JPS63300939A - Vibration unit for specific gravity or viscosity measuring instrument - Google Patents

Vibration unit for specific gravity or viscosity measuring instrument

Info

Publication number
JPS63300939A
JPS63300939A JP13640187A JP13640187A JPS63300939A JP S63300939 A JPS63300939 A JP S63300939A JP 13640187 A JP13640187 A JP 13640187A JP 13640187 A JP13640187 A JP 13640187A JP S63300939 A JPS63300939 A JP S63300939A
Authority
JP
Japan
Prior art keywords
vibration
circular
diaphragm
probe
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13640187A
Other languages
Japanese (ja)
Other versions
JPH0735993B2 (en
Inventor
Sousuke Miura
三浦 湊介
Kan Ishizuka
石塚 敢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaichi Electronics Co Ltd
Original Assignee
Yamaichi Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaichi Electronics Co Ltd filed Critical Yamaichi Electronics Co Ltd
Priority to JP62136401A priority Critical patent/JPH0735993B2/en
Publication of JPS63300939A publication Critical patent/JPS63300939A/en
Publication of JPH0735993B2 publication Critical patent/JPH0735993B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To vibrate a probe in a circular direction at an invariably resonance frequency and to improve the measurement accuracy of viscosity and specific gravity by constituting three vibration units where a probe is coupled with one end of a diaphragm rigidly and a inertia mass body is coupled with the other end. CONSTITUTION:The probe 3 for liquid to be measured is coupled rigidly with one end of the diaphragm (c) which forms a circular piezoelectric vibrator 1A and the inertial mass body 13 is coupled with the other end. Piezoelectric ceramic plates (a) and (b) are stuck on the diaphragm (c) to form the vibrator 1A, whose circular vibration is transmitted to the probe 3 through one-end coupling parts of the ceramic plates (a) and (b). Consequently, one end of the vibrator of the vibrator 1A is fixed by the mass body 13 to cancel the transmission of the circular vibration, and the other is made free to induce circular vibration. Further, the probe 3 which is coupled directly with it is excited directly by the ceramic plates (a) and (b) to converge and transmit the circular vibration efficiently.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は液体の比重、粘度測定装置、殊に該比重、粘度
測定装置における振動源として圧電振動子を用いて、被
測定液中に浸着される探触子を振動させ、該振動の変化
分にて粘度又は比重を検出するようにした撮動ユニット
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a device for measuring the specific gravity and viscosity of a liquid, particularly a piezoelectric vibrator which is immersed in a liquid to be measured, and which uses a piezoelectric vibrator as a vibration source in the specific gravity and viscosity measuring device. The present invention relates to an imaging unit that vibrates a probe and detects viscosity or specific gravity based on a change in the vibration.

従来技術 従来より被測定液の比重測定装置として電機−機械変換
機能を有する圧電素子を振動源たる振動子として用い、
探触子を被測定液中において振動させるようにしたもの
が知られている。
Prior Art Conventionally, a piezoelectric element having an electromechanical conversion function is used as a vibrator as a vibration source as a specific gravity measuring device for a liquid to be measured.
A probe in which a probe is vibrated in a liquid to be measured is known.

この圧電振動子としては振動板の厚み方向に縦振動する
厚み縦方向振動子が考えられている。この厚み縦方向振
動子では、液中における厚み縦方向振動による有害な液
圧抵抗を受け、又は縦波等を生起させ外乱要因となり、
又単なる厚み縦方向振動では被測定液の粘性抵抗又は慣
性モーメントの感知が正しくなされず、比重、粘度測定
の振動源としては適正とは言えない。
As this piezoelectric vibrator, a thickness-longitudinal vibrator that vibrates longitudinally in the thickness direction of a diaphragm is considered. This thickness-longitudinal vibrator receives harmful hydraulic resistance due to thickness-longitudinal vibration in the liquid, or generates longitudinal waves, etc., which becomes a disturbance factor.
Furthermore, mere longitudinal vibration in the thickness direction does not accurately sense the viscous resistance or moment of inertia of the liquid to be measured, and is not suitable as a vibration source for measuring specific gravity or viscosity.

又小形で且つ微弱な振動力の圧電振動子の振動を検出子
に正しく伝達する機構がネックとなっており、振動子の
振動をいかに効率良く、適正に伝達し検出性能を向上さ
せるかが課題となっている。
In addition, the mechanism for properly transmitting the vibrations of the small piezoelectric vibrator with its weak vibration force to the detector has become a bottleneck, and the challenge is how to efficiently and appropriately transmit the vibrations of the vibrator to improve detection performance. It becomes.

問題点を解決するための手段 本発明は上記課題を有効且つ合理的に解決する円方向振
動モードを用いた比重又は粘度測定装置における振動ユ
ニットを提供するものであり、後述の実施例にて詳述す
るように、円方向圧電振動子を形成する振動板の一端に
被測定液探触子を円方向振動軸線が同一となるように剛
体結合すると共に、同他端に慣性質量体を剛体結合し、
該振動板の表面に圧電材を貼り合せて上記円方向圧電振
動子を形成しており、該振動板の一端を上記慣性質量体
に固定し同一端における円方向振動の伝達を封殺しつつ
、他端において自由な円方向振動を生起させ、これに直
結した被測定液探触子を直接励振して円方向振動を行な
わせるように構成したものである。
Means for Solving the Problems The present invention provides a vibration unit for a specific gravity or viscosity measuring device using a circular vibration mode, which effectively and rationally solves the above problems. As described above, the liquid probe to be measured is rigidly coupled to one end of the diaphragm forming the circular piezoelectric vibrator so that the circular vibration axes are the same, and the inertial mass body is rigidly coupled to the other end of the diaphragm. death,
A piezoelectric material is bonded to the surface of the diaphragm to form the circular piezoelectric vibrator, one end of the diaphragm is fixed to the inertial mass body, and transmission of circular vibration at the same end is sealed, The structure is such that free circular vibration is generated at the other end, and the liquid probe directly connected to the probe is directly excited to cause the probe to vibrate in the circular direction.

作用 本発明は上記の如く被測定液の比重又は粘度測定のため
の振動源として振動板と圧電材のバイモルフから成る円
方向圧電振動子を適用し、該円方向圧電振動子の一端を
慣性質量体で固定して円方向振動の伝達を封殺しつつ、
他端をフリーにして活性な円方向撮動を生起させること
ができると共に、これに直結した被測定液探触子を振動
板にて直接励振し円方向振動を集中して適正且つ効率良
く伝達することができる。
As described above, the present invention uses a circular piezoelectric vibrator made of a diaphragm and a bimorph of piezoelectric material as a vibration source for measuring the specific gravity or viscosity of a liquid to be measured, and one end of the circular piezoelectric vibrator is connected to an inertial mass. While fixing it with your body and suppressing the transmission of circular vibration,
The other end can be freed to generate active circular imaging, and the liquid probe directly connected to this can be directly excited by the diaphragm, concentrating the circular vibration and transmitting it appropriately and efficiently. can do.

又探触子は被測定液中において円方向振動され、被測定
液の波動等の外乱発生を可及的に防止して、被測定液の
粘性抵抗又は慣性モーメントを正しく且つ鋭敏に感知し
、振動ユニット全体を小形且つ合理的な構造にして高性
能化を達成することができる。
In addition, the probe is vibrated in a circular direction in the liquid to be measured, preventing disturbances such as waves in the liquid to be measured as much as possible, and accurately and sensitively sensing the viscous resistance or moment of inertia of the liquid to be measured. High performance can be achieved by making the entire vibration unit compact and rationally structured.

実施例 以下本発明の実施例を図面に基いて詳述する。Example Embodiments of the present invention will be described in detail below with reference to the drawings.

前記のように本発明は電気機械変換機能を有する振動子
として円方向圧電振動子IAを振動源として用いる。
As described above, the present invention uses the circular piezoelectric vibrator IA as a vibrator having an electromechanical conversion function as a vibration source.

該円方向圧電振動子IAとして例えば捩れ振動子を通用
する。該捩れ振動子は振動軸線を中心とする振動子両端
において時計方向と反時計方向に交互に繰り返し振動す
る、即ち円方向振動する圧電振動子である。換言すれば
円方向振動とは振動軸線を中心とする振動子両端におい
て互いに逆厚み方向へ振動を繰り返す振動モードである
For example, a torsional vibrator can be used as the circular piezoelectric vibrator IA. The torsional vibrator is a piezoelectric vibrator that repeatedly vibrates alternately in clockwise and counterclockwise directions at both ends of the vibrator centering on the vibration axis, that is, vibrates in a circular direction. In other words, circular vibration is a vibration mode in which vibrations are repeated in mutually opposite thickness directions at both ends of the vibrator with the vibration axis as the center.

第1図に示すように、上記駆動源たる円方向圧電振動子
IAを構成する振動板Cの一端に小径の軸部2を介しそ
の円方向振動軸線Gが同一となるように探触子3を剛体
結合する。
As shown in FIG. 1, a probe 3 is attached to one end of a diaphragm C constituting the circular piezoelectric vibrator IA, which is the driving source, through a small-diameter shaft 2 so that its circular vibration axes G are the same. Rigidly connect.

上記軸部2は丸軸又は角軸状を呈して振動板Cの円方向
振動軸線に直結され、円方向振動軸線Gにおいて円方向
圧電振動子IAの振動を入力し、円方向振動子IAから
離間した探触子3に伝達する。
The shaft portion 2 has a round or square shaft shape and is directly connected to the circular vibration axis of the diaphragm C, and inputs the vibration of the circular piezoelectric vibrator IA at the circular vibration axis G, and from the circular vibrator IA. The signal is transmitted to the probe 3 which is spaced apart.

実施に応じ該軸部2には一定の慣性モーメントを有する
質量体5を同志にして一体に取付け、円方向圧電振動子
IAの共振周波数を調整する。
Depending on the implementation, a mass body 5 having a constant moment of inertia is integrally attached to the shaft portion 2 to adjust the resonance frequency of the circular piezoelectric vibrator IA.

又実施に応じ上記軸部2に探触子3の被測定液中にける
円方向振動を検出する撮動センサーIBを取付ける。
Depending on the implementation, an imaging sensor IB for detecting circular vibration of the probe 3 in the liquid to be measured is attached to the shaft portion 2.

該振動センサーIBは圧電セラミック等の電気機械変換
機能を有する素子より成り、探触子3の被測定液中にお
ける機械的振動を軸部2を介して該振動センサーIBに
与え、該撮動センサーIBの機能によって上記機械的振
動を電気信号に変換し、比重又は粘度を測定する。
The vibration sensor IB is composed of an element having an electromechanical conversion function such as a piezoelectric ceramic, and applies mechanical vibration in the liquid to be measured of the probe 3 to the vibration sensor IB via the shaft portion 2, The IB function converts the mechanical vibration into an electrical signal to measure specific gravity or viscosity.

父上記振動センサーIBを用いずに、円方向圧電振動子
IAをその機械−電気変換機能によりセンサーとして兼
用しても上記と同一の原理により粘度及び比重の検出が
可能である。
Even if the circular piezoelectric vibrator IA is used as a sensor due to its mechanical-electric conversion function without using the vibration sensor IB, viscosity and specific gravity can be detected using the same principle as described above.

更に上記の如くした上記円方向圧電振動子IAを構成す
る振動板Cの他端にその円方向振動軸線G部位において
軸部2aを介し慣性質量体13に剛体結合する。斯くし
て振動板Cの一端に探触子3を、他端に慣性’lit量
体13を夫々剛体結合した三者の振動ユニットを構成す
る。
Furthermore, the other end of the diaphragm C constituting the circular piezoelectric vibrator IA as described above is rigidly coupled to the inertial mass body 13 via the shaft portion 2a at a portion of the circular vibration axis G thereof. In this way, a three-member vibration unit is constructed in which the probe 3 is rigidly connected to one end of the diaphragm C, and the inertial mass 13 is rigidly connected to the other end.

上記円方向振動子IAの振動板すと慣性質量体13と探
触子3の剛体結合例として各部位を切削加工によって一
体物によって構成するか、又は第1図Cに示すように各
部位をいくつかの部品に分けて切削加工し、螺合又は柄
込接着等によって結合する。
As an example of a rigid connection between the diaphragm of the circular oscillator IA, the inertial mass body 13, and the probe 3, each part may be constructed as a single piece by cutting, or each part may be constructed as a single piece as shown in FIG. 1C. It is divided into several parts and machined and then joined together by screwing or gluing.

斯くして形成された振動ユニット10を上記慣性質量体
13を固定担体としてハンドグリップ形の外囲器8内に
内蔵する。即ち、慣性質量体13を外囲器8内面に振動
吸収用の緩衝材14を介して固定する等して、上記振動
ユニット10を外囲器8内に慣性質量体13を固定担体
として架装状態に内蔵し、探触子3側をフリーにし、こ
れを外囲器8の先端より露出状態にし被測定液9中に侵
着できるようにする。
The vibration unit 10 thus formed is housed in a handgrip-shaped envelope 8 using the inertial mass body 13 as a fixed carrier. That is, the vibration unit 10 is mounted inside the envelope 8 with the inertial mass body 13 as a fixed carrier by fixing the inertial mass body 13 to the inner surface of the envelope 8 via a shock absorbing material 14 for vibration absorption. The probe 3 side is made free and exposed from the tip of the envelope 8 so that it can penetrate into the liquid to be measured 9.

上記慣性質量体13はその慣性モーメントにより固定側
(撮動板他端側)への振動の伝達を封殺し、円方向振動
の減衰を防止して一端側の探触子3への振動の伝達を安
定且つ効率的に行なわせる。
The inertial mass body 13 uses its moment of inertia to block the transmission of vibrations to the fixed side (the other end side of the imaging plate), prevents the attenuation of circular vibrations, and transmits the vibrations to the probe 3 on the one end side. be carried out stably and efficiently.

上記撮動系の固定担体たる慣性質量体13は撮動軸線方
向に延在させ外囲器8に固定しても良い。
The inertial mass body 13, which is a fixed carrier of the imaging system, may be extended in the direction of the imaging axis and fixed to the envelope 8.

円方向圧電振動子IAは上記の如くその振動板Cの一端
を固定することによって、同一端への振動伝達を封殺し
、他端において自由な円方向振動を生起させ、該円方向
振動を同他端に直結された探触子3に伝え、これを軸部
2を中心として円方向振動させ、該探触子3の液中にお
ける振動を振動センサーIBに与え、被測定液の比重又
は粘度に比例した振動の変化分から等価的電気信号とし
て比重又は粘度の検出を行なう。
By fixing one end of the diaphragm C as described above, the circular piezoelectric vibrator IA blocks vibration transmission to the same end, generates free circular direction vibration at the other end, and transmits the circular direction vibration to the same end. The vibration is transmitted to the probe 3 directly connected to the other end, vibrates in a circular direction around the shaft 2, and the vibration of the probe 3 in the liquid is applied to the vibration sensor IB. Specific gravity or viscosity is detected as an equivalent electrical signal from the change in vibration proportional to .

次に上記円方向圧電振動子IAの具体例として捩れ振動
子に付き説明する。
Next, a torsional vibrator will be explained as a specific example of the circular piezoelectric vibrator IA.

圧電材として、強誘電セラミックに分極処理(ポーリン
グ処理)を施して圧電性を付与した圧電セラミックを用
いる0分極処理は分極方向を一方向に固定する処理であ
り、その分極方向によって正電圧又は負電圧に対する伸
び又は縮み方向(長さ振動方向)が逆方向となる。
Zero-polarization treatment, which uses piezoelectric ceramic that has been polarized (poled) to give piezoelectricity as a piezoelectric material, fixes the polarization direction in one direction, and depending on the polarization direction, it can be used as a positive or negative voltage. The direction of expansion or contraction (direction of length vibration) relative to the voltage is opposite.

第3図乃至第7図に示すように、本捩れ振動子は上記長
さ振動する圧電セラミックa、b間に振動板Cを介在し
積層して成る振動子でありて、振動板Cの片面側と他面
側の両長さ振動圧電セラミックa、bをその長さ振動方
向が交叉するように配置し、両長さ振動圧電セラミック
a、bが振動板Cの片面側と他面側において同時に伸び
又は縮みを生ずるように長さ振動させ、上記振動板Cの
)戻れ振動を得る構成としたものである。
As shown in FIGS. 3 to 7, this torsional vibrator is a vibrator formed by laminating a diaphragm C interposed between piezoelectric ceramics a and b that vibrate along the length, and one side of the diaphragm C. Both length vibrating piezoelectric ceramics a and b on one side and the other side are arranged so that their length vibration directions intersect, and both length vibrating piezoelectric ceramics a and b are placed on one side and the other side of the diaphragm C. The structure is such that the length of the diaphragm C is vibrated to cause expansion or contraction at the same time, and return vibration of the diaphragm C is obtained.

これを具体的に説明すると、一対の長手方向に長さ振動
する短冊形を呈する細長圧電セラミックa、bを準備し
、一方の細長圧電セラミックaを方形の振動板Cの片面
側に貼付し、他方の細長圧電セラミックbを同振動板C
の他面側に貼付して、一方の細長圧電セラミックaを振
動板Cの一方の対角線上に配置すると共に、他方の細長
圧電セラミックbを振動板Cの他方の対角線上に配置し
、両細長圧電セラミックa、bの長さ振動方向が交叉す
るように配置する。各圧電セラミックa、bは方形の振
動板Cの中心部において交叉し、夫々の両端部が対角線
上にある振動板Cの各コーナ部分に位置する。
To explain this specifically, a pair of elongated piezoelectric ceramics a and b exhibiting a rectangular shape that vibrate in the longitudinal direction is prepared, one elongated piezoelectric ceramic a is attached to one side of a rectangular diaphragm C, The other elongated piezoelectric ceramic b is connected to the same diaphragm C.
At the same time, one elongated piezoelectric ceramic a is placed on one diagonal of the diaphragm C, and the other elongated piezoelectric ceramic b is placed on the other diagonal of the diaphragm C. The piezoelectric ceramics a and b are arranged so that their longitudinal vibration directions intersect. The piezoelectric ceramics a and b intersect at the center of the rectangular diaphragm C, and both ends thereof are located at diagonal corner portions of the diaphragm C.

第6図Aに示すように並列接続の場合、両細長圧電セラ
ミックa、bを夫々の分極方向Pが互いに逆方向となる
ように振動板Cの片面側と他の片面側に張り合せ、前記
交叉状態を形成する。
In the case of parallel connection as shown in FIG. 6A, both elongated piezoelectric ceramics a and b are pasted on one side and the other side of the diaphragm C so that their respective polarization directions P are opposite to each other. Form a crossover state.

又第6図Bに示すように、直列接続の場合、細長圧電セ
ラミックa、bを互いに同一分極方向となるように、各
々振動板Cに前記交叉配置で積層する。
Further, as shown in FIG. 6B, in the case of series connection, the elongated piezoelectric ceramics a and b are stacked on the diaphragm C in the above-mentioned crossed arrangement so that they are polarized in the same direction.

上記によって、第7図に示すように各圧電セラ、 ミッ
クa、bの振動モードが、一方の圧電セラミックaで伸
びxlを生じた時、他方の圧電セラミックbでも伸びx
2を生じ、逆に一方の圧電セラミックaで縮みを生じた
時、他方の圧電セラミックbでも縮みを生じ、互いに同
方向の伸縮振動モードが交叉軸線上において同時に生ず
るようにする。従ってこれに張り合せられた振動板Cは
、交叉する一方の長さ振動圧電素子aの両端部分におい
て厚み方向の一方に屈曲ylし、同時に交叉する他方の
長さ振動圧電素子すの両端部分において厚み方向の他方
に屈曲y、することとなる。この逆厚み方向振動を交互
に生ずることによリ、所謂複屈曲振動(を戻れ振動)Z
即ち、円方向振動を既記する。
As a result of the above, as shown in Fig. 7, when the vibration mode of each piezoelectric ceramic, Mick a, b, causes elongation xl in one piezoelectric ceramic a, the other piezoelectric ceramic b also elongates x.
2, and conversely, when one piezoelectric ceramic a contracts, the other piezoelectric ceramic b also contracts, so that stretching vibration modes in the same direction occur simultaneously on the intersecting axis. Therefore, the diaphragm C bonded thereto is bent in one direction in the thickness direction at both ends of the vibrating piezoelectric element a of one length that intersects, and at the same time at both ends of the vibrating piezoelectric element a of the other length that intersects. This results in bending y in the other direction in the thickness direction. By alternately producing this reverse thickness direction vibration, so-called double bending vibration (return vibration) Z
That is, circular direction vibration is already described.

次に上記振動センサーIBの具体構造例について説明す
る(第8図乃至第10図参照)。
Next, a specific structural example of the vibration sensor IB will be described (see FIGS. 8 to 10).

振動センサーIBとしては加速度センサーを用い、適例
として図示の如き左右一対の圧電バイそルフ形の振動素
子S、、S2にて構成した角加速度センサーを用いる。
As the vibration sensor IB, an acceleration sensor is used, and as a suitable example, an angular acceleration sensor composed of a pair of left and right piezoelectric bisulf type vibration elements S, S2 as shown in the figure is used.

該振動素子S、、S、は圧電セラミックのバイモルフ、
又は圧電セラミックと撮動板(金属板)のバイモルフで
ある。
The vibrating elements S, , S are piezoelectric ceramic bimorphs,
Or it is a bimorph of a piezoelectric ceramic and an imaging plate (metal plate).

該振動素子S、、S2を前記軸部2の適所に軸対称とな
るように取付け、軸部2を中心とする円方向振動が与え
られた時、同振動素子S、、S2に同位相の電圧を生じ
出力されるように配置する。
The vibrating elements S, , S2 are installed at appropriate positions on the shaft 2 so as to be axially symmetrical, and when a circular vibration centered on the shaft 2 is applied, the vibrating elements S, , S2 have the same phase. It is arranged so that a voltage is generated and output.

第10図Aは圧電バイモルフ形振動素子S1゜S2を互
いに並列接続した場合を示し、各振動素子として分極方
向P、、P、を同一方向にして積層したバイモルフを用
い、これを両様動子間において分極方向が互いに逆向き
となるように軸部2に取付け、且つ内部電極相互、外部
電極相互を夫々接続し、一方の接続端を正電圧端子(又
は負電圧端子)、他方を負電圧端子(又は正電圧端子)
とする。
Figure 10A shows a case in which piezoelectric bimorph type vibrating elements S1 and S2 are connected in parallel with each other.As each vibrating element, bimorphs stacked with the polarization directions P, , P, in the same direction are used. are attached to the shaft part 2 so that the polarization directions are opposite to each other, and the internal electrodes and the external electrodes are connected to each other, respectively, and one connection end is a positive voltage terminal (or negative voltage terminal) and the other is a negative voltage terminal. (or positive voltage terminal)
shall be.

而して上記構成によって同振動素子S、、S。With the above configuration, the same vibrating elements S, , S.

の自由端に図中w、、W、の同一厚み方向振動が加わる
場合には同振動素子S、、S2の内部電極の一方に正電
圧が、他方に負電圧が生じ互いに相殺され、同様に振動
素子S、、S2の一方の外部電極に正電圧が、他方の外
部電極に負電圧が生じ互いに相殺され、結果として正電
圧端子牛と負電圧端子−間の出力が零となる。即ち、上
記振動センサーIBは円方向掘勅以外の振動によっては
出力を生じない。
When the same thickness direction vibration w, , W in the figure is applied to the free end of , a positive voltage is generated on one of the internal electrodes of the vibrating element S, , S2, and a negative voltage is generated on the other, which cancel each other out, and similarly. A positive voltage is generated at one external electrode of the vibrating elements S, S2, and a negative voltage is generated at the other external electrode, which cancel each other out, and as a result, the output between the positive voltage terminal and the negative voltage terminal becomes zero. That is, the vibration sensor IB does not produce an output due to vibrations other than circular excavation.

他方、振動素子S、、S2の中心に配された軸部2を介
して同振動素子S I + 52に同軸部2を振動軸と
する円方向振動が加わると、振動素子51、S2の一方
自由端が厚み方向の一方W、に振動した時、他方自由端
が厚み方向の他方W2に振動するというように、互いに
逆厚み方向へ振動しく円方向振動し)、内部電極に同位
相の正電圧(又は負電圧)が生じ、同外部電極に同位相
の負電圧(又は正電圧)が生じ、結果として正電圧端子
牛と負電圧端子−間に電圧出力を生ずる。
On the other hand, when circular vibration with the coaxial part 2 as the vibration axis is applied to the vibrating element S I + 52 via the shaft part 2 arranged at the center of the vibrating elements S, S2, one of the vibrating elements 51 and S2 When the free end vibrates in one direction W in the thickness direction, the other free end vibrates in the other direction W2 in the thickness direction. A voltage (or negative voltage) is generated, and a negative voltage (or positive voltage) of the same phase is generated on the same external electrode, resulting in a voltage output between the positive voltage terminal and the negative voltage terminal.

第10図Bは上記振動素子S、、S2の一方が互いに外
向きの分極方向を有し、他方が内向きの分極方向を有す
るようにバイモルフを形成し、直列接続形にした場合を
示し、図示のように一方の外部電極相互を接続して正電
圧端子+(又は負電圧端子)とし、他方の外部電極相互
を接続して負電圧端子−(又は正電圧端子)とする、こ
の場合も第10図Aの場合と同様の動作結果となる。上
記配置に従いその他の圧電バイモルフ接続形態を採って
同様の動作を得ることができることは勿論である。
FIG. 10B shows a case where one of the vibrating elements S, S2 has an outward polarization direction and the other has an inward polarization direction, forming a bimorph and connecting them in series, As shown in the figure, one external electrode is connected to each other to form a positive voltage terminal + (or negative voltage terminal), and the other external electrode is connected to each other to form a negative voltage terminal - (or positive voltage terminal). The same operation result as in the case of FIG. 10A is obtained. Of course, other piezoelectric bimorph connection configurations can be used in accordance with the above arrangement to obtain similar operation.

上記振動センサーIBを構成する振動素子S1.S2の
軸対称配置としては第8図、第9図に示すように、軸部
2に矩形台座15を一体に形成し、該台座15の対向す
る一方の側面に一方の振動素子S、の基端を電極面と平
行な面を以って添設すると共に、同他方の側面に他方の
振動素子S2の基端を電極面と平行な面を以って添設し
、同振動素子S、、S、が互いに逆方向に延びるように
配置する。
Vibration element S1 configuring the vibration sensor IB. As shown in FIGS. 8 and 9, the axially symmetrical arrangement of S2 is such that a rectangular pedestal 15 is integrally formed on the shaft portion 2, and the base of one vibrating element S is formed on one side surface of the pedestal 15 facing each other. The end of the vibrating element S2 is attached with a plane parallel to the electrode plane, and the base end of the other vibrating element S2 is attached to the other side with a plane parallel to the electrode plane. , S, are arranged so that they extend in opposite directions.

又第9図に仮想線で示すように、同振動素子Sl、S2
を同一直線上において軸対称となるように配置しても良
い。軸部2と上記振動素子S、、S、の結合機構は上記
配置条件に従い他の結合手段を用いることができる。
Further, as shown by virtual lines in FIG. 9, the same vibration elements Sl and S2
may be arranged axially symmetrically on the same straight line. As the coupling mechanism between the shaft portion 2 and the vibrating elements S, , S, other coupling means may be used in accordance with the above arrangement conditions.

上記によって被測定液中における探触子3の円方向振動
が同振動センサーIBに与えられ、これを同方向に励振
して前記した動作原理に従い正負電圧端子間に振動に応
じた電圧出力を生ずる。該電圧出力を検出信号として上
記比重又は粘度表示を行なうものである。
As a result of the above, the circular vibration of the probe 3 in the liquid to be measured is applied to the vibration sensor IB, which is excited in the same direction to generate a voltage output between the positive and negative voltage terminals according to the operating principle described above. . The specific gravity or viscosity is displayed using the voltage output as a detection signal.

比重計の場合について説明すると、上記被測定液探触子
3として比較的広い面積の鏡面仕上げした円周面を有す
る中空又は無垢の真円柱体又は薄板を用い、円方向圧電
振動子IAの円方向振動を振動板Cに剛体結合した軸部
2を介して探触子3に伝達し、該探触子3を被測定液中
に漫着して軸部2を中心に、即ち振動板Cの円方向振動
軸線Gを中心に円方向振動させる。この円方向振動に伴
ない探触子3に被測定液9の慣性モーメントが負荷され
、探触子3の回転モーメントを増加させる。この回転モ
ーメントの増加により円方向圧電振動子IAを含めた振
動ユニット10の共振周波数を変化させ振動センサーI
Bにより共振周波数の変化量に応じた電気信号を得る。
To explain the case of a hydrometer, a hollow or solid perfect cylindrical body or a thin plate having a mirror-finished circumferential surface with a relatively wide area is used as the liquid to be measured probe 3, and the circular piezoelectric vibrator IA is The directional vibration is transmitted to the probe 3 via the shaft part 2 which is rigidly coupled to the diaphragm C, and the probe 3 is loosely attached to the liquid to be measured, and the directional vibration is transmitted around the shaft part 2, that is, the diaphragm C. It is caused to vibrate in a circular direction around the circular vibration axis G of . As a result of this circular vibration, the moment of inertia of the liquid to be measured 9 is loaded onto the probe 3, increasing the rotational moment of the probe 3. Due to this increase in rotational moment, the resonance frequency of the vibration unit 10 including the circular piezoelectric vibrator IA is changed, and the vibration sensor I
An electric signal corresponding to the amount of change in the resonant frequency is obtained by B.

即ち、探触子3を液中に浸着すると共振周波数が変化し
、その共振点にずれを生ずる。比重計においてはこの振
動の共振点における共振周波数のシフト(周波数の変化
)を観察し比重を測定するものである。
That is, when the probe 3 is immersed in a liquid, the resonance frequency changes, causing a shift in the resonance point. A hydrometer measures the specific gravity by observing the shift in resonance frequency (change in frequency) at the resonance point of this vibration.

この機能は振動センサーIBを構成する圧電セラミック
の機械−電気エネルギー変換効果によるものである。該
円方向振動は厚み縦方向振動等と異なって外乱要因とな
る液の波動を抑止し、液を静的状態に保ち慣性抵抗を良
好に感知する。
This function is due to the mechanical-electrical energy conversion effect of the piezoelectric ceramic that constitutes the vibration sensor IB. The circular vibration, unlike the longitudinal vibration in the thickness direction, suppresses the wave motion of the liquid that causes disturbance, keeps the liquid in a static state, and senses inertial resistance well.

又粘度計の場合について説明すると、被測定液探触子3
として比較的広い面積の鏡面仕上げした円周面を有する
無垢又は中空の真円柱体又は円盤を用い、その端面の中
心に軸部2を介し振動板Cの一端に剛体結合する。
Also, to explain the case of a viscometer, the liquid to be measured probe 3
A solid or hollow perfect cylindrical body or disk having a mirror-finished circumferential surface with a relatively wide area is used as the body, and is rigidly connected to one end of the diaphragm C through the shaft part 2 at the center of the end face.

上記によって円方向圧電振動子IAの円方向振動が軸部
2を介して探触子3に伝達され、該探触子3は軸部2を
中心に、即ち円方向振動軸線Gを中心に円方向振動し、
その円方向振動面において被測定液の粘性抵抗を感知す
る。該円方向振動は縦方向振動等と異なって外乱要因と
なる液の波動を抑制し、液を静的状態に保ち粘性抵抗を
良好に捕捉する。該粘性抵抗の感知により共振周波数を
変化させ、該共振周波数にて上記振動センサーIBを励
振させる。
As a result of the above, the circular vibration of the circular piezoelectric vibrator IA is transmitted to the probe 3 via the shaft portion 2, and the probe 3 is moved in a circular motion around the shaft portion 2, that is, around the circular vibration axis G. directional vibration,
The viscous resistance of the liquid to be measured is sensed on the circular vibration surface. The circular vibration, unlike the longitudinal vibration, suppresses the wave motion of the liquid that causes disturbance, keeps the liquid in a static state, and effectively captures viscous resistance. The resonance frequency is changed by sensing the viscous resistance, and the vibration sensor IB is excited at the resonance frequency.

上記探触子3による粘性抵抗の感知により粘性抵抗に応
じて上記共振周波数で励振した時の振動系全体の機械的
インピーダンスを変化させ、該共振時における振動セン
サーIBの振動のレベル(電圧レベル)に変化を生ずる
。即ち粘度計においてはこの振動のレベルを観察し粘度
を測定するものである。この機能は振動センサーIBの
機械−電気エネルギー変換効果によるものである。
By sensing the viscous resistance by the probe 3, the mechanical impedance of the entire vibration system when excited at the resonance frequency is changed according to the viscous resistance, and the vibration level (voltage level) of the vibration sensor IB at the time of resonance is changed. causes a change in That is, a viscometer measures the viscosity by observing the level of this vibration. This function is due to the mechanical-electrical energy conversion effect of the vibration sensor IB.

上記の如き振動センサーIBの機能を円方向圧電振動子
IAに担わせても良いことは前述の通りである。
As described above, the function of the vibration sensor IB as described above may be provided to the circular piezoelectric vibrator IA.

発明の効果 本発明は上記の如く被測定液の比重又は粘度測定のため
の振動源として振動板と圧電材のバイモルフから成る円
方向圧電振動子を適用し、該円方向圧電振動子の一端を
慣性質量体で固定して円方向振動の伝達を封殺しつつ、
他端をフリーにして活性な円方向振動を生起させること
ができると共に、これを直結した被測定液探触子を振動
板にて直接励振し円方向振動を健全に伝達することがで
きる。
Effects of the Invention As described above, the present invention uses a circular piezoelectric vibrator consisting of a diaphragm and a bimorph of a piezoelectric material as a vibration source for measuring the specific gravity or viscosity of a liquid to be measured, and one end of the circular piezoelectric vibrator is While fixing with an inertial mass body and suppressing the transmission of circular vibration,
With the other end free, active circular vibrations can be generated, and the liquid probe directly connected to the liquid probe to be measured can be directly excited by the diaphragm to transmit the circular vibrations soundly.

本発明によれば一端側を慣性質量体に剛体結合すること
により円方向振動子の振動の減衰を効果的に防止しつつ
、振動板の他端において直接的且つ集中的に探触子に振
動を与え励振させることができ、適正且つ効率の良い振
動伝達を行なうことができ、探触子を常に正確な共振周
波数で円方向振動させ、粘度及び比重の測定精度を高め
信頼性を向上する。殊に振動板の円方向振動軸線の部位
に細径の軸部を連結し、これを介し探触子を結合するこ
とにより、振動板端部の左右コーナ部は自由部分とされ
、同所における前記捩れ振動を阻害することなく活性な
振動を惹起させる。該振動板の振動軸線より離れた端部
左右コーナ部は軸方向振動成分等が混入して振動に乱れ
を生ずる恐れがあるが、上記振動軸線における軸部を介
しての探触子の結合により振動板の振動軸線部における
健全な捩れ振動成分(円方向振動成分)のみを適正に捕
捉し探触子に伝達することができる。
According to the present invention, one end of the diaphragm is rigidly coupled to the inertial mass body, thereby effectively preventing the attenuation of the vibration of the circular vibrator, while directly and intensively vibrating the probe at the other end of the diaphragm. It is possible to give vibration and excite the probe, and it is possible to perform proper and efficient vibration transmission, and the probe can always be vibrated in a circular direction at an accurate resonance frequency, thereby increasing the measurement accuracy and reliability of viscosity and specific gravity. In particular, by connecting a small-diameter shaft to the circular vibration axis of the diaphragm and connecting the probe through this, the left and right corners of the diaphragm end are made free parts, and the Active vibration is induced without inhibiting the torsional vibration. There is a risk that axial vibration components may enter the left and right corner portions of the diaphragm away from the vibration axis, causing disturbances in vibration. Only healthy torsional vibration components (circular vibration components) in the vibration axis of the diaphragm can be appropriately captured and transmitted to the probe.

又探触子は被測定液中において円方向振動され、被測定
液の波動等の外乱発生を可及的に防止して、被測定液の
粘性抵抗又は慣性モーメントを正しく且つ鋭敏に感知す
ることができ、前記構成により振動ユニット全体を小形
且つ合理的な構造にして裏性能化を達成することができ
る。
In addition, the probe is vibrated in a circular direction in the liquid to be measured, and disturbances such as waves in the liquid to be measured are prevented as much as possible, so that the viscous resistance or moment of inertia of the liquid to be measured can be accurately and sensitively sensed. With the above configuration, it is possible to make the entire vibrating unit compact and have a rational structure, thereby achieving improved performance.

4 図面のPJ−!ILな説明 第1図Aは本発明の実施例たる粘度又は比重測定装置を
構成する振動ユニットを示す側面図、同図Bは同正面図
、同図Cは同断面図、第2図は同粘度又は比重測定装置
の外観を示す斜視図、第3図は円方向圧電振動子の斜視
図、第4図は同側面図、第5図は同平面図、第6図A、
Bは同振動子の接続例を示す側面図、゛第7図は同振動
子の捩れ振動を説明する斜視図、第8図は振動センサ一
部を表す振動ユニットの斜視図、第9図は振動センサ一
部平面図、第10図A、Bは同撮動センサー(角加速度
センサー)の接続例を示す側面図である。
4 Drawing PJ-! 1A is a side view showing a vibration unit constituting a viscosity or specific gravity measuring device according to an embodiment of the present invention, FIG. 1B is a front view of the same, FIG. C is a sectional view of the same, and FIG. A perspective view showing the appearance of the viscosity or specific gravity measuring device, FIG. 3 is a perspective view of a circular piezoelectric vibrator, FIG. 4 is a side view of the same, FIG. 5 is a plan view of the same, FIG.
B is a side view showing an example of how the vibrator is connected; FIG. 7 is a perspective view illustrating torsional vibration of the vibrator; FIG. 8 is a perspective view of a vibration unit showing a part of the vibration sensor; FIG. A partial plan view of the vibration sensor, and FIGS. 10A and 10B are side views showing an example of connection of the same imaging sensor (angular acceleration sensor).

IA・・・円方向圧電振動子、a、b・・・圧電セラミ
ック、C・・・振動板、2・・・軸部、3・・・被測定
液探触子、9・・・慣性質量体、G・・・円方向撮動軸
線。
IA...Circular piezoelectric vibrator, a, b...Piezoelectric ceramic, C...Vibration plate, 2...Shaft portion, 3...Measurement liquid probe, 9...Inertial mass Body, G...Circular imaging axis.

第4図 IA 第5図 第6図 第8図 第10図Figure 4 IA Figure 5 Figure 6 Figure 8 Figure 10

Claims (2)

【特許請求の範囲】[Claims] (1)円方向圧電振動子を形成する振動板の一端にその
円方向振動軸線が同一となるように被測定液探触子を剛
体結合すると共に、同他端に慣性質量体を剛体結合し、
上記振動板に圧電材を貼り合せて上記円方向圧電振動子
を形成し、該円方向圧電振動子の円方向振動を上記振動
板の上記一端結合部を介し被測定液探触子に振動を伝達
する構成とした比重又は粘度測定装置における振動ユニ
ット。
(1) A liquid probe to be measured is rigidly coupled to one end of a diaphragm forming a circular piezoelectric vibrator so that its circular vibration axes are the same, and an inertial mass body is rigidly coupled to the other end of the diaphragm. ,
A piezoelectric material is bonded to the diaphragm to form the circular piezoelectric vibrator, and the circular vibration of the circular piezoelectric vibrator is transmitted to the liquid probe to be measured via the one end coupling portion of the diaphragm. A vibration unit in a specific gravity or viscosity measuring device configured to transmit information.
(2)上記被測定液探触子を上記振動板の一端に円方向
振動軸線が同一となるように配した軸部を介し剛体結合
したことを特徴とする特許請求の範囲第1項記載の比重
又は粘度測定装置における振動ユニット。
(2) The liquid probe to be measured is rigidly coupled to one end of the diaphragm via a shaft portion arranged so that the circular vibration axes are the same. Vibration unit in specific gravity or viscosity measuring equipment.
JP62136401A 1987-05-30 1987-05-30 Vibration unit in specific gravity or viscosity measuring device Expired - Lifetime JPH0735993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62136401A JPH0735993B2 (en) 1987-05-30 1987-05-30 Vibration unit in specific gravity or viscosity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62136401A JPH0735993B2 (en) 1987-05-30 1987-05-30 Vibration unit in specific gravity or viscosity measuring device

Publications (2)

Publication Number Publication Date
JPS63300939A true JPS63300939A (en) 1988-12-08
JPH0735993B2 JPH0735993B2 (en) 1995-04-19

Family

ID=15174303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62136401A Expired - Lifetime JPH0735993B2 (en) 1987-05-30 1987-05-30 Vibration unit in specific gravity or viscosity measuring device

Country Status (1)

Country Link
JP (1) JPH0735993B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107462634A (en) * 2017-09-04 2017-12-12 中国计量大学 Soil shear strength in-situ measuring method and system based on piezo-electric effect

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273041A (en) * 1987-04-30 1988-11-10 Yamaichi Electric Mfg Co Ltd Viscosimeter or hydrometer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273041A (en) * 1987-04-30 1988-11-10 Yamaichi Electric Mfg Co Ltd Viscosimeter or hydrometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107462634A (en) * 2017-09-04 2017-12-12 中国计量大学 Soil shear strength in-situ measuring method and system based on piezo-electric effect
CN107462634B (en) * 2017-09-04 2023-09-29 中国计量大学 Soil shear strength in-situ measurement method and system based on piezoelectric effect

Also Published As

Publication number Publication date
JPH0735993B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
US3520195A (en) Solid state angular velocity sensing device
US4479385A (en) Double resonator cantilever accelerometer
US4489609A (en) Gyroscopes
JPH03501529A (en) Electrostatically excited dual vibrating beam force transducer
JPS5856425B2 (en) force conversion mechanism
KR100328532B1 (en) Angular velocity detector
KR100364968B1 (en) Vibrating Gyroscope
JPS63273041A (en) Viscosimeter or hydrometer
JPH0520692B2 (en)
WO2005012923A1 (en) Acceleration sensor
JP4020578B2 (en) Acceleration sensor
JP2002107372A (en) Acceleration sensor
US4857792A (en) Circular direction vibrator
JPH07120266A (en) Vibrating-gyro sensor
JPS61294311A (en) Oscillation gyro
JPS63300939A (en) Vibration unit for specific gravity or viscosity measuring instrument
JPH0646177B2 (en) Circular vibration type specific gravity detector
KR100210707B1 (en) Vibration gyroscope
JPS5897610A (en) Torsion-to-frequency transducer
JP3139212B2 (en) Acceleration sensor
JPS5856422B2 (en) force conversion mechanism
JPS596370B2 (en) force conversion mechanism
JPH065168B2 (en) Energy confinement gyroscope
JP2008076076A (en) Acceleration sensor
JP3129022B2 (en) Acceleration sensor