JPS63300739A - Cornea measuring apparatus - Google Patents

Cornea measuring apparatus

Info

Publication number
JPS63300739A
JPS63300739A JP62135639A JP13563987A JPS63300739A JP S63300739 A JPS63300739 A JP S63300739A JP 62135639 A JP62135639 A JP 62135639A JP 13563987 A JP13563987 A JP 13563987A JP S63300739 A JPS63300739 A JP S63300739A
Authority
JP
Japan
Prior art keywords
cornea
image
corneal
signal
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62135639A
Other languages
Japanese (ja)
Other versions
JP2835371B2 (en
Inventor
Yoshi Kobayakawa
小早川 嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62135639A priority Critical patent/JP2835371B2/en
Publication of JPS63300739A publication Critical patent/JPS63300739A/en
Application granted granted Critical
Publication of JP2835371B2 publication Critical patent/JP2835371B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

PURPOSE:To quantitatively measure even a complicated shape having sharp unevenness, by calculating said shape by utilizing scattering beam. CONSTITUTION:The slit beam formed by the slit plate 2 illuminated by a beam source 1 is projected on the cornea Ec of an eye E to be examined by a projection lens 3. The reflected image of the cornea Ec passes through the imaging lens 4 and iris 5 on an optical axis L2 to project a cornea image on an image pickup apparatus 7 having an image pickup element 6. The signal from the image pickup apparatus 7 is sent to a signal processor 8 and the intersecting points of the scanning line of the image pickup element 6 and the cornea image are calculated at a signal level and, from the average position of these intersecting points, the position of the surface of the cornea is measured. When the beam is projected on the cornea Ec, the cornea Ec scatters slit beam and, therefore, a beam cutting surface is viewed when the cornea is viewed in an oblique direction and the image thereof is picked up by the image pickup apparatus 7 to calculate the positions of the front and rear surfaces of the cornea.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、眼科において角膜の曲率、厚さを同時に測定
可能で、特に角膜成形手術や白内障手術時などに使用し
て有用な角膜測定装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a keratometry device that can simultaneously measure the curvature and thickness of the cornea in ophthalmology, and is particularly useful for use in corneal plastic surgery and cataract surgery. It is related to.

[従来の技術] 従来において、角膜の曲率と厚さを同時に測定できる角
膜測定装置は未だ知られていない。角膜の曲率を測定す
る装置としてはケラトメータが存在するが、このケラト
メータは角膜反射を利用して角膜曲率を求めているため
、角膜が複雑な曲面を形成している場合には定量的測定
が難しいという欠点を持っている。一方、角膜厚さを求
める方法には、光学的方法によるパコメータや超音波に
よる方法等が知られているが、何れも接触型である上に
、各部分を一点ずつ測定するので、角膜全面に亘る厚さ
分布を把握し難いという欠点がある。
[Prior Art] Until now, no keratometry device has been known that can simultaneously measure the curvature and thickness of the cornea. A keratometer is a device that measures corneal curvature, but since this keratometer uses corneal reflection to determine corneal curvature, quantitative measurements are difficult when the cornea forms a complex curved surface. It has the disadvantage of On the other hand, there are known methods for determining corneal thickness, such as an optical method using a pachometer and an ultrasonic method, but both are contact-type and measure each area one point at a time, so they cover the entire corneal surface. It has the disadvantage that it is difficult to grasp the thickness distribution over the area.

一般に、角膜手術後や円錐角膜等の疾患では、角膜は部
分的に凹凸を持った非常に複雑な形状になっているので
、治療診断に当ってはこのような形状を正確に把握する
ことが極めて重要である。
In general, after corneal surgery or in patients with diseases such as keratoconus, the cornea has a very complex shape with uneven parts, so it is difficult to accurately understand this shape when diagnosing treatment. extremely important.

また、屈折矯正のための放射状角膜切開手術等の場合は
、角膜の厚さとその部分的な変化を知る必要があり、で
き得ればこの測定を非接触方式で行うことが好ましい。
Furthermore, in cases such as radial corneal incision surgery for refractive correction, it is necessary to know the thickness of the cornea and its local changes, and if possible, it is preferable to perform this measurement in a non-contact manner.

[発明の目的] 本発明の目的は、このような要求を満足するため、角膜
の曲率と厚さを1個の装置で測定し、しかもこれらの測
定を非接触方式によって正確に測定できるようにした角
膜測定装置を提供することにある。
[Object of the Invention] In order to satisfy such requirements, the object of the present invention is to provide a method for measuring the curvature and thickness of the cornea with one device, and also to be able to accurately measure these measurements using a non-contact method. An object of the present invention is to provide a keratometry device that has the following features.

