JPS63301118A - Capacity control for variable capacity type compressor - Google Patents

Capacity control for variable capacity type compressor

Info

Publication number
JPS63301118A
JPS63301118A JP62138498A JP13849887A JPS63301118A JP S63301118 A JPS63301118 A JP S63301118A JP 62138498 A JP62138498 A JP 62138498A JP 13849887 A JP13849887 A JP 13849887A JP S63301118 A JPS63301118 A JP S63301118A
Authority
JP
Japan
Prior art keywords
capacity
compressor
value
time
engine load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62138498A
Other languages
Japanese (ja)
Other versions
JP2503511B2 (en
Inventor
Akira Nakamoto
中本 昭
Toshiro Fujii
俊郎 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Automatic Loom Works Ltd filed Critical Toyoda Automatic Loom Works Ltd
Priority to JP62138498A priority Critical patent/JP2503511B2/en
Publication of JPS63301118A publication Critical patent/JPS63301118A/en
Application granted granted Critical
Publication of JP2503511B2 publication Critical patent/JP2503511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3208Vehicle drive related control of the compressor drive means, e.g. for fuel saving purposes

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To lighten the engine load without deteriorating the cooling feeling by reducing the capacity of a compressor to the min. for a certain time when the engine load increases and adjusting the reduction quantity of the capacity according to the difference between the detection value of the control quantity and an aimed value. CONSTITUTION:A cooling circuit 1 is constituted of a condenser 3, receiver 4, expansion value 5, and an evaporator 6 connected in succession through pipings 7, in a circuit ranging from the discharge side of a variable capacity type compressor driven by an on-vehicle engine to the suction side. The capacity varying mechanism 8 of the compressor 2 is controlled by a controller 9 on the basis of each signal of a sensor 10 for detecting the blasting-out port temterature of the evaporator 6, sensor 11 for detecting the stepping-on quantity of an accelerating pedal for engine, and a switch 12 for setting the aimed temperature of the car compartment. In this case, if the engine load is increased, the capacity of the compressor is reduced to the min. for a certain time. Then, the reduction quantity of the capacity is adjusted according to the difference between the detection value of the control quantity and the aimed value.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は車両の冷房装置における可変容量コンプレッサ
の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for controlling a variable capacity compressor in a vehicle cooling system.

従来技術 第1図に示す様に車両に搭載される一般の冷房回路1は
、可変容量型コンプレッサ2 (以下コンプレッサとい
う)の吐出側から吸入側に至る回路間には凝縮器機3、
レシーバ4、膨張弁5及び蒸発器6が配管7によって順
次接続されている。
BACKGROUND ART As shown in FIG. 1, a general cooling circuit 1 installed in a vehicle includes a condensing device 3 between the circuits from the discharge side to the suction side of a variable capacity compressor 2 (hereinafter referred to as the compressor).
A receiver 4, an expansion valve 5, and an evaporator 6 are sequentially connected by a pipe 7.

そして前記コンプレッサ2はワッブル式やロータリ一式
、斜板式などであり、この可変制御を行うには制御量で
ある蒸発器6の吹き出し口温度を検出するための温度セ
ンサー10が蒸発器6の吹き出し口に、その他エンジン
負荷を求めるためアクセルペダルの踏込み量を検出する
ボテフシ3メータ11がアクセルに、室内の運転者など
が希望の温度を設定するための目標値設定スイッチ12
が冷房装置の操作パネル等にそれぞれ設けられており、
前記センサとスイッチからの信号は制御量N9へ入力さ
れる。
The compressor 2 is of a wobble type, a rotary set, a swash plate type, etc., and in order to perform this variable control, a temperature sensor 10 is installed at the outlet of the evaporator 6 to detect the outlet temperature of the evaporator 6, which is a controlled variable. In addition, there is a 3-meter meter 11 for detecting the amount of depression of the accelerator pedal to determine the engine load, and a target value setting switch 12 for setting the desired temperature by the driver in the room.
are provided on the operation panel of the cooling device, etc.
Signals from the sensor and switch are input to the control variable N9.

制御装置9は前記信号を基に容量可変機構8を駆動させ
コンプレッサ2の容量を制御させる。前記容量可変機構
8は前記コンプレッサ2の形式に応じて電磁弁又はソレ
ノイドなどによって構成され、連続的或いは段階的に変
位させるようになっている。
The control device 9 drives the variable capacity mechanism 8 based on the signal to control the capacity of the compressor 2. The variable capacity mechanism 8 is constituted by a solenoid valve or a solenoid depending on the type of the compressor 2, and is configured to displace continuously or stepwise.

ここで制御装置9における従来の制御方法を第2図のフ
ローチャートに示すと、先ず電源投入後起動して(ステ
ップ13)目標値設定スイッチ12より目標値T、を入
力しくステップ14)、次に制御量として蒸発r510
の吹き出し口温度の検出値Tを温度センサー10より入
力して(ステップ15)、これらの値からコンプレッサ
2の最適容量Uを求める(ステップ16)。
Here, the conventional control method for the control device 9 is shown in the flowchart of FIG. 2. First, the power is turned on and started (step 13), and the target value T is inputted from the target value setting switch 12 (step 14). Evaporation r510 as a controlled variable
The detected value T of the outlet temperature is input from the temperature sensor 10 (step 15), and the optimum capacity U of the compressor 2 is determined from these values (step 16).

つぎに、ポテンシ曹メータ11よりエンジン負荷りを入
力して(ステップ17)、この値りがあらかしめ記憶さ
れている基準値り、と比較して(ステップ18)、もし
基準値し、lの方が大であれば前記最適容量Uを基に容
量可変機構8を動かす操作量Uを計算する(ステ・ノブ
19)。
Next, input the engine load from the potentiometer 11 (step 17), and compare this value with the memorized reference value (step 18). If it is larger, the operation amount U for moving the variable capacity mechanism 8 is calculated based on the optimum capacity U (steer knob 19).

そしてもしステップ18で基準値り、lの方が小であれ
ばエンジン負荷を軽減させるためコンプレッサを最小容
量u1.1にしてこれを最適容luとしくステップ21
)、前記ステップ19へ出力する。
If the reference value is reached in step 18 and l is smaller, the compressor is set to the minimum capacity u1.1 to reduce the engine load, and this is set as the optimum capacity lu, and step 21
), output to step 19 above.

最後に前記ステップ19の操作量Uに基づいて容量可変
機構を駆動(ステップ20)して最初に戻ってつぎの目
標値TRを入力し、以後これを繰り返す。
Finally, the variable capacity mechanism is driven based on the manipulated variable U of step 19 (step 20), and the process returns to the beginning to input the next target value TR, and this process is repeated thereafter.

発明が解決しようとする問題点 しかしながら前記従来の技術では市(n地での走行の様
に急加速を頻繁に行う時や、長時間の登板時などにはエ
ンジン負荷が大となる時間が多く、従ってコンプレッサ
は最小容量運転が続き、特にクールダウン時や室内温度
が目標値より高い時には十分な冷房能力が得られず車室
内の温度が上昇して冷房フィーリングを著しく損なうと
いう問題点があった。
Problems to be Solved by the Invention However, with the above-mentioned conventional technology, there are many times when the engine load is high, such as when sudden acceleration is frequently performed, such as when driving on a city road, or when pitching for a long time. Therefore, the compressor continues to operate at the minimum capacity, and there is a problem that sufficient cooling capacity cannot be obtained, especially during cool-down or when the indoor temperature is higher than the target value, causing the temperature inside the vehicle to rise and significantly impairing the cooling feeling. Ta.

本発明は前記問題点に鑑み、エンジン負荷が大きくても
冷房フィーリングを損なわず、しかもエンジン負荷も軽
減することを、その解決しようとする問題点とするもの
である。
In view of the above-mentioned problems, the present invention aims to solve the problems by reducing the engine load without impairing the cooling feeling even when the engine load is large.

問題点を解決するための手段 本発明は前記問題点を解決するために、制御量の検出値
に応じて常に適正な室温に保つべく、コンプレッサ容量
を制御すると共に、エンジン負荷の検出値が一定値を越
えた時は、コンプレッサ容量を最小に可変し、前記容量
の最小状態の時間が一定時間を越えた時は、制御量の検
出値と目標値との差を求め、この差に応じてコンプレッ
サ容量の低下量を調整するという、技術的方法を採用す
る。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention controls the compressor capacity in order to always keep the room temperature at an appropriate level according to the detected value of the control amount, and also controls the detected value of the engine load to be constant. When the value is exceeded, the compressor capacity is varied to the minimum value, and when the time of the minimum capacity state exceeds a certain period of time, the difference between the detected value of the control amount and the target value is determined, and according to this difference, the compressor capacity is varied. A technical method is adopted to adjust the amount of decrease in compressor capacity.

作用 エンジン負荷が増大したときには、冷房フィーリングを
損なわない範囲で、一定時間コンプレッサ容量を最小に
して、エンジンに加わる負担を軽減する。その後は、制
御量の検出値と目標値との差に応じて容量の低下量をa
整させる為、冷房フィーリングを損なうことなくエンジ
ン負荷も軽減させることが出来る。
When the operating engine load increases, the compressor capacity is minimized for a certain period of time within a range that does not impair the cooling feeling to reduce the load on the engine. After that, the amount of decrease in capacity is set to a according to the difference between the detected value and the target value of the controlled variable.
This allows the engine load to be reduced without impairing the cooling feeling.

実施例 次に本発明を車両用の冷房回路の可変コンプレッサに具
体化した実施例を図面に基づいて説明する。ただし本実
施例に使用される冷房回路は第1図に示す様に従来と同
様であるため、ここでは説明を省略する。
Embodiment Next, an embodiment in which the present invention is embodied in a variable compressor for a cooling circuit for a vehicle will be described with reference to the drawings. However, since the cooling circuit used in this embodiment is the same as the conventional one as shown in FIG. 1, its explanation will be omitted here.

次に第1図の冷房回路1の制御装置9におけるコンプレ
ッサの制御方法について、第3図〜第5図に示し説明す
る。第3図に示されたフローチャートにおいて、先ず電
源が投入されて起動しくステップ13)、制御するに必
要な初期値(例えばタイマ時間t、一定時間t4.7等
)を設定する。
Next, a method of controlling the compressor in the control device 9 of the cooling circuit 1 shown in FIG. 1 will be described with reference to FIGS. 3 to 5. In the flowchart shown in FIG. 3, first, the power is turned on and the system is started (step 13), and initial values necessary for control (for example, timer time t, fixed time t4.7, etc.) are set.

ここで、前記タイマ時間tを求めるに必要なタイマは制
御装置9内に組み込まれているものとするが、他に制御
装置9外部より入力するようにしても良い、 又、前記
一定時間t0.1はエンジン出力と車室内温度の上昇と
の兼ね合いで設定されており、例えば本実施例では30
秒〜1分間に設定される。
Here, it is assumed that the timer necessary for determining the timer time t is built into the control device 9, but it may be inputted from outside the control device 9. 1 is set in consideration of the engine output and the rise in the temperature inside the vehicle; for example, in this embodiment, the value is set to 30.
It is set from seconds to 1 minute.

次に、ステップ14〜20については従来の制御方法と
同様でありこの点についてはここでは説明を省略する。
Next, steps 14 to 20 are the same as in the conventional control method, and the explanation thereof will be omitted here.

さて、エンジン負荷りをアクセルの変位量を検出するボ
テンシeメータ11より入力して、これをあらかじめ入
力された基準値りえと比較しくステップ18)、もしエ
ンジン負荷りが基準値り。
Now, input the engine load from the potentiometer 11 that detects the amount of displacement of the accelerator, and compare it with the reference value input in advance (step 18). If the engine load is equal to the reference value.

以下であればステップ23へ進み、コンプレッサ容量U
は最適容量u1に置き換えられる。ただしこの間に通過
されるステップ22についての説明は後に述べる。
If it is below, proceed to step 23 and compressor capacity U
is replaced by the optimal capacity u1. However, a description of step 22 passed during this time will be given later.

次にステップ19では、コンプレッサ2の容量を最適容
量u1に可変させる為の容量可変機構8の操作量Uを計
算し、この値を基に前記容量可変機構8を駆動する(ス
テップ20)、そしてまた次の制御を行うべく、Bを通
って最初のステップ14へ戻り新たな動作を繰り返す。
Next, in step 19, the operation amount U of the variable capacity mechanism 8 for varying the capacity of the compressor 2 to the optimum capacity u1 is calculated, and the variable capacity mechanism 8 is driven based on this value (step 20). Further, in order to perform the next control, the process returns to the first step 14 through B and repeats a new operation.

一方、前記ステップ1日で、もしエンジン負荷L〉基準
値し、であれば、このエンジン負荷を軽減させるためコ
ンプレッサ容量の変更を行う。
On the other hand, in step 1, if engine load L>reference value, the compressor capacity is changed in order to reduce this engine load.

そこで先ず、タイマ時間tと、基準として予め入力され
ている一定時間t+minとを比較する。例えば初期の
状態においてはタイマ時間tは一定時間tい、fiより
小さく、従ってこの場合には、次にタイマを起動させ(
ステップ30)、タイマ時間tのカウントを開始すると
共にコンプレッサ容量Uを最小容量u、IInに変更し
くステップ31)、操作量Uの計算(ステップ19)を
行う。ここでもしエンジン負荷に変化が無く、タイマ時
間tも一定時間t11iRより小さければ、図のフロー
チャートは再びステップ30.31を通る同じ過程を経
て繰り返され、コンプレッサは最小容量ulltnで運
転され続ける。
Therefore, first, the timer time t is compared with a constant time t+min inputted in advance as a reference. For example, in the initial state, the timer time t is a fixed time t, which is smaller than fi, so in this case, the timer is started next (
In step 30), the timer time t is counted and the compressor capacity U is changed to the minimum capacity u, IIn. In step 31), the operation amount U is calculated (step 19). If there is no change in the engine load and the timer time t is also less than the fixed time t11iR, the flowchart of the figure repeats again through the same process through steps 30.31 and the compressor continues to operate at the minimum capacity ulltn.

そして時間の経過と共にタイマ時間tは次第に増加され
、ついにt、i、1以上となった場合、ステップ18か
ら次に、入力されている温度の目標値T、と、吹き出し
温度の検出値Tよりこの2つの差ΔTを求め(ステップ
25)、この値を基に容量の見直しを行う (ステップ
26)。
Then, as time passes, the timer time t is gradually increased, and when it finally reaches t,i,1 or more, from step 18, the input temperature target value T and the detected value T of the air outlet temperature are used. The difference ΔT between these two is determined (step 25), and the capacity is reviewed based on this value (step 26).

ここで前記ステップ26の様子を第4図のグラフに示す
。差ΔTが大きければ目標値との開きが大きく不快感が
増すため、その分コンプレッサの容量も増やさなければ
ならない。しかしあまり増やすと、逆にエンジン負荷に
影響を与えるため、適当な容量に止めるようにする。グ
ラフ中の直線の傾きは前記観点に基づき、最小容量U1
18.lを基点に適度な傾きを与えて設定され、容1 
u tが決定される。
Here, the state of step 26 is shown in the graph of FIG. If the difference ΔT is large, the difference from the target value is large and discomfort increases, so the capacity of the compressor must be increased accordingly. However, if you increase it too much, it will adversely affect the engine load, so make sure to keep it at an appropriate capacity. The slope of the straight line in the graph is based on the above viewpoint, and the minimum capacity U1
18. It is set with a moderate slope based on l, and the volume is 1
ut is determined.

次に前記タイマ時間tはカウントが停止され、初期状態
にリセット (=0)される(ステップ27)。
Next, counting of the timer time t is stopped and reset to the initial state (=0) (step 27).

ここで、前記容量u2はあくまでNk通な容量ではない
ため、もし前記容量U、が先に求めた最適容量U、より
も大きくなった場合、そのまま前記容量ugで運転を行
うと、逆に室内は過冷房となってしまい不快感が増すだ
けでなく、エンジンにも必要以上に負荷が加わり効率が
恋(なる。
Here, since the capacity u2 is not just a Nk capacity, if the capacity U becomes larger than the optimal capacity U obtained earlier, if you continue to operate with the capacity ug, it will cause an increase in the indoor Not only does this result in overcooling, which increases discomfort, but it also puts more load on the engine than necessary, reducing efficiency.

そこで次に前記容量U、とugを比較しくステップ2日
)、もし容ful の方が小さければこの値を次のステ
ップ23へ送り、容量Uをul に置き換えてステップ
19へ送る。又、もし容Ruzの方が小さければ、容量
Uをu2に置き換えて(ステップ29)、この値を次の
ステップ19へ送る。
Then, the capacity U and ug are compared (step 2), and if the capacity ful is smaller, this value is sent to the next step 23, the capacity U is replaced with ul, and the process is sent to step 19. If the capacity Ruz is smaller, the capacity U is replaced with u2 (step 29), and this value is sent to the next step 19.

前記制御方法による容量の変化を、第5図のグラフに示
す、これは横軸に時間、縦軸に容量を表したものである
Changes in capacity due to the control method described above are shown in the graph of FIG. 5, in which time is plotted on the horizontal axis and capacity is plotted on the vertical axis.

この図のように最初容量u1にて運転していたコンプレ
ッサは時間t、にて、エンジン負荷りが大となると共に
容量を減少させ、最小容量となり、一定時間内では最小
容1 uai++運転が続(。更に時間t、より一定時
間t、、7過ぎた後、冷房フィーリングの悪化を防ぐ為
、時間t、にて容量の見直しが行われ、容量Ll、 と
u、inとの間のu2に落着き、エンジンに与える負荷
を’ttX少させることができる。更にその後、時間1
eにてエンジン負荷りが基準値り、以下になると容量U
は元の最通容1ul に戻る。
As shown in this figure, the compressor, which was initially operating at the capacity u1, decreases its capacity at time t as the engine load increases, reaching the minimum capacity, and continues to operate at the minimum capacity 1 uai++ within a certain period of time. (Furthermore, after a certain period of time t, 7, the capacity is reviewed at time t to prevent the cooling feeling from deteriorating, and the capacity u2 between Ll and u,in is The load on the engine can be reduced by 'ttX.Furthermore, after time 1
The engine load reaches the standard value at e, and when it becomes below, the capacity U
returns to its original capacity of 1ul.

ところで、前記過程の中でステップ18にてエンジン負
荷L〉基準値L++−ステップ24にてタイマ時間tく
一定時間t、A、lの状態でコンプレ・ノサは最小容量
u、iいにて運転中にエンジン負荷が変動して基準値L
ll以下となる場合がある。この時は、ステップ18か
ら次に、それまでカウントしていたタイマ時間tを停止
させるが、リセ・ノドはせず、起動から停止までの時間
を保持されたまま(ステップ22)、次のステ・ノブ2
3を通って、コンプレッサは最適容量u1で運転される
By the way, in step 18 in the above process, the engine load L>reference value L++--in step 24, the compressor is operated at the minimum capacity u, i in the state of timer time t and constant time t, A, l. During the engine load changes, the reference value L
It may be less than ll. At this time, the timer time t that has been counting up to that point is stopped from step 18, but the time from start to stop is maintained without resetting (step 22), and the next step is started.・Knob 2
3, the compressor is operated at optimum capacity u1.

そしてエンジン負荷りに変化が無ければ、前記最適容1
ulで運転し続けるが、もし再びエンジン負荷L〉基準
値LMとなった場合には、ステップ18からステップ2
4へ流れ、タイマはステ・ノブ30にて前記タイマを再
び起動し、先のステ・ノブ22で停止した時間tからカ
ウントを開始し、次のステップ31を通って、コンプレ
ッサは最小容量u、411で運転される。
If there is no change in the engine load, the optimal capacity 1
The engine continues to operate at ul, but if the engine load L>reference value LM is reached again, step 18 to step 2
4, the timer starts the timer again at the step knob 30 and starts counting from the time t stopped at the previous step knob 22, and through the next step 31, the compressor starts the timer at the minimum capacity u, It is operated by 411.

そして、この様なエンジン負荷りの変化によって、コン
プレッサ容量がu、l、lとU、を繰り返す間に、前記
最小容量u、17状態の時間の総和がtsinを越えた
時にステップ24からステップ25へ進み前述と同様に
容量が見直される。
Then, due to such a change in the engine load, while the compressor capacity repeats u, l, l and U, the sum of the times of the minimum capacity u and 17 states exceeds tsin, from step 24 to step 25. Proceed to and the capacity is reviewed in the same way as above.

前述の容量の変化を第6図のグラフに示す。この図は、
例えば市街地などで短時間に急発進、停止を繰り返した
様な状態を示したものである。図に示す様に最初、最適
容量U、で運転していたコンプレッサは途中、エンジン
負荷りが基準値Lxを越えると共に容量を減少させ最小
容i1 ulIi、とする、そして時間t1後に再びエ
ンジン負荷りが基準値し、を下回ると共にコンプレッサ
は最適容量u1に戻る。
The aforementioned change in capacitance is shown in the graph of FIG. This diagram is
For example, this indicates a situation where the vehicle suddenly starts and stops repeatedly in a short period of time, such as in a city area. As shown in the figure, the compressor was initially operated at the optimum capacity U, but as the engine load exceeds the reference value Lx, the capacity is reduced to the minimum capacity i1 ulIi, and after time t1 the engine load increases again. is the reference value, and as soon as it falls below the reference value, the compressor returns to the optimum capacity u1.

また、更に時間LX、j3においても、前記と同様な制
御が行われ、前記最小容量での運転時間の和1.+1t
+1.がL sin以上になると、コンプレッサの容量
Uは、見直されて容量u2となる。
Furthermore, at time LX, j3, the same control as above is performed, and the sum of the operating times at the minimum capacity is 1. +1t
+1. When becomes greater than or equal to L sin, the capacity U of the compressor is revised to become the capacity u2.

この様にして、タイマ時間tが一定時間tI1..。In this way, the timer time t is set to a certain time tI1. .. .

より短い間は、コンプレッサ容量Uは、エンジン負荷り
によって最適容量U、又は最小容量u、i11のどちら
かで運転される。そしてタイマ時間tが一定時間jsi
a以上となり、エンジン負荷りが大の時は、新たに見直
された容量u2にて運転されることにより、前述の様な
短時間に急発進、停止を繰り返した場合でも、冷房フィ
ーリングを損なうことはない。
For shorter periods, the compressor capacity U is operated either at the optimum capacity U or at the minimum capacity u, i11 depending on the engine load. And the timer time t is a certain time jsi
When the engine load is greater than a and the engine load is large, the engine is operated at the newly revised capacity u2, which impairs the cooling feeling even when sudden starts and stops are repeated in a short period of time as described above. Never.

尚へ本発明は前記実施例に限られるものではなく、以下
のような別例にすることも出来る。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but may be modified as follows.

(1)前記実施例中の、タイマ時間tの最小容量での運
転時間を記憶して加算する機能は、特に必要でなくても
良い。又、一定時間t、1..lは自由に設定出来る様
にしても良い。
(1) The function of storing and adding the operating time at the minimum capacity of the timer time t in the above embodiment may not be particularly necessary. Also, for a certain period of time t, 1. .. l may be set freely.

(2)前記実施例や別例では、最適容量を決定する制御
量として蒸発器の吹き出し口温度を用いたが、この他に
も車室内温度や蒸発器内の冷媒圧力等でも良い、同様に
エンジン負荷についても、ポテンショメータによるアク
セルの踏込量以外に、エンジン回転数の変化率や、マニ
ホールド圧等でも良い。
(2) In the above embodiments and other examples, the evaporator outlet temperature was used as the control variable to determine the optimal capacity, but it may also be the vehicle interior temperature, the refrigerant pressure in the evaporator, etc. Regarding the engine load, in addition to the amount of accelerator depression determined by a potentiometer, the rate of change in engine speed, manifold pressure, etc. may be used.

また更に、第4図に示した直線状のグラフは曲線状や段
階状に設定して制御するなど、本発明の要旨を逸脱しな
い範囲で応用しても良い。
Furthermore, the linear graph shown in FIG. 4 may be controlled in a curved or stepwise manner without departing from the gist of the present invention.

発明の効果 以上、詳述したように、本発明による冷房装置において
は、エンジン負荷が基準値を越えてもコンプレッサ容量
を一定時間内だけ最小にするため、例えば市街地走行時
等での短時間の加速においては、冷房フィーリングをほ
とんど損なうことはなくエンジン負荷を十分に減少させ
、加速性を向上させる事ができ、またその後は車室内の
温度が上昇し始める頃にコンプレッサ容量を最適容量と
最小容量の間に停める為、長時間高エンジン負荷となる
場合、例えば登板時などにおいても、冷房フィーリング
の向上とエンジン負荷の低下を両立させる事が出来る等
の優れた効果を発揮する。
Effects of the Invention As detailed above, in the cooling system according to the present invention, even if the engine load exceeds the reference value, the compressor capacity is minimized for a certain period of time, so that the compressor capacity is minimized for a certain period of time even when the engine load exceeds the reference value. During acceleration, the engine load can be sufficiently reduced without compromising the cooling feeling, improving acceleration performance, and after that, the compressor capacity can be adjusted between the optimum capacity and the minimum capacity as the temperature inside the vehicle begins to rise. Since the vehicle is parked between the two capacities, even when the engine load is high for a long period of time, such as when climbing a mountain, it has excellent effects such as improving the cooling feeling and reducing the engine load.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は冷房回路の概略図、第2図は従来の制御方法を
示すフローチャート、第3図は本発明を具体化した実施
例のフローチャート、第4図は実路側における温度差と
容量の関係を示すグラフ、第5図、第6図は実施例にお
ける運転時間と容量、エンジン負荷との関係を示すグラ
フである。 l−冷房回路 2−可変容量コンプレノサ 3−凝縮器
 6−蒸発器 8−容量可変機構 9−制御装aio一
温度センサ 12一温度設定スイノチ
Figure 1 is a schematic diagram of the cooling circuit, Figure 2 is a flowchart showing a conventional control method, Figure 3 is a flowchart of an embodiment embodying the present invention, and Figure 4 is the relationship between temperature difference and capacity on the actual road side. 5 and 6 are graphs showing the relationship between operating time, capacity, and engine load in the example. 1-Cooling circuit 2-Variable capacity compressor 3-Condenser 6-Evaporator 8-Variable capacity mechanism 9-Control unit AIO-Temperature sensor 12-Temperature setting switch

Claims (1)

【特許請求の範囲】 1)車両に搭載されエンジン出力により駆動される可変
容量型コンプレッサの容量制御方法において、制御量の
検出値に応じて常に適正な室温に保っべくコンプレッサ
容量を制御すると共に、エンジン負荷の検出値が一定値
を越えた時はコンプレッサ容量を最小に可変し、前記容
量の最小状態の時間が一定時間を越えた時は制御量の検
出値と目標値との差を求め、この差に応じてコンプレッ
サ容量の低下量を調整することを要旨とする可変容量型
コンプレッサの容量制御方法。 2)コンプレツサ容量の最小状態の時間が一定時間を超
えず、且つエンジン負荷が一定値以下になった場合は、
前記コンプレッサ容量の最小状態の運転時間を記憶し、
前記記憶した運転時間の和が一定時間を越えた時は、制
御量の検出値と目標値との差を求め、この差に応じてコ
ンプレツサ容量の低下量を調整することを要旨とする特
許請求の範囲第1項記載の可変容量型コンプレッサの容
量制御方法。
[Scope of Claims] 1) A capacity control method for a variable capacity compressor mounted on a vehicle and driven by engine output, in which the capacity of the compressor is controlled in accordance with a detected value of a control amount so as to always maintain an appropriate room temperature; When the detected value of the engine load exceeds a certain value, the compressor capacity is varied to the minimum value, and when the time in the minimum capacity state exceeds a certain period of time, the difference between the detected value of the control amount and the target value is determined, A capacity control method for a variable capacity compressor, the gist of which is adjusting the amount of decrease in compressor capacity according to this difference. 2) If the time in the minimum compressor capacity does not exceed a certain time and the engine load falls below a certain value,
Memorizing the operating time of the minimum compressor capacity;
A patent claim that, when the sum of the stored operating times exceeds a certain time, the difference between the detected value and the target value of the controlled variable is determined, and the amount of decrease in the compressor capacity is adjusted according to this difference. The method for controlling the capacity of a variable capacity compressor according to item 1.
JP62138498A 1987-06-02 1987-06-02 Capacity control method for variable capacity compressor Expired - Fee Related JP2503511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62138498A JP2503511B2 (en) 1987-06-02 1987-06-02 Capacity control method for variable capacity compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62138498A JP2503511B2 (en) 1987-06-02 1987-06-02 Capacity control method for variable capacity compressor

Publications (2)

Publication Number Publication Date
JPS63301118A true JPS63301118A (en) 1988-12-08
JP2503511B2 JP2503511B2 (en) 1996-06-05

Family

ID=15223524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62138498A Expired - Fee Related JP2503511B2 (en) 1987-06-02 1987-06-02 Capacity control method for variable capacity compressor

Country Status (1)

Country Link
JP (1) JP2503511B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001034980A1 (en) * 1999-11-10 2001-05-17 Zexel Valeo Climate Control Corporation Drive controller for hybrid compressors
CN104912783A (en) * 2015-05-06 2015-09-16 安徽江淮汽车股份有限公司 Method for controlling displacement of air condition compressor of automobile
CN111267582A (en) * 2020-03-19 2020-06-12 滁州市爱科知识产权代理有限公司 Displacement control method for automobile air conditioner compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001034980A1 (en) * 1999-11-10 2001-05-17 Zexel Valeo Climate Control Corporation Drive controller for hybrid compressors
JP2001132652A (en) * 1999-11-10 2001-05-18 Zexel Valeo Climate Control Corp Control device for driving hybrid compressor
CN104912783A (en) * 2015-05-06 2015-09-16 安徽江淮汽车股份有限公司 Method for controlling displacement of air condition compressor of automobile
CN111267582A (en) * 2020-03-19 2020-06-12 滁州市爱科知识产权代理有限公司 Displacement control method for automobile air conditioner compressor

Also Published As

Publication number Publication date
JP2503511B2 (en) 1996-06-05

Similar Documents

Publication Publication Date Title
US6523361B2 (en) Air conditioning systems
US4510764A (en) Control method for air conditioning systems for vehicles
JPH0717151B2 (en) Variable capacity compressor operation control method
JPH0479850B2 (en)
JPH04328018A (en) Compressor capacity controller of air conditioner for vehicle
JPS6268115A (en) Control device for air conditioner for motor vehicle
KR100805478B1 (en) Air conditioner for motor vehicle
US6003325A (en) Air conditioner particularly suitable for vehicle and method of controlling the same
JPS63301118A (en) Capacity control for variable capacity type compressor
JPH08114359A (en) Air conditioner
JP2007145223A (en) Air conditioner for vehicle
JPH0828983A (en) Control device for multi-room type air conditioner
JP2003165331A (en) Air conditioner for vehicle
JPS6146017Y2 (en)
JP3687500B2 (en) Air conditioner for vehicles
JP2005188290A (en) Control device of variable displacement compressor
JPS62975Y2 (en)
JP3007482B2 (en) Control unit for automotive air conditioner
JPS63259361A (en) Method of controlling capacity of variable displacement type compressor
JPS63286673A (en) Method of controlling capacity of variable capacity type compressor
JPH0550844A (en) Air conditioner for vehicle
JP4470541B2 (en) Compressor control device
JP2870928B2 (en) Air flow control method for air conditioner
JPS6082427A (en) Controller for air conditioner of car
JPS6146016Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees