JPS63299722A - Voltage regulation relay - Google Patents

Voltage regulation relay

Info

Publication number
JPS63299722A
JPS63299722A JP62129966A JP12996687A JPS63299722A JP S63299722 A JPS63299722 A JP S63299722A JP 62129966 A JP62129966 A JP 62129966A JP 12996687 A JP12996687 A JP 12996687A JP S63299722 A JPS63299722 A JP S63299722A
Authority
JP
Japan
Prior art keywords
voltage
load
average
input
voltages
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62129966A
Other languages
Japanese (ja)
Other versions
JPH0578250B2 (en
Inventor
Ichiro Watabe
一朗 渡部
Yoshiaki Matsui
義明 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62129966A priority Critical patent/JPS63299722A/en
Publication of JPS63299722A publication Critical patent/JPS63299722A/en
Publication of JPH0578250B2 publication Critical patent/JPH0578250B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To stably supply the voltage of a power system by comparing an average value of all the average values of voltages, each at each of a plurality of ground points of the system with a set voltage, and controlling the tap switching of an on-load tap changing transformer by the compared result. CONSTITUTION:The end voltages of the loads 3a, 3b in a power system are input to an input converter 12, and digitally converted voltages are input to a voltage regulating relay 13. The relay 13 calculates a time average voltage within a predetermined time for each input load terminal voltage, and then calculates an average value (whole average voltage) of all the time average voltages. The obtained whole average voltage is compared with a preset voltage, and if the whole average voltage is larger than the set voltage, a down command for executing the tap change for reducing the voltage with respect to an on-load tap changing transformer 9 is output, while if the while average voltage is lower than the set voltage, a rise command signal is output.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電力系統の電圧を一定に調整する九めに用いら
れる電圧調整継電器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a voltage regulating relay used for regulating the voltage of a power system to a constant level.

〔従来の技術〕[Conventional technology]

電力系統には負荷時タップ切換電圧器が設けられ、その
タッグを適宜切換えることにより電力系統の負荷端電圧
が一定に保持される。この負荷時タップ切換変圧器のタ
ッグ切換は電圧調整継電器により行なわれる。
The power system is provided with a load tap switching voltage regulator, and by appropriately switching the tag, the load end voltage of the power system is maintained constant. The tag switching of this on-load tap-changing transformer is performed by a voltage regulating relay.

第4図は従来の線路電圧調整装置の系統図である。図で
、1は送電線、2は送電線1に電力を供給する電源、3
a、3bは送電線1に接続された負荷、4は送電線1に
九れる電流を検出する変流器、5は補助変圧器である。
FIG. 4 is a system diagram of a conventional line voltage regulator. In the figure, 1 is a power transmission line, 2 is a power source that supplies power to power transmission line 1, and 3
A and 3b are loads connected to the power transmission line 1, 4 is a current transformer that detects the current flowing to the power transmission line 1, and 5 is an auxiliary transformer.

V・は電源2−の電源電圧、Iシは送電線1の負荷電流
、L、、L、は送[f!10線路リアクタンス、几、、
R1!は送電線1の線路抵抗、Z1□ZL、はそれぞれ
負荷3a、3bの負荷インピーダンス、v、は負荷3a
の端子電圧を示す。
V・ is the power supply voltage of the power supply 2-, Ishi is the load current of the transmission line 1, L,,L, is the transmission [f! 10 track reactance,
R1! is the line resistance of power transmission line 1, Z1□ZL is the load impedance of loads 3a and 3b, respectively, and v is load 3a
Indicates the terminal voltage of

6は補助変圧器5に接続され九町変抵抗器、7は線路電
圧降下補償器である。この線路電圧降下補償器7は可変
リアクタンス7Lおよび可変抵抗器7Rで構成されてい
る。8は電圧a14!iE継電器である。vaは可変抵
抗器6の電圧、L!は可変リアクタンス7Lのリアクタ
ンス、Rsは町変抵抗倦7几の抵抗、vbは線路電圧降
下補償器7の出力電圧、vcは電圧調整継電器8の入力
電圧、iLは変流器4の検出%を流を示す。
6 is a Kucho transformer resistor connected to the auxiliary transformer 5, and 7 is a line voltage drop compensator. This line voltage drop compensator 7 is composed of a variable reactance 7L and a variable resistor 7R. 8 is voltage a14! It is an iE relay. va is the voltage of variable resistor 6, L! is the reactance of the variable reactance 7L, Rs is the resistance of the variable resistor 7L, vb is the output voltage of the line voltage drop compensator 7, vc is the input voltage of the voltage adjustment relay 8, and iL is the detection % of the current transformer 4. Show flow.