[発明の概要] 上述の目的を達成するための本発明の要旨は、ト光束の
角膜による散乱像を投影光軸と角度を持つ方向から撮像
素子上に写す撮像光学系と、前記撮像素子の出力信号を
処理する信号処理手段と、前記撮像素子の走査線と前記
散乱像との交点を信号レベルから求め、各走査線の交点
の平均的位置から角膜計測情報を求める信号処理手段と
を有することを特徴とする角膜測定装置である。
[Summary of the Invention] The gist of the present invention for achieving the above-mentioned object is to provide an imaging optical system that projects an image of a light beam scattered by the cornea onto an imaging device from a direction having an angle with the projection optical axis; The apparatus includes a signal processing means for processing an output signal, and a signal processing means for determining an intersection between a scanning line of the imaging device and the scattering image from a signal level, and determining keratometry information from an average position of the intersection of each scanning line. This is a keratometry device characterized by the following.

[発明の実施例] 本発明を図示の実施例に基づいて詳細に説明する。[Embodiments of the invention] The present invention will be explained in detail based on illustrated embodiments.

第1図は本発明と係る角膜測定装置の一実施例を示し、
解析を容易にするために好ましくは被検眼Eの角膜表面
の曲率中心Oを通るように配置される投影光軸B1上に
、光源1、スリット板2、投影レンズ3から成る投影光
学系が設けられている。スリット板2は第2図に例示す
るようなスリット2aを有し、このスリット2aの方向
は第1図において紙面に対し垂直な方向とされている。
FIG. 1 shows an embodiment of a keratometry device according to the present invention,
In order to facilitate analysis, a projection optical system consisting of a light source 1, a slit plate 2, and a projection lens 3 is provided on the projection optical axis B1, which is preferably arranged to pass through the center of curvature O of the corneal surface of the eye E to be examined. It is being The slit plate 2 has a slit 2a as illustrated in FIG. 2, and the direction of the slit 2a is perpendicular to the plane of the paper in FIG.

また、投影光軸1,1に対し好ましくはスリット2aの
幅方向に角度を有する光軸B2上に、撮像レンズ4、絞
り5、撮像素子6から成る撮像光学系が配置されている
。撮像素子6はテレビカメラから成る撮像装置7内に設
けられ、この撮像装置7の出力は信号処理装置8に接続
されている。
Further, an imaging optical system including an imaging lens 4, an aperture 5, and an imaging element 6 is disposed on an optical axis B2 that preferably has an angle in the width direction of the slit 2a with respect to the projection optical axes 1, 1. The imaging device 6 is provided in an imaging device 7 consisting of a television camera, and the output of this imaging device 7 is connected to a signal processing device 8 .

撮像素子6としてCODのような固体撮像素子を使用す
ることが望ましい。また、絞り5は撮像レンズ4の焦点
位置にあってテレセントリック光学系を構成し、深さの
ある物体でも寸法誤差を生じないようになっている。
It is desirable to use a solid-state image sensor such as a COD as the image sensor 6. Further, the aperture 5 is located at the focal point of the imaging lens 4 and constitutes a telecentric optical system, so that dimensional errors do not occur even when objects have depth.

光源lによって照明されスリット板2により形成された
スリット光束は投影レンズ3によって被検眼Eの角膜E
cに投影される。角膜Ecの反射像は光軸B2上の撮像
レンズ4、絞り5を経て撮像素子6を有する撮像装置7
に角膜像を写す。撮像装置7からの信号は信号処理装置
8に送られ、撮像素子6の走査線と角膜像との交点が信
号レベルで求められ、これらの交点の平均的位置から角
膜面の位置が測定できる。
The slit light beam illuminated by the light source 1 and formed by the slit plate 2 is projected onto the cornea E of the eye E by the projection lens 3.
projected onto c. The reflected image of the cornea Ec passes through the imaging lens 4 and the aperture 5 on the optical axis B2, and then is transferred to the imaging device 7 having the imaging element 6.
Take a corneal image. The signal from the imaging device 7 is sent to the signal processing device 8, where the intersection between the scanning line of the imaging device 6 and the corneal image is determined based on the signal level, and the position of the corneal surface can be measured from the average position of these intersections.

角膜Ecにスリット光束を投影した場合に、角膜Ecは
スリット光束を散乱するので、斜めから見た場合は光切
断面が見える。これを撮像装置7で撮像し、その映像信
号を見ると角膜Ecが存在する部分は信号レベルが高い
。撮像装置7からの映像信号を二値化するか或いは一旦
メモリに取り込んで計算する等の方法により、角膜表面
及び裏面の位置を求めることができ、同時に角膜表面と
裏面の位置の関係から角膜Ecの厚さを求めることがで
きる。第3図は撮像素子6上の角膜像Cを表し、角膜E
cの部分は散乱光によって明るく映っている。
When a slit light beam is projected onto the cornea Ec, the cornea Ec scatters the slit light beam, so that when viewed from an angle, a light section is visible. When this is imaged by the imaging device 7 and the video signal is viewed, the signal level is high in the portion where the cornea Ec is present. The positions of the front and back surfaces of the cornea can be determined by binarizing the video signal from the imaging device 7 or by once loading it into a memory and calculating it, and at the same time, the corneal Ec can be determined from the relationship between the positions of the front and back surfaces of the cornea. The thickness of can be found. FIG. 3 shows a corneal image C on the image sensor 6, and shows a corneal image C on the image sensor 6.
Part c appears bright due to scattered light.

第4図は第3図の撮像素子6上における走査線St、 
B2、B3の各信号を適当なスライスレベルで二値化し
た信号を示している。この第4図において、それぞれA
1、A2、A3は角膜表面、B1、B2、B3は角膜裏
面を表している。これらの位置を各走査線で求め、これ
を拡大してプロットすれば第5図に示すようになる。角
膜像と走査線とが交叉する点を求めれば、これらの点か
ら角膜表裏面の回帰曲線Ca、 Cbが得られる。勿論
、個々の値はノイズでばらつくが、回帰曲線は再現性良
く求めることができる。部分ごとにこの回帰曲線を求め
れば、その部分での角膜曲率が求められ、通常では中心
部は球面回帰でよい。投影光軸L1に対して垂直方向か
ら撮影すれば、実際の形状を撮像できるが、実用上それ
は不可能であるから、角度は45度程度にして後は計算
で補正すればよい。また、スリット2aと撮像光学系と
を投影光軸L1の廻りに回転すれば、別の経線上の断面
を測定することができる。
FIG. 4 shows scanning lines St on the image sensor 6 of FIG.
A signal obtained by binarizing each of the B2 and B3 signals at an appropriate slice level is shown. In this Figure 4, each A
1, A2, and A3 represent the corneal surface, and B1, B2, and B3 represent the corneal back surface. If these positions are determined for each scanning line and then enlarged and plotted, the result will be as shown in FIG. 5. By finding the points where the corneal image and the scanning line intersect, regression curves Ca and Cb for the front and back surfaces of the cornea can be obtained from these points. Of course, individual values vary due to noise, but the regression curve can be determined with good reproducibility. If this regression curve is obtained for each part, the corneal curvature at that part can be found, and normally, spherical regression is sufficient for the central part. The actual shape can be imaged by photographing from a direction perpendicular to the projection optical axis L1, but since this is practically impossible, the angle may be set to about 45 degrees and the subsequent corrections can be made by calculation. Further, by rotating the slit 2a and the imaging optical system around the projection optical axis L1, it is possible to measure a cross section on another meridian.

なお、撮像装置7からの映像信号を二値化する代りに、
A/D変換で多値化してメモリに入力し、角膜像Cの輪
郭を計算によってより高精度に求めてもよい。投影され
るスリット光束がぼけると測定精度が低下するので、ス
リット板2を予め長さ方向で角膜Ecの形状に合うよう
に曲げておけば、角膜中心と周辺でピントが合致し、全
面に鮮明なスリット光束を投影することが可能である。
Note that instead of binarizing the video signal from the imaging device 7,
The contour of the corneal image C may be calculated with higher accuracy by converting it into a multivalued image using A/D conversion and inputting it into the memory. If the projected slit light beam becomes blurred, the measurement accuracy will decrease, so if the slit plate 2 is bent in advance in the length direction to match the shape of the cornea Ec, the center and periphery of the cornea will be in focus, and the entire surface will be clear. It is possible to project a slit beam of light.

また、同じ意味で撮像時にも中心と周辺で同じピントに
なるように、シャインプルーフの原理による方法で投影
してもよい。角膜Ecの厚さだけを求めるのであれば、
一旦輪郭を表す曲線を求めてそれらの間隔を算出するよ
りも、各走査線上で表面と裏面の交点の間隔を求め、そ
れらを平均化して求める方がよい。
Furthermore, in the same sense, during imaging, projection may be performed using a method based on Scheimpflug's principle so that the center and periphery are in the same focus. If you only want to find the thickness of the cornea Ec,
Rather than once finding a curve representing the contour and calculating the interval between them, it is better to find the interval between the intersections of the front and back surfaces on each scanning line and average them.

[発明の効果] 以上説明したように本発明に係る角膜測定装置は、従来
のケラトメータのように角膜の表面反射を利用するので
はなく、散乱光を利用して形状を求めるので、凹凸の激
しい複雑な形状でも定量的に角膜形状を測定することが
でき、角膜の厚さも非接触方式により測定することが可
能である。撮像素子上の走査線の一線ごとに求められた
値は精度が悪いとしても、回帰曲率を求めることにより
ノイズを平均化することになるから、結果として精度良
く角膜形状を測定することができる。
[Effects of the Invention] As explained above, the corneal measuring device according to the present invention does not use the surface reflection of the cornea like a conventional keratometer, but uses scattered light to determine the shape. The shape of the cornea can be quantitatively measured even if the shape is complex, and the thickness of the cornea can also be measured using a non-contact method. Even if the value obtained for each scanning line on the image sensor has poor accuracy, the noise is averaged by obtaining the regression curvature, and as a result, the corneal shape can be measured with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る角膜測定装置の実施例を示し、第1
図はその構成図、第2図はスリット板の正面図、第3図
は撮像素子上の角膜像の説明図、第4図は角膜像に交叉
する走査線を二値化した信号の波形図、第5図は各走査
線と角膜像との交点及びその回帰曲線図である。 符号1は光源、2はスリ・ント板、3は投影レンズ、4
は撮像レンズ、5は絞り、6は撮像素子、7は撮像装置
、8は信号処理装置である。
The drawings show an embodiment of the keratometry device according to the present invention, and the first
The figure shows its configuration, Figure 2 is a front view of the slit plate, Figure 3 is an explanatory diagram of the corneal image on the image sensor, and Figure 4 is a waveform diagram of the signal obtained by binarizing the scanning line that intersects the corneal image. , FIG. 5 shows the intersection points of each scanning line and the corneal image and their regression curves. 1 is a light source, 2 is a slint plate, 3 is a projection lens, 4
5 is an imaging lens, 5 is an aperture, 6 is an imaging element, 7 is an imaging device, and 8 is a signal processing device.

Claims (1)

【特許請求の範囲】 1、被検眼の角膜にスリット光束を投影する投影光学系
と、このスリット光束の角膜による散乱像を投影光軸と
角度を持つ方向から撮像素子上に写す撮像光学系と、前
記撮像素子の出力信号を処理する信号処理手段と、前記
撮像素子の走査線と前記散乱像との交点を信号レベルか
ら求め、各走査線の交点の平均的位置から角膜計測情報
を求める信号処理手段とを有することを特徴とする角膜
測定装置。 2、前記角膜計測情報は前記交点を曲線に回帰して求め
た角膜形状とした特許請求の範囲第1項に記載の角膜測
定装置。 3、前記角膜計測情報は前記走査線の2つの交点の間隔
の平均値から求めた角膜の厚さとした特許請求の範囲第
1項に記載の角膜測定装置。 4、前記投影光学系のスリット光束は角膜の曲率中心を
通るようにした特許請求の範囲第1項に記載の角膜測定
装置。
[Scope of Claims] 1. A projection optical system that projects a slit light beam onto the cornea of the eye to be examined, and an imaging optical system that projects a scattered image of the slit light beam by the cornea onto an image sensor from a direction having an angle with the projection optical axis. , a signal processing means for processing an output signal of the image sensor, and a signal for determining the intersection of the scanning line of the image sensor and the scattering image from the signal level, and obtaining keratometry information from the average position of the intersection of each scanning line. A keratometry device comprising a processing means. 2. The corneal measurement device according to claim 1, wherein the corneal measurement information is a corneal shape obtained by regressing the intersection point to a curve. 3. The keratometry device according to claim 1, wherein the keratometry information is the thickness of the cornea determined from the average value of the interval between two intersections of the scanning lines. 4. The corneal measuring device according to claim 1, wherein the slit light beam of the projection optical system passes through the center of curvature of the cornea.
JP62135639A 1987-05-30 1987-05-30 Eye measurement device Expired - Fee Related JP2835371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62135639A JP2835371B2 (en) 1987-05-30 1987-05-30 Eye measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62135639A JP2835371B2 (en) 1987-05-30 1987-05-30 Eye measurement device

Publications (2)

Publication Number Publication Date
JPS63300739A true JPS63300739A (en) 1988-12-07
JP2835371B2 JP2835371B2 (en) 1998-12-14

Family

ID=15156511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62135639A Expired - Fee Related JP2835371B2 (en) 1987-05-30 1987-05-30 Eye measurement device

Country Status (1)

Country Link
JP (1) JP2835371B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146410A (en) * 1991-11-29 1993-06-15 Topcon Corp Apparatus for observing and photographing endothelial cell of cornea
JP2006068110A (en) * 2004-08-31 2006-03-16 Tomey Corporation Ophthalmic apparatus
JP2012187393A (en) * 2011-02-25 2012-10-04 Canon Inc Ophthalmologic apparatus and control method therefor, and ophthalmologic system
JP2015104555A (en) * 2013-11-29 2015-06-08 株式会社ニデック Ophthalmic measurement apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938603A (en) * 1982-08-30 1984-03-02 Nippon Kogaku Kk <Nikon> Electronic phacometer
JPS5968720A (en) * 1982-10-13 1984-04-18 Tokyo Optical Co Ltd Device for making layout of spectacles
JPS5985644A (en) * 1982-11-06 1984-05-17 株式会社トプコン Eye examination apparatus
JPS63197433A (en) * 1987-02-12 1988-08-16 株式会社ニデツク Method for measuring shape of cornea

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938603A (en) * 1982-08-30 1984-03-02 Nippon Kogaku Kk <Nikon> Electronic phacometer
JPS5968720A (en) * 1982-10-13 1984-04-18 Tokyo Optical Co Ltd Device for making layout of spectacles
JPS5985644A (en) * 1982-11-06 1984-05-17 株式会社トプコン Eye examination apparatus
JPS63197433A (en) * 1987-02-12 1988-08-16 株式会社ニデツク Method for measuring shape of cornea

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146410A (en) * 1991-11-29 1993-06-15 Topcon Corp Apparatus for observing and photographing endothelial cell of cornea
JP2006068110A (en) * 2004-08-31 2006-03-16 Tomey Corporation Ophthalmic apparatus
JP2012187393A (en) * 2011-02-25 2012-10-04 Canon Inc Ophthalmologic apparatus and control method therefor, and ophthalmologic system
JP2015104555A (en) * 2013-11-29 2015-06-08 株式会社ニデック Ophthalmic measurement apparatus

Also Published As

Publication number Publication date
JP2835371B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
US6079831A (en) Device and method for mapping the topography of an eye using elevation measurements in combination with slope measurements
JP7147004B2 (en) Apparatus for Reliably Determining Whole-Ocular Biometric Variables
US5953100A (en) Multi-camera corneal analysis system
Hannush et al. Accuracy and precision of keratometry, photokeratoscopy, and corneal modeling on calibrated steel balls
Weinreb et al. Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness
US4998819A (en) Topography measuring apparatus
US6830334B2 (en) Anterior chamber diameter measurement system from limbal ring measurement
JP2004502483A (en) Device for diagnosing and monitoring eye diseases
JPH08280622A (en) Equipment and method for image forming of structure in frontof eyes and slit lamp assembly
US20020154269A1 (en) Stereoscopic measurement of cornea and illumination patterns
US5339121A (en) Rectilinear photokeratoscope
EP1057446A2 (en) Corneal shape measuring apparatus
JP3013356B2 (en) Anterior segment imaging device
US6607273B2 (en) Stereo view reflection corneal topography
Maldonado et al. Reproducibility of digital image analysis for measuring corneal haze after myopic photorefractive keratectomy
CN108371541A (en) A kind of tool for detecting and calibrating ophthalmology imaging, ophthalmology biological parameter measuring instrument
JPS63300739A (en) Cornea measuring apparatus
WO2021236976A1 (en) Prismatic triangulating corneal topography system and methods of use
US20150265148A1 (en) Method for determining the total refractive power of the cornea of an eye
US20230255475A1 (en) Reflection based corneal topography system using prisms for improved accuracy and method of use
JP4545871B2 (en) Ophthalmic equipment
JP6662412B2 (en) Ophthalmic measurement device
JP2937373B2 (en) Ophthalmic equipment
Tavazzi et al. Corneal Pachymetry and Endothelial Microscopy by Slit-Lamp
JP2003235801A (en) Ocular optical characteristic measuring instrument

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees