力手段13の例)である。これら回路
8.14は図面の明瞭化のため一方の送受信局にしか示
してないが、各周毎に設けられる。
[Example] FIG. 2 shows an example of the present invention. In this figure, 4
1,16. is a transmitting/receiving station, and 2.18 is a transmitter and a receiver of each transmitting/receiving station, respectively. 8 is a transmission level control circuit (an example of the transmission level control means 7), and 14 is a slope detection circuit (an example of the transmission power control information/output means 13) for detecting the magnitude relationship between spectrum components within the reception band. Although these circuits 8 and 14 are shown in only one transmitter/receiver station for clarity of drawing, they are provided for each cycle.

送信機2及び送信レベル制御回路8の構成は第3図に示
されている。送信機2はIF増幅器2.。
The configuration of the transmitter 2 and the transmission level control circuit 8 is shown in FIG. The transmitter 2 includes an IF amplifier 2. .

ミキサ2□、送信局部発振器21、可変減衰器24及び
RF増幅器2.から成る(図中のf+r、rTL、  
rtの間には、l ft  ftLl = f rtな
る関係がある)。その可変減衰器24が第1図の送信電
力変更手段6の構成例を示し、これはアナログ電圧値に
応じて決まる減衰量をRF信号に与えてRF増幅器2s
へ入力させる、つまり送信電力レベルを変えるためのも
のである。そのアナログ電圧は送信レベル制御回路8か
ら出力されるが、該回路8は受信機18のAGC増幅器
18.の出力に接続された命令信号再生回路20から出
力される信号、例えば送信電力制御命令のあるときの高
レベル信号“1”に応じた減衰IN少のための、例えば
減衰量なしにするためのアナログ信号、ないときには低
レベルの信号“0”に応じた減衰量増加のためのアナロ
グ信号が出力される。
Mixer 2□, transmitting local oscillator 21, variable attenuator 24, and RF amplifier 2. (f+r, rTL in the figure,
There is a relationship between l ft ftLl = f rt). The variable attenuator 24 shows an example of the configuration of the transmission power changing means 6 shown in FIG.
This is to change the transmission power level. The analog voltage is output from a transmit level control circuit 8 which is connected to the AGC amplifier 18 . A signal output from the command signal reproducing circuit 20 connected to the output of , for example, to reduce attenuation IN in response to a high level signal "1" when there is a transmission power control command, for example, to make the amount of attenuation zero. If there is no analog signal, an analog signal for increasing the amount of attenuation corresponding to the low level signal "0" is output.

受信機18の構成は第4図に示されている。この図にお
いて、受信機1日はRF増幅器18.、ミキサ18□、
受信局部発振器IL及びIF帯域通過フィルタ(IFB
PF)184 、AGC増幅器18.から成る。AGC
増幅器18.は出力l及び出力2を有し、出力1は復調
器(図示せず)へ接続され、出力2は傾斜検出回路14
及び命令信号再生回路20へ接続されている。この傾斜
検出回路14は受信帯域内のスペクトラム成分間の大小
関係を検出して送信電力制御命令を出力するもので、そ
の出力信号は自局の送信機2を介して対向局へ送信され
るように構成されている。
The configuration of receiver 18 is shown in FIG. In this figure, receiver 1 has an RF amplifier 18. , mixer 18□,
Receive local oscillator IL and IF bandpass filter (IFB
PF) 184, AGC amplifier 18. Consists of. AGC
Amplifier 18. has an output l and an output 2, where output 1 is connected to a demodulator (not shown) and output 2 is connected to a slope detection circuit 14.
and is connected to the command signal reproducing circuit 20. This slope detection circuit 14 detects the magnitude relationship between spectrum components within the reception band and outputs a transmission power control command, and the output signal is transmitted to the opposite station via the transmitter 2 of the local station. It is composed of

傾斜検出回路14の詳細は、第5図に示されるように、
IF増幅器14..1 ’L、144と、減衰器14s
、14aと、受信帯域内の中心に対し高域側及び低域側
の帯域で通過帯域を有する2個の帯域通過フィルタ14
t、14*と、検波器14.、。
The details of the tilt detection circuit 14 are as shown in FIG.
IF amplifier 14. .. 1'L, 144 and attenuator 14s
, 14a, and two band-pass filters 14 having passbands on the high-frequency side and low-frequency side with respect to the center of the reception band.
t, 14*, and the detector 14. ,.

14.2と、夫々一方の入力に検波器14+o、141
□の出力が与えられ、他方の入力に異なる基準電圧rl
+r3が与えられて、2進出力レベルを出力する比較回
路1413.1415と、各比較回路1413.14+
sの2進出力の各々を各別に非反転入力(+)及び反転
入力(−)に受ける演算増幅器1416、該演算増幅器
143.の非反転入力及び反転出力を各別のダイオード
141?、141a、並びに該両ダイオード14+t、
14+aのカソードを動作電源■に接続する抵抗14.
9から成る傾斜信号発生回路14□。と、該傾斜信号発
生回路14□。の出力、即ちダイオード14+t、14
1eのカソード出力を一方の入力に受け、他方の入力に
基準電圧r4を受けて2進出力を発生する比較回路14
□1と、比較回路14□lの2進出力を受けるノット回
路14□2とから成る。
14.2 and detectors 14+o and 141 at one input, respectively.
□ output is given, and the other input is given a different reference voltage rl
Comparison circuits 1413.1415 which are given +r3 and output a binary output level, and each comparison circuit 1413.14+
an operational amplifier 1416 which receives each of the binary outputs of s separately at its non-inverting input (+) and inverting input (-); and the operational amplifier 143. The non-inverting input and inverting output of each are connected to separate diodes 141? , 141a, and both diodes 14+t,
A resistor 14 connecting the cathode of 14+a to the operating power supply ■.
9, a slope signal generating circuit 14□. and the slope signal generating circuit 14□. output, i.e. diode 14+t, 14
A comparator circuit 14 receives the cathode output of 1e at one input, receives the reference voltage r4 at the other input, and generates a binary output.
□1, and a knot circuit 14□2 which receives the binary output of the comparison circuit 14□l.

上述構成の下における送信電力制御態様を以下に説明す
る。
The transmission power control mode under the above configuration will be explained below.

今、送受信局4..16.の送信レベル制御回路8は、
送受信局4..16.間の回線損失分布が予め決められ
た分布にある状態において、受信レベルを予め決められ
た値以上にするに充分な比較的に低い送信電力レベルで
アンテナ10又は12から電波を対向局に向けて輻射さ
せるように設定されているものとする。これは次のよう
にして生ぜしめられる。
Now, transmitting/receiving station 4. .. 16. The transmission level control circuit 8 of
Transmitting/receiving station4. .. 16. Directing the radio waves from the antenna 10 or 12 to the opposing station at a relatively low transmission power level sufficient to raise the reception level to a predetermined value or higher in a state where the line loss distribution between the two stations is in a predetermined distribution. It is assumed that it is set to radiate. This is produced as follows.

このような設定にあるとき、送信機2への周波数flf
のIF入力信号はIF増幅器2.で増幅されてミキサ2
!へ入力され、その信号と共に送信局部発振器2.から
の周波数f、の局部発振信号を受けるミキサ2□におい
て周波数変換されてRF倍信号Ifアーf vLl =
 f +r)に変えられる。
When in such a setting, the frequency flf to transmitter 2
The IF input signal of IF amplifier 2. amplified by mixer 2
! and transmits the signal together with the transmitting local oscillator 2. A mixer 2□ receives a local oscillation signal of frequency f from
f + r).

このRF倍信号RF増幅器2Sで増幅されて、アンテナ
10へ供給される送信電力レベルが上述したレベルとな
るように、送信レベル制御回路8からのアナログ信号に
よりその振幅が減衰されてRF増幅器2.へ入力される
。かくして、送信電力レベルを上述レベルとした電波が
所要の通信を行なうべく対向局に向けて輻射される。
This RF multiplied signal is amplified by the RF amplifier 2S, and its amplitude is attenuated by the analog signal from the transmission level control circuit 8 so that the transmission power level supplied to the antenna 10 becomes the above-mentioned level. is input to. Thus, radio waves with the transmission power level set to the above-mentioned level are radiated toward the opposing station to perform the required communication.

対向局16.のアンテナ12で受信され、RF増幅器1
81で増幅されたRF倍信号ミキサ182へ入力され、
そのRF倍信号該信号と共に受信局部発振器18.から
の周波数fllL”f?Lの局部発振信号を受けるミキ
サ18!において周波数変換されて周波数r、fのIF
倍信号され、IF帯域通過フィルタ184を介してAG
C増幅器18sへ入力される。その出力1に増幅されて
出力されたIF倍信号図示しない復調器へ入力されて送
信信号の再生に用いられる。
Opposing station 16. is received by the antenna 12 of the RF amplifier 1.
81 and is input to the RF multiplier signal mixer 182,
Receiving local oscillator 18 along with its RF multiplied signal. The mixer 18! which receives a local oscillation signal of frequency fllL"f?L from
AG signal is doubled and passed through the IF bandpass filter 184
It is input to the C amplifier 18s. The IF multiplied signal which is amplified and outputted as output 1 is inputted to a demodulator (not shown) and used for reproducing the transmission signal.

AGC増幅器18sの出力2に出力されたIF倍信号I
F増幅器141.14□、144で増幅される。それら
増幅されたIF倍信号対応する減衰器14s、14i及
び帯域通過フィルタ147.149を経て対応する検波
器1416.14+zにて検波されてその帯域対応にお
けるスペクトラム成分信号EL、ENが夫々出力される
IF multiplied signal I output to output 2 of AGC amplifier 18s
It is amplified by F amplifiers 141.14□ and 144. These amplified IF multiplied signals pass through corresponding attenuators 14s and 14i and bandpass filters 147.149, are detected by corresponding detectors 1416.14+z, and spectrum component signals EL and EN corresponding to the bands are output, respectively. .

検波器14I−,14,zの各信号は対応する比較器1
41.141sにおいて予め設定されている基準電圧r
l+r3と比較される。受信帯域内における回線損失分
布が上述の予め決められた分布にある間は、検波器14
+o、14+zの各信号は上述対応基準電圧を基準にし
て上述送信電力レベルを維持するようにして発生されて
おり、それに応じて比較回路1413.14tsからは
信号EL、EHが出力される。従って、これら両比較回
路14゜、1414の出力を受ける演算増幅器14+t
hの出力としてのダイオード14+t、14+sのカソ
ードにIEL  EHlの出力が現れる。それに応じた
2進レベルの出力、例えばIEL  EHI <raの
とき高レベル“1”の出力が比較回路14g+から出力
されてノット回路14!!へ供給されてそこから送信電
力制御命令°“0°”が出力される。この命令は自局1
6、の送信機2、アンテナ12を介して対向局4、へ伝
送され、その対向局41のアンテナlO1受信機18を
介して送信レベル制御回路8へ与えられる。かくして、
回路8からの信号により送信電力レベルは回線品質を維
持するレベルに維持されている。
Each signal of the detectors 14I-, 14, z is sent to the corresponding comparator 1.
41. Reference voltage r preset in 141s
It is compared with l+r3. While the line loss distribution within the reception band is within the above-mentioned predetermined distribution, the detector 14
The +o and 14+z signals are generated based on the corresponding reference voltage to maintain the above-mentioned transmission power level, and the comparison circuit 1413.14ts outputs signals EL and EH accordingly. Therefore, the operational amplifier 14+t which receives the outputs of these comparison circuits 14° and 1414
The output of IEL EHl appears at the cathode of the diode 14+t, 14+s as the output of h. A corresponding binary level output, for example, when IEL EHI <ra, a high level "1" output is output from the comparator circuit 14g+, and the NOT circuit 14! ! The transmission power control command °“0°” is output from there. This command is for own station 1
6, is transmitted to the opposing station 4 via the transmitter 2 and antenna 12, and is applied to the transmission level control circuit 8 via the antenna lO1 receiver 18 of the opposing station 41. Thus,
The signal from circuit 8 maintains the transmission power level at a level that maintains line quality.

このような送受信状態において、フェージング。In such transmission and reception conditions, fading occurs.

天候等の変化に伴って回線損失がその受信帯域内におい
て異なって増大すると、上述のような設定送信電力レベ
ルで輻射されて対向局において受信する信号レベルはそ
の増大分に対応した分布で低下する。
If the line loss increases differently within the receiving band due to changes in weather, etc., the signal level received at the opposite station radiated at the set transmission power level as described above will decrease with a distribution corresponding to the increase. .

従って、上述の如(して検波器141゜、14.tから
出力されるスペクトラム成分信号レベルもそれに伴って
低下する。その低下は受信帯域内での分布の異なり方に
応じた信号EL、EMが比較回路14.3又は14+s
から出力せしめられる。その結果として、傾斜信号発生
回路14!。から低レベル゛0”の信号が出力され、ノ
ット回路14゜から“l゛の送信電力制御命令が出力さ
れる。この命令も、上述したところと同様にして、対向
局へ伝送される。この場合における受信機18から送信
レベル制御回路8へ与えられる信号レベルは高レベル“
1”とされる。送信レベル制御回路8からは可変減衰器
24に対し、そこでの減衰量を低下せしめる、例えば減
衰を与えなくするアナログ信号が発生される。これによ
り、アンテナ10から輻射される電波の送信電力レベル
は回線品質を維持し得るレベルまで高められ、対向局は
回線品質を所望の値に維持し得る受信レベルで電波を受
信することができる。
Therefore, as described above, the spectral component signal level output from the detectors 141 and 14.t also decreases accordingly. is the comparison circuit 14.3 or 14+s
It is output from As a result, the slope signal generation circuit 14! . A low level "0" signal is output from the NOT circuit 14, and a transmission power control command of "I" is output from the NOT circuit 14. This command is also transmitted to the opposite station in the same manner as described above. In this case, the signal level given from the receiver 18 to the transmission level control circuit 8 is a high level.
1". The transmission level control circuit 8 generates an analog signal to the variable attenuator 24 to reduce its attenuation, for example, to eliminate attenuation. As a result, the signal is radiated from the antenna 10. The transmission power level of the radio waves is increased to a level that can maintain the line quality, and the opposite station can receive the radio waves at a reception level that can maintain the line quality at a desired value.

回線損失分布の復旧時における送信電力レベルの低減は
、″1゛の送信電力制御命令の喪失と共に上述したフィ
ードバックIIJ御態様で生ぜしめられる。
The reduction in the transmit power level upon recovery of the line loss distribution occurs in the Feedback IIJ manner described above with the loss of the "1" transmit power control command.

なお、上記実施例においては、送信電力制御のために2
進情報の“0°゛又は“1″を用いる例を示したが、他
の2進情報形式による送信電力制御例えば多レベル調節
形式に変更するようにしてもよい。送信電力の変更は可
変電力増幅器の調節で生ぜしめてもよい。又、上述の送
信電力レベルの低減は成る時間遅れで生ぜしめられても
よい。
Note that in the above embodiment, two
Although an example has been shown in which binary information "0°" or "1" is used, transmission power control using other binary information formats may be used, for example, a multi-level adjustment format.Changes in transmission power can be made using variable power This may be caused by adjusting the amplifier.Alternatively, the reduction in the transmit power level described above may be caused by a time delay.

(発明の効果〕 以上述べたように本発明によれば、従来からの知見から
すると大きな送信電力の下で送信しなければならない時
間は年間でも比較的に少ない時間に亘るに過ぎないから
、そのような時間の間だけ送信電力を上げて回線品質を
維持するという本発明方式によれば、送信電力の大幅な
削減が得られるほか、他系統への通信妨害度合の低減及
びその地域への電波配分の増加も期待できる。
(Effects of the Invention) As described above, according to the present invention, according to conventional knowledge, the time during which transmission must be performed under high transmission power is only a relatively small amount of time per year. According to the method of the present invention, which maintains the line quality by increasing the transmission power only for such a period of time, it is possible to significantly reduce the transmission power, reduce the degree of communication interference to other systems, and improve the radio waves to the area. We can also expect an increase in allocation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理構成図、 第2図は本発明の一実施例を示す図、 第3図は送信機及び送信レベル制御回路の構成図、第4
図は受信機の構成図1 、  第5図は傾斜検出回路図、 第6図は従来のディジタル多重無線通信システムの構成
図である。 第1図乃至第5図において、 2は送信機、 4は送信局(送受信局4.)、 6は送信電力変更手段(可変減衰器2.)、7は送信レ
ベル制御手段(送信レベル制御回路8)、 10.12は送受信アンテナ、 13は送信電力制御情報出力手段(傾斜検出回路14)
、 16は受信局(送受信局16.)、 18は受信機である。
Figure 1 is a diagram showing the principle of the present invention; Figure 2 is a diagram showing an embodiment of the present invention; Figure 3 is a diagram showing the configuration of a transmitter and transmission level control circuit;
1 is a block diagram of a receiver, FIG. 5 is a tilt detection circuit diagram, and FIG. 6 is a block diagram of a conventional digital multiplex radio communication system. 1 to 5, 2 is a transmitter, 4 is a transmitting station (transmission/reception station 4.), 6 is a transmission power changing means (variable attenuator 2.), and 7 is a transmission level control means (transmission level control circuit). 8), 10.12 is a transmitting/receiving antenna, 13 is a transmission power control information output means (tilt detection circuit 14)
, 16 is a receiving station (transmission/reception station 16.), and 18 is a receiver.

Claims (1)

【特許請求の範囲】 送信信号を送信局(4)の送信機(2)で増幅して受信
局(16)に向けて輻射して所要の通信を行なう無線通
信方式において、 前記送信局(4)に、前記送信機(2)内に設けられ送
信電力を変えるための送信電力変更手段(6)及び送信
レベル制御手段(7)を設ける一方、 前記受信局(16)に、その受信機(18)に接続され
受信帯域内のスペクトラム成分間の相対値が所定値に対
し呈する関係に基づいて送信電力制御情報を出力する送
信電力制御情報出力手段(13)を設け、 該送信電力制御情報出力手段(13)から前記無線通信
方式の系を介してそこから送られて来た送信電力制御情
報に応答する前記送信レベル制御手段(7)により前記
送信電力変更手段(6)を調節することを特徴とする送
信電力制御方式。
[Claims] In a wireless communication system in which a transmission signal is amplified by a transmitter (2) of a transmitting station (4) and radiated toward a receiving station (16) to perform a desired communication, the transmitting station (4) ) is provided in the transmitter (2) with a transmission power changing means (6) and a transmission level control means (7) for changing the transmission power; Transmission power control information output means (13) is connected to 18) and outputs transmission power control information based on the relationship that the relative value between spectrum components in the reception band exhibits with respect to a predetermined value, and the transmission power control information output means (13) is provided. adjusting the transmission power changing means (6) by the transmission level control means (7) responsive to transmission power control information sent from the means (13) via the wireless communication system; Characteristic transmission power control method.
JP62137148A 1987-05-30 1987-05-30 Transmission power control method Expired - Lifetime JPH0650831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62137148A JPH0650831B2 (en) 1987-05-30 1987-05-30 Transmission power control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62137148A JPH0650831B2 (en) 1987-05-30 1987-05-30 Transmission power control method

Publications (2)

Publication Number Publication Date
JPS63301630A true JPS63301630A (en) 1988-12-08
JPH0650831B2 JPH0650831B2 (en) 1994-06-29

Family

ID=15191938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62137148A Expired - Lifetime JPH0650831B2 (en) 1987-05-30 1987-05-30 Transmission power control method

Country Status (1)

Country Link
JP (1) JPH0650831B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4886425A (en) * 1972-02-17 1973-11-15
JPS53107214A (en) * 1977-03-01 1978-09-19 Fujitsu Ltd Radio transmission-reception system
JPS5679513A (en) * 1979-12-03 1981-06-30 Nec Corp Amplitude equalizer
JPS59132262A (en) * 1982-11-29 1984-07-30 シ−−コ−ル・ラブス・インコ−ポレ−テツド Remote level control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4886425A (en) * 1972-02-17 1973-11-15
JPS53107214A (en) * 1977-03-01 1978-09-19 Fujitsu Ltd Radio transmission-reception system
JPS5679513A (en) * 1979-12-03 1981-06-30 Nec Corp Amplitude equalizer
JPS59132262A (en) * 1982-11-29 1984-07-30 シ−−コ−ル・ラブス・インコ−ポレ−テツド Remote level control system

Also Published As

Publication number Publication date
JPH0650831B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
US4570265A (en) Random frequency offsetting apparatus for multi-transmitter simulcast radio communications systems
JP3192323B2 (en) Power control circuit
US4958359A (en) Communication apparatus
US6718165B1 (en) Apparatus and method for reducing nonlinear distortion in an automatic gain control system
US5199045A (en) Communication apparatus
JPS59133739A (en) 2-way radio communication system
US5974093A (en) Device and method for automatically controlling transmission power
JPH04372234A (en) Transmission power control system
JPS6377226A (en) Communication system
JPS63301630A (en) Transmitting power control system
JPH05268178A (en) Transmission power control system
JPS63301628A (en) Transmitting power control system
JP2581200B2 (en) Transmission output control method
JPS63301629A (en) Transmitting power control system
JPH03198438A (en) Transmission power control system
JP3012379B2 (en) Transmission power control method
EP0173526B1 (en) Digital signal repeater including means for controlling a transmitter
JPH0213020A (en) Satellite communication receiver
JP3162941B2 (en) Mobile phone
KR100377794B1 (en) Apparatus for compensating mixer signal loss of BTS in a communication system
JPH0382207A (en) Power amplifying circuit
JPS58138113A (en) Automatic power controlling circuit for transmitter
JP2590736B2 (en) Transmission output control method
JP2855652B2 (en) Transmission device
JPH03280727A (en) Transmission power control system

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term