線路電圧降下補償器7に設定されるリアクタンスL、お
よび抵抗Rsは、送を線1に接続され次負荷の電力#&
要を予測し、その需要の分布の中心と電源2との間の線
路リアクタンスおよび線路抵抗に比例した値に選定され
ている。
The reactance L and the resistance Rs set in the line voltage drop compensator 7 are connected to the transmission line 1 and the power of the next load is #&
A value proportional to the line reactance and line resistance between the center of the demand distribution and the power supply 2 is selected.

今、負荷分布の中心が負荷aaKあり、この電圧V、を
制御するものとすると、電圧vtは次式%式% この電圧■−に比例し比値Vcを電圧調整継電器8に与
えてやれば、電圧14整継電器8はこれに基づいて負荷
時タップ切換変圧器のタップ切換を制御することができ
、これにより電圧v1を目標電圧に保持することができ
る。上記電圧VCは可変抵抗器6および線路電圧降下補
償器7が設けられていることにより、次のように求める
ことができる。
Now, if the center of the load distribution is the load aaK and this voltage V is to be controlled, the voltage vt is proportional to the following formula % formula % If the ratio value Vc is given to the voltage adjustment relay 8. , the voltage 14 regulator 8 can control the tap switching of the on-load tap-changing transformer based on this, thereby making it possible to maintain the voltage v1 at the target voltage. Since the variable resistor 6 and the line voltage drop compensator 7 are provided, the voltage VC can be determined as follows.

VC= V@  Vb=Vs −(J” Ls +  
Rm ) lc即ち、線路電圧降下補償器7に模擬的に
インピーダンスLs、  Rsを設定することにより線
路インピーダンスに比例し比電圧降下分を得、これによ
り電圧V、に比例した電圧vcを得ることができる。
VC= V@ Vb=Vs −(J” Ls +
Rm ) lc That is, by setting impedances Ls and Rs in the line voltage drop compensator 7 in a simulated manner, it is possible to obtain a specific voltage drop proportional to the line impedance, thereby obtaining a voltage VC proportional to the voltage V. can.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記線路電圧調整装置においては、リアクタンスLs、
抵抗几1は電力需要の予測に基づいて設定されている。
In the above-mentioned line voltage regulator, reactance Ls,
Resistor 1 is set based on predictions of power demand.

しかしながら、電力系統内における電力需要は常に一定
ではなく、変化するのが通常である。したがって、需要
の分布の中心もこれに伴って変化する。この結果、線路
電圧降下補償器7に設定され几すアクタンスL1.抵抗
R,が実態と合致しなくなり、これにより電圧vcの値
も変動し、電圧調整継電器8は適切な電圧vI4優を実
行することができなくなる。これをwJs図(a)〜(
d)により説明する。
However, the power demand within the power system is not always constant and usually changes. Therefore, the center of demand distribution also changes accordingly. As a result, the actance L1. The resistance R, no longer matches the actual situation, and thereby the value of the voltage vc also fluctuates, and the voltage regulating relay 8 is no longer able to perform an appropriate voltage vI4. This is shown in wJs diagrams (a) to (
This is explained by d).

第5図(a)は電力系統の負荷分布図である。1は送電
線、2は電源、3.〜3nは負荷、Z、1〜Z錐は線路
インピーダンスを示す。理解を容易にする九め、各負荷
31〜3fiの電力需要は均等であるとする。したがっ
て、制御すべき電圧V、は線路の中間点にあり、線路電
圧降下補償器7のインピーダンスL、、R,も電源2か
らこの中間点までのM%インピーダンスに応じて設定さ
れる。
FIG. 5(a) is a load distribution diagram of the power system. 1 is a power transmission line, 2 is a power source, 3. ~3n represents the load, Z and 1 to Z cone represent the line impedance. Ninth, for ease of understanding, it is assumed that the power demand of each load 31 to 3fi is equal. Therefore, the voltage V to be controlled is at the midpoint of the line, and the impedance L, , R, of the line voltage drop compensator 7 is also set according to the M% impedance from the power supply 2 to this midpoint.

第5図(b)〜(d)は線路の電圧分布図でおり、第5
図(b)は負荷の電力需要に変化がない場合の電圧分布
図である。この場合、電圧vLと電圧調整継電器80入
力電圧Vcとは一致している。しかしながら、負荷の電
力需要に変化が生じると両電圧には不一致が生じる。
Figures 5(b) to 5(d) are line voltage distribution diagrams, and the fifth
Figure (b) is a voltage distribution diagram when there is no change in the power demand of the load. In this case, the voltage vL and the voltage adjustment relay 80 input voltage Vc match. However, when a change occurs in the power demand of the load, a mismatch occurs between the two voltages.

第5図(c)はW源側の負荷に電力需要が集中し次場合
の電圧分布図である。この場合、電力需要の分布の中心
は電源側にをるが、そこまでの線路インピーダンスは電
源2からの距離が短いので小さい。しかし、線路電圧降
下補償器7に設定されたインピーダンスL、、几、は固
定されているので、実際の線路電圧は破線で示される分
布を示すにもかかわらず、線路電圧降下補償器7では実
際の線路電圧分布より低い実線で示される線路電圧分布
が存在するとみてしまう。し友がって、電圧VCは電圧
vLより低くなり、この低い電圧vcに基づいて負荷時
タップ切換変圧器を制御する結果、過補償を生じる。
FIG. 5(c) is a voltage distribution diagram in the following case where power demand is concentrated on the load on the W source side. In this case, the center of the power demand distribution is on the power source side, but the line impedance up to that point is small because the distance from the power source 2 is short. However, since the impedance L,, 几, set in the line voltage drop compensator 7 is fixed, even though the actual line voltage shows the distribution shown by the broken line, the line voltage drop compensator 7 actually It is assumed that there is a line voltage distribution shown by the solid line that is lower than the line voltage distribution of . Consequently, voltage VC will be lower than voltage vL, and controlling the on-load tap-changing transformer based on this lower voltage VC will result in overcompensation.

第5図(d)は逆に電源から遠い側の負荷に電力m要が
集中し友場合の電圧分布図である。この場合は第5図(
c)に示す場合とは逆になり、線路電圧降下補償器7で
は破線で示す実際の一嶽路電圧分布より高い実線で示す
線路電圧分布が存在するものとみるので、不足補償とな
る。
FIG. 5(d) is a voltage distribution diagram in the case where, conversely, the electric power is concentrated on the load on the side far from the power source. In this case, Figure 5 (
In contrast to the case shown in c), the line voltage drop compensator 7 assumes that there is a line voltage distribution shown by the solid line that is higher than the actual one-way voltage distribution shown by the broken line, resulting in insufficient compensation.

このように、従来の装置にあっては、負荷の電力需要の
変化に対応することはできず、電力系統の電圧を安定し
て制御することはできないという問題があつ九。
As described above, conventional devices have problems in that they cannot respond to changes in the power demand of the load and cannot stably control the voltage of the power system.

本発明の目的は、上記従来技術の問題点を解決し、負荷
の電力需要の変化が生じても電力系統の電圧を安定して
制御することができる電圧調整継電器を提供するにめる
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art described above and to provide a voltage regulating relay that can stably control the voltage of a power system even if the power demand of the load changes.

〔問題点を解決する九めの手段〕[Ninth way to solve the problem]

上記の目的を達成する九め、本発明は、負荷時タップ切
換変圧器のタッグ切換を制御して電力系統の電圧を一定
に調整する電圧調整継電器において、電力系統における
複数の地点の電圧を入力する入力手段と、入力された%
電圧毎にその時間平均電圧を演算する第1の演算手段と
、これら各時間平均電圧の全平均電圧を演算する第2の
演算手段と、この全平均電圧を設定電圧と比較する比奴
手段と、比較の結果に応じて負荷時タッグ切換変圧器に
切換制御信号を出力する出力手段とを設けたことを特徴
とする。
Ninth to achieve the above object, the present invention provides a voltage regulating relay that controls tag switching of on-load tap-changing transformers to keep the voltage of the power system constant, by inputting voltages at multiple points in the power system. input means and the entered %
A first calculation means for calculating the time average voltage for each voltage, a second calculation means for calculating the total average voltage of each of these time average voltages, and a comparison means for comparing the total average voltage with a set voltage. , and an output means for outputting a switching control signal to the on-load tag switching transformer in accordance with the comparison result.

〔作 用〕[For production]

電力系統内の各負荷端電圧が慌出され、それら電圧は旭
土請掻継篭器に入力される。電圧a11贅粘亀器では、
入力しf?:、/?!r負荷端負荷端電圧定時間内にお
ける時間平均電圧を演算し、次いで、これら時間平均電
圧全部の平均1m (全平均電圧)を演算する。そして
、得られた全平均電圧を、予め設定された設定電圧と比
較し、全平均電圧が設定電圧より大きい場合は負荷時タ
ッグ切換変圧器に対して電圧を降下させるタッグ切換を
実行する降指令信号を出力し、又、全平均電圧が設定電
圧より低い場合は昇指令信号を出力する。
The voltages at each load end in the power system are output in a hurry, and these voltages are input to the Asahi Doke-kakei gage. In the voltage a11 scale,
Enter f? :,/? ! rLoad end load end voltage The time average voltage within a fixed time is calculated, and then the average 1m (total average voltage) of all these time average voltages is calculated. Then, the obtained total average voltage is compared with a preset set voltage, and if the total average voltage is higher than the set voltage, a drop command is issued to execute tag switching to drop the voltage to the tag switching transformer during load. A signal is output, and if the total average voltage is lower than the set voltage, an increase command signal is output.

〔実施例〕〔Example〕

以下、本発明を図示の実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on illustrated embodiments.

第1図は本発明の実施例に係る電圧調整m電器の系統図
である。図で、1は送電線、3a、3bは負荷である。
FIG. 1 is a system diagram of a voltage regulating electric appliance according to an embodiment of the present invention. In the figure, 1 is a power transmission line, and 3a and 3b are loads.

9は負荷時タップ切換写圧器、10は遮断器を示し、い
ずれも送電線1に設けられている。11は各負荷の負荷
端電圧を検出する補助変圧器である。戎は各負荷端に設
けられ次入力f換器であり、負荷端電圧をこれに比例し
九適宜な値に降圧する補助変圧器12a、補助変圧器1
2 aの出力を実効値に変換する実効値変換器12 b
、実効gLK換器12 bの出力をディジタル値に変換
するA/D変換器12C1およびA/D変換器12 C
で変換され比値を出力するディジタル出力部12 dで
構成されている。
Reference numeral 9 indicates a load tap changer, and reference numeral 10 indicates a circuit breaker, both of which are provided on the power transmission line 1. 11 is an auxiliary transformer that detects the load end voltage of each load. A secondary input f converter is provided at each load end, and an auxiliary transformer 12a and an auxiliary transformer 1 are provided at each load end to reduce the voltage at the load end proportionally to an appropriate value.
2. RMS value converter 12 b that converts the output of a into an effective value.
, an A/D converter 12C1 and an A/D converter 12C that convert the output of the effective gLK converter 12b into a digital value.
It is comprised of a digital output section 12d that converts the signal and outputs a ratio value.

13は電圧調整m電器であり、ディジタル信号の入出力
部13a1所要の演算、制御を行なう演算ユニット13
b、ROM(リードオンリメモリ)およびRAM(ラン
ダムアクセスメモリ)より成る記憶部13C1およびデ
ィジタル出力部の入出力部13 dを備えている。
Reference numeral 13 denotes a voltage adjustment device, and a calculation unit 13 performs necessary calculations and control of the digital signal input/output section 13a1.
b, a storage section 13C1 consisting of a ROM (read only memory) and a RAM (random access memory), and an input/output section 13d that is a digital output section.

次に、本実施例の動作を、第2図に示すフローチャート
および第3図(a)〜(c)に示す演算説明図を参照し
ながら説明する。送電縁1から各負荷3a、3b、・・
・・・・・・・・・・・・・に対して電力が供給される
Next, the operation of this embodiment will be explained with reference to the flowchart shown in FIG. 2 and the calculation explanatory diagrams shown in FIGS. 3(a) to 3(c). From the power transmission edge 1 to each load 3a, 3b,...
Power is supplied to...

このとき、各負荷端電圧は補助変圧器11.12 aを
介して入力変換器12に入力される。入力され比電圧は
、実効値変換器12 bにより実効値に変換される。こ
れにより、交流入力電圧に大きな歪が弗生じても正確に
実効値成分のみがとり出される。実効値に便侠された信
号はA/υ′に換器12 Cによりディジタル値に変換
される。なお、このA/D変換器12 cの変換のタイ
ミングは電圧、)4姫継電器13の演算ユニット13 
bから出力されるタイミング信号により制御される。変
換され九電圧値は出力部12 dから出力され、電圧調
整継電器13にその入出力部13 aを経て各負荷端電
圧毎に順次取込まれる(第2図に示す手順S、)。
At this time, each load end voltage is input to the input converter 12 via the auxiliary transformer 11.12a. The input specific voltage is converted into an effective value by an effective value converter 12b. As a result, even if a large distortion occurs in the AC input voltage, only the effective value component can be extracted accurately. The signal converted into an effective value is converted into a digital value by A/υ' converter 12C. Note that the timing of the conversion of this A/D converter 12c is the voltage,)
It is controlled by a timing signal output from b. The converted nine voltage values are outputted from the output section 12d and are sequentially input to the voltage regulating relay 13 via its input/output section 13a for each load end voltage (step S shown in FIG. 2).

電圧調整継電器13に取込まれた電圧は一定時間順次記
憶部13 cに記憶されてゆき、一定時間経過後、それ
ら電圧が取出され、各負荷端電圧毎に当該一定時間内の
平均値が算出される(手順Sり。
The voltages taken into the voltage regulating relay 13 are sequentially stored in the storage unit 13c for a certain period of time, and after a certain period of time, these voltages are taken out, and the average value within the certain period of time is calculated for each load end voltage. (Step S).

この平均値の演算なり、3図(a)により説明する。The calculation of this average value will be explained with reference to FIG. 3(a).

第3図(a)はおる負荷の負荷端電圧V(t)の波形図
である。時刻T、における負荷端電圧はV (To)、
時刻(T0+ To) ニオはル負荷m電圧+s V 
(T、+Tn)  で示されている。ここで、上記一定
時間を電圧の平均となり、次式により演算される。
FIG. 3(a) is a waveform diagram of the load terminal voltage V(t) of the load. The load end voltage at time T is V (To),
Time (T0+ To) Niohru load m voltage + s V
(T, +Tn). Here, the voltage is averaged over the certain period of time, and is calculated by the following equation.

この演算は演算ユニツ) 13 bで実行される。This calculation is executed by the calculation unit) 13b.

第3図(b)は送電練上の各負荷の配置図であり、1は
送xi、2は電源、P、〜P、は各負荷の位置を示す。
FIG. 3(b) is a diagram showing the arrangement of each load on the power transmission grid, where 1 indicates the transmission xi, 2 indicates the power supply, and P and ˜P indicate the positions of the respective loads.

第3図(c)は各負荷の時間Tnの平均電圧を示す図で
あり、位置P、における負荷端電圧の平均電圧はV、(
t)、又、位[P、における負荷端電圧の平均電圧はV
n(t)で示されている。
FIG. 3(c) is a diagram showing the average voltage of each load during time Tn, and the average voltage of the load end voltage at position P is V, (
t), and the average voltage of the load end voltage at position [P, is V
It is denoted by n(t).

次に、これらの各負荷端電圧の平均電圧の全体の平均電
圧が演算ユニット13bにより算出される(手順Ss)
。第3図(c)に示す表現にしまがうと、この全体の平
均電圧Vは次式の演典により求めることができる。
Next, the overall average voltage of the average voltages of these load end voltages is calculated by the calculation unit 13b (step Ss)
. Using the expression shown in FIG. 3(c), the overall average voltage V can be obtained from the following formula.

上記平均電圧Vが、本来制御すべき電圧でおる。The above average voltage V is the voltage that should originally be controlled.

このよりにして求められホ平均嵐圧Vは予め定められて
いる設定電圧と比較され(手順84)、平均電圧Vが設
定電圧より尚い場合には、負荷時タップ切換変圧器9に
対して電圧を下げる方向にタップ切換を行なわせる降指
令を出力する(手II Ss )。
The average storm pressure V obtained in this manner is compared with a predetermined set voltage (step 84), and if the average voltage V is higher than the set voltage, the on-load tap changer transformer 9 is A descending command to change the tap in the direction of lowering the voltage is output (hand II Ss).

そして、負荷時タッグ切換変圧器9からの信号によフこ
の降指令に対応して電圧切換が終了したか否かを判断し
く手順S・)、電圧切換が終了するまで降指令の出力を
継続する。
Then, based on the signal from the on-load tag switching transformer 9, it is determined whether or not the voltage switching has been completed in response to this step-down command (step S), and the output of the step-down command is continued until the voltage switching is completed. do.

手順S4において平均電圧Vが設定電圧より高くないと
判断された場合には、続いて平均電圧■が設定電圧より
低いか否かが判断される(手順S、 )。この処理にお
いて、平均電圧Vが設定電圧より低くないと判断された
場合には、平均電圧Vと設定電圧とが等しいこ゛とにな
るので処理は終了する。手順S、で平均電圧Vが設定電
圧より低いと判断された場合には、負荷時タッグ切換変
圧器9に対して電圧を上げる方向にタップ切換を行なわ
せる昇指令を出力する(手JIi’tSm)。そして、
負荷時タップ切換変圧器9からの信号により、この昇指
令に対応して電圧切換が終了したか告かを判断しく手順
S、)、電圧切換が終了するまで昇指令の出力を継続す
る。すべての手順が終了すると、今度は次のデータ処理
の準備を行なう。そして、再び+l11iLs、からの
処理が繰返えされる。
If it is determined in step S4 that the average voltage V is not higher than the set voltage, then it is determined whether the average voltage V is lower than the set voltage (step S, ). In this process, if it is determined that the average voltage V is not lower than the set voltage, the process ends because the average voltage V and the set voltage are equal. If it is determined in step S that the average voltage V is lower than the set voltage, a step-up command is output to the on-load tag switching transformer 9 to switch the tap in the direction of increasing the voltage. ). and,
Based on the signal from the on-load tap change transformer 9, it is determined whether the voltage switching has been completed in response to this increase command.In step S,), the output of the increase command is continued until the voltage switching is completed. Once all steps have been completed, preparations are made for the next data processing. Then, the processing from +l11iLs is repeated again.

このように、本実施例では、すべ℃の負荷端の平均電圧
を常時錬視し、各負端の平均電圧の全部の平均電圧を設
定電圧と比較するようにし友ので、負荷にどのよつな変
動が生じても電力系統の電圧を適切に制御することがで
きる。
In this way, in this embodiment, the average voltage at the load terminal is constantly checked at all times, and the average voltage of all the average voltages at each negative terminal is compared with the set voltage. Even if significant fluctuations occur, the voltage of the power system can be appropriately controlled.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明では、電力系統の複数地点の
電圧の各地点毎の平均電圧を算出し、これら平均電圧の
全部の平均電圧を求めて設定電圧と比較し、この比較の
結果により負荷時タップ切換震圧器のタップ切換を制御
するようにし九ので、負荷に変動が生じても電力系統の
電圧を安定して供給することができる。
As described above, in the present invention, the average voltage at each point of the voltage at multiple points in the power system is calculated, the average voltage of all these average voltages is determined and compared with the set voltage, and the result of this comparison is Since the tap switching of the seismic pressure device is controlled during load tap switching, the voltage of the power system can be stably supplied even if the load fluctuates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1I2!Aは本発明の実施例に係る電圧調整継電器の
系統図、第2図は第1図に示す電圧調整継電器の動作を
説明するフローチャート、第3図(a)、(b)、(C
)は第1図に示す電圧―整綿電器で実行される演算を説
明する説明図、第4図は従来の線路電圧調整装置の系統
図、第5図(a)、(b)、(C)、(d)は負荷分布
図および線路電圧分布図である。 1・・・・・・送電線、3a、3b・・・・・・負荷、
9・・・・・・負荷時タップ切換変圧器、12・・・・
・−人力変換器、13・・曲電圧調整継電器 第 2 図 第3図 位置  → 第 5 口 距屡− 粗層→ 距層−
1st I2! A is a system diagram of a voltage regulating relay according to an embodiment of the present invention, FIG. 2 is a flowchart explaining the operation of the voltage regulating relay shown in FIG. 1, and FIGS. 3(a), (b), (C
) is an explanatory diagram illustrating the calculations executed by the voltage-cotton adjustment device shown in Figure 1, Figure 4 is a system diagram of a conventional line voltage regulator, and Figures 5 (a), (b), (C ) and (d) are a load distribution diagram and a line voltage distribution diagram. 1...Transmission line, 3a, 3b...Load,
9...Tap switching transformer on load, 12...
・-Manual power converter, 13...Bending voltage adjustment relay No. 2 Figure 3 Position → No. 5 Layer - Coarse layer → Layer -

Claims (1)

【特許請求の範囲】[Claims] 1、負荷時タップ切換変圧器のタップ切換を制御して電
力系統の電圧を一定に調整する電圧調整継電器において
、前記電力系統における複数の地点の電圧を入力する入
力手段と、入力された各電圧毎の時間平均電圧を演算す
る第1の演算手段と、この第1の演算手段により演算さ
れた各時間平均電圧の全平均電圧を演算する第2の演算
手段と、この第2の演算手段により演算された全平均電
圧を予め定められた設定電圧と比較する比較手段と、こ
の比較手段の比較の結果に応じて前記負荷時タップ切換
変圧器に切換制御信号を出力する出力手段とを設けたこ
とを特徴とする電圧調整継電器。
1. In a voltage regulating relay that adjusts the voltage of a power system to a constant level by controlling tap switching of a tap-changing transformer at the time of load, an input means for inputting voltages at a plurality of points in the power system, and each input voltage A first calculation means for calculating the time average voltage for each time, a second calculation means for calculating the total average voltage of each time average voltage calculated by the first calculation means, and a second calculation means for calculating the total average voltage of each time average voltage calculated by the first calculation means. Comparing means for comparing the calculated total average voltage with a predetermined set voltage, and output means for outputting a switching control signal to the on-load tap switching transformer according to the comparison result of the comparing means. A voltage regulating relay characterized by:
JP62129966A 1987-05-28 1987-05-28 Voltage regulation relay Granted JPS63299722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62129966A JPS63299722A (en) 1987-05-28 1987-05-28 Voltage regulation relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62129966A JPS63299722A (en) 1987-05-28 1987-05-28 Voltage regulation relay

Publications (2)

Publication Number Publication Date
JPS63299722A true JPS63299722A (en) 1988-12-07
JPH0578250B2 JPH0578250B2 (en) 1993-10-28

Family

ID=15022834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62129966A Granted JPS63299722A (en) 1987-05-28 1987-05-28 Voltage regulation relay

Country Status (1)

Country Link
JP (1) JPS63299722A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020032128A (en) * 2000-10-25 2002-05-03 이종훈 voltage automatic Controller for main transformer by load time band
JP2011250629A (en) * 2010-05-28 2011-12-08 Mitsubishi Electric Corp Voltage controller
JP2012175800A (en) * 2011-02-21 2012-09-10 Chugoku Electric Power Co Inc:The Voltage management device, voltage management method, and voltage management program
JP2012217332A (en) * 2011-03-31 2012-11-08 General Electric Co <Ge> System and method for operating tap changer
JP2013243925A (en) * 2009-05-07 2013-12-05 Dominion Resources Inc Voltage conservation using advanced metering infrastructure and substation centralized voltage control
US9325174B2 (en) 2013-03-15 2016-04-26 Dominion Resources, Inc. Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis
US9354641B2 (en) 2013-03-15 2016-05-31 Dominion Resources, Inc. Electric power system control with planning of energy demand and energy efficiency using AMI-based data analysis
US9367075B1 (en) 2013-03-15 2016-06-14 Dominion Resources, Inc. Maximizing of energy delivery system compatibility with voltage optimization using AMI-based data control and analysis
US9563218B2 (en) 2013-03-15 2017-02-07 Dominion Resources, Inc. Electric power system control with measurement of energy demand and energy efficiency using t-distributions
US9847639B2 (en) 2013-03-15 2017-12-19 Dominion Energy, Inc. Electric power system control with measurement of energy demand and energy efficiency
US10732656B2 (en) 2015-08-24 2020-08-04 Dominion Energy, Inc. Systems and methods for stabilizer control

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172058A (en) * 1984-10-03 1986-08-02 エマーソン エレクトリック コムパニー Method and device for continuously monitoring organic compound in water current

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61172058A (en) * 1984-10-03 1986-08-02 エマーソン エレクトリック コムパニー Method and device for continuously monitoring organic compound in water current

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020032128A (en) * 2000-10-25 2002-05-03 이종훈 voltage automatic Controller for main transformer by load time band
JP2013243925A (en) * 2009-05-07 2013-12-05 Dominion Resources Inc Voltage conservation using advanced metering infrastructure and substation centralized voltage control
JP2011250629A (en) * 2010-05-28 2011-12-08 Mitsubishi Electric Corp Voltage controller
JP2012175800A (en) * 2011-02-21 2012-09-10 Chugoku Electric Power Co Inc:The Voltage management device, voltage management method, and voltage management program
JP2012217332A (en) * 2011-03-31 2012-11-08 General Electric Co <Ge> System and method for operating tap changer
US9847639B2 (en) 2013-03-15 2017-12-19 Dominion Energy, Inc. Electric power system control with measurement of energy demand and energy efficiency
US10476273B2 (en) 2013-03-15 2019-11-12 Dominion Energy, Inc. Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis
US9367075B1 (en) 2013-03-15 2016-06-14 Dominion Resources, Inc. Maximizing of energy delivery system compatibility with voltage optimization using AMI-based data control and analysis
US9553453B2 (en) 2013-03-15 2017-01-24 Dominion Resources, Inc. Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis
US9563218B2 (en) 2013-03-15 2017-02-07 Dominion Resources, Inc. Electric power system control with measurement of energy demand and energy efficiency using t-distributions
US9582020B2 (en) 2013-03-15 2017-02-28 Dominion Resources, Inc. Maximizing of energy delivery system compatibility with voltage optimization using AMI-based data control and analysis
US9678520B2 (en) 2013-03-15 2017-06-13 Dominion Resources, Inc. Electric power system control with planning of energy demand and energy efficiency using AMI-based data analysis
US9325174B2 (en) 2013-03-15 2016-04-26 Dominion Resources, Inc. Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis
US9887541B2 (en) 2013-03-15 2018-02-06 Dominion Energy, Inc. Electric power system control with measurement of energy demand and energy efficiency using T-distributions
US10274985B2 (en) 2013-03-15 2019-04-30 Dominion Energy, Inc. Maximizing of energy delivery system compatibility with voltage optimization
US10386872B2 (en) 2013-03-15 2019-08-20 Dominion Energy, Inc. Electric power system control with planning of energy demand and energy efficiency using AMI-based data analysis
US9354641B2 (en) 2013-03-15 2016-05-31 Dominion Resources, Inc. Electric power system control with planning of energy demand and energy efficiency using AMI-based data analysis
US10666048B2 (en) 2013-03-15 2020-05-26 Dominion Energy, Inc. Electric power system control with measurement of energy demand and energy efficiency using t-distributions
US11550352B2 (en) 2013-03-15 2023-01-10 Dominion Energy, Inc. Maximizing of energy delivery system compatibility with voltage optimization
US10768655B2 (en) 2013-03-15 2020-09-08 Dominion Energy, Inc. Maximizing of energy delivery system compatibility with voltage optimization
US10775815B2 (en) 2013-03-15 2020-09-15 Dominion Energy, Inc. Electric power system control with planning of energy demand and energy efficiency using AMI-based data analysis
US10784688B2 (en) 2013-03-15 2020-09-22 Dominion Energy, Inc. Management of energy demand and energy efficiency savings from voltage optimization on electric power systems using AMI-based data analysis
US11132012B2 (en) 2013-03-15 2021-09-28 Dominion Energy, Inc. Maximizing of energy delivery system compatibility with voltage optimization
US11353907B2 (en) 2015-08-24 2022-06-07 Dominion Energy, Inc. Systems and methods for stabilizer control
US10732656B2 (en) 2015-08-24 2020-08-04 Dominion Energy, Inc. Systems and methods for stabilizer control
US11755049B2 (en) 2015-08-24 2023-09-12 Dominion Energy, Inc. Systems and methods for stabilizer control

Also Published As

Publication number Publication date
JPH0578250B2 (en) 1993-10-28

Similar Documents

Publication Publication Date Title
Sarimuthu et al. A review on voltage control methods using on-load tap changer transformers for networks with renewable energy sources
US11016517B2 (en) On-load tap-changer control method, excitation control system carrying out said control method and power excitation chain
US7956596B2 (en) Voltage control for electric power systems
US5900723A (en) Voltage based VAR compensation system
JPS63299722A (en) Voltage regulation relay
CN104977966A (en) Self-adaptive voltage positioning direct current voltage stabilizer and controller and control method thereof
JP2009065788A (en) Optimal voltage controller for distribution system
JP5914231B2 (en) Method and apparatus for calculating settling value of line voltage drop compensator
WO2016143689A1 (en) Equipment planning assistance device and equipment planning assistance method for power distribution system
JP5457949B2 (en) Reactive power compensator with power flow calculation function, and system and method thereof
RU2711537C1 (en) Static reactive power compensator
JP3992212B2 (en) Power reverse power flow cause determination method and apparatus for automatic voltage regulator for power distribution, and automatic voltage regulator control method for power reverse power flow distribution
JP6478856B2 (en) Centralized voltage control device and voltage control system
JP4224309B2 (en) Voltage adjustment method for distribution system and automatic voltage adjustment device used for the method
RU161387U1 (en) VOLTAGE REGULATING DEVICE IN THE CONTROLLED AREA OF THE DISTRIBUTION NETWORK
JP2019198153A (en) Support device and method for voltage-adjustment-device arrangement plan in power distribution system
JP2018182982A (en) Tidal flow calculation device, tidal flow calculation method, and tidal flow calculation program
JP3319616B2 (en) Substation having operation support function and support method and apparatus therefor
JP2006230162A (en) Voltage regulator, voltage regulating method, and voltage regulating program
US20170264183A1 (en) Improvements in or relating to the control of converters
RU2245600C1 (en) Step-by-step ac voltage regulation device
JP6863778B2 (en) Distribution system operation support equipment and methods
JPH05344653A (en) Automatic voltage controller for power plant
JP2015177607A (en) Countermeasure construction determination device and method for distribution system
CN116526498A (en) Transformer hybrid voltage regulating system, control method and storage medium

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